Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4656 lines
130 KiB

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
thread.c
Abstract:
This module implements Win32 Thread Object APIs
Author:
Mark Lucovsky (markl) 21-Sep-1990
Revision History:
--*/
#include "basedll.h"
#include "faultrep.h"
#define STRSAFE_NO_DEPRECATE
#include <strsafe.h>
//
// Define the fiber local storage data structure.
//
typedef struct _FLS_DATA {
LIST_ENTRY Entry;
PVOID Slots[FLS_MAXIMUM_AVAILABLE];
} FLS_DATA, *PFLS_DATA;
HANDLE BasepDefaultTimerQueue ;
ULONG BasepTimerQueueInitFlag ;
ULONG BasepTimerQueueDoneFlag ;
HANDLE
APIENTRY
CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId
)
/*++
Routine Description:
A thread object can be created to execute within the address space of the
calling process using CreateThread.
See CreateRemoteThread for a description of the arguments and return value.
--*/
{
return CreateRemoteThread( NtCurrentProcess(),
lpThreadAttributes,
dwStackSize,
lpStartAddress,
lpParameter,
dwCreationFlags,
lpThreadId
);
}
HANDLE
APIENTRY
CreateRemoteThread(
HANDLE hProcess,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
SIZE_T dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId
)
/*++
Routine Description:
A thread object can be created to execute within the address space of the
another process using CreateRemoteThread.
Creating a thread causes a new thread of execution to begin in the address
space of the current process. The thread has access to all objects opened
by the process.
The thread begins executing at the address specified by the StartAddress
parameter. If the thread returns from this procedure, the results are
un-specified.
The thread remains in the system until it has terminated and
all handles to the thread
have been closed through a call to CloseHandle.
When a thread terminates, it attains a state of signaled satisfying all
waits on the object.
In addition to the STANDARD_RIGHTS_REQUIRED access flags, the following
object type specific access flags are valid for thread objects:
- THREAD_QUERY_INFORMATION - This access is required to read
certain information from the thread object.
- SYNCHRONIZE - This access is required to wait on a thread
object.
- THREAD_GET_CONTEXT - This access is required to read the
context of a thread using GetThreadContext.
- THREAD_SET_CONTEXT - This access is required to write the
context of a thread using SetThreadContext.
- THREAD_SUSPEND_RESUME - This access is required to suspend or
resume a thread using SuspendThread or ResumeThread.
- THREAD_ALL_ACCESS - This set of access flags specifies all of
the possible access flags for a thread object.
Arguments:
hProcess - Supplies the handle to the process in which the thread is
to be create in.
lpThreadAttributes - An optional parameter that may be used to specify
the attributes of the new thread. If the parameter is not
specified, then the thread is created without a security
descriptor, and the resulting handle is not inherited on process
creation.
dwStackSize - Supplies the size in bytes of the stack for the new thread.
A value of zero specifies that the thread's stack size should be
the same size as the stack size of the first thread in the process.
This size is specified in the application's executable file.
lpStartAddress - Supplies the starting address of the new thread. The
address is logically a procedure that never returns and that
accepts a single 32-bit pointer argument.
lpParameter - Supplies a single parameter value passed to the thread.
dwCreationFlags - Supplies additional flags that control the creation
of the thread.
dwCreationFlags Flags:
CREATE_SUSPENDED - The thread is created in a suspended state.
The creator can resume this thread using ResumeThread.
Until this is done, the thread will not begin execution.
STACK_SIZE_PARAM_IS_A_RESERVATION - Use stack size as a reservation rather than commit
lpThreadId - Returns the thread identifier of the thread. The
thread ID is valid until the thread terminates.
Return Value:
NON-NULL - Returns a handle to the new thread. The handle has full
access to the new thread and may be used in any API that
requires a handle to a thread object.
NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
OBJECT_ATTRIBUTES Obja;
POBJECT_ATTRIBUTES pObja;
HANDLE Handle;
CONTEXT ThreadContext={0};
INITIAL_TEB InitialTeb;
CLIENT_ID ClientId;
ULONG i;
ACTIVATION_CONTEXT_BASIC_INFORMATION ActivationContextInfo = {0};
const ACTIVATION_CONTEXT_INFO_CLASS ActivationContextInfoClass = ActivationContextBasicInformation;
#if !defined(BUILD_WOW6432)
BASE_API_MSG m;
PBASE_CREATETHREAD_MSG a = &m.u.CreateThread;
#endif
#if defined(WX86) || defined(_AXP64_)
BOOL bWx86 = FALSE;
HANDLE Wx86Info;
PWX86TIB Wx86Tib;
#endif
//
// Allocate a stack for this thread in the address space of the target
// process.
//
if (dwCreationFlags&STACK_SIZE_PARAM_IS_A_RESERVATION) {
Status = BaseCreateStack (hProcess,
0L,
dwStackSize,
&InitialTeb);
} else {
Status = BaseCreateStack (hProcess,
dwStackSize,
0L,
&InitialTeb);
}
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return NULL;
}
//
// Create an initial context for the new thread.
//
BaseInitializeContext(
&ThreadContext,
lpParameter,
(PVOID)lpStartAddress,
InitialTeb.StackBase,
BaseContextTypeThread
);
pObja = BaseFormatObjectAttributes(&Obja,lpThreadAttributes,NULL);
Status = NtCreateThread(
&Handle,
THREAD_ALL_ACCESS,
pObja,
hProcess,
&ClientId,
&ThreadContext,
&InitialTeb,
TRUE // CreateSuspended
);
if (!NT_SUCCESS(Status)) {
BaseFreeThreadStack(hProcess,NULL, &InitialTeb);
BaseSetLastNTError(Status);
return NULL;
}
__try {
// If the current thread has a non-default, inheriting activation context active, send it
// on over to the new thread.
if (hProcess == NtCurrentProcess()) {
THREAD_BASIC_INFORMATION tbi;
ULONG_PTR Cookie; // not really used but non-optional parameter
// We need the TEB pointer for the new thread...
Status = NtQueryInformationThread(
Handle,
ThreadBasicInformation,
&tbi,
sizeof(tbi),
NULL);
if (!NT_SUCCESS(Status)) {
DbgPrint("SXS: %s - Failing thread create becuase NtQueryInformationThread() failed with status %08lx\n", __FUNCTION__, Status);
__leave;
}
// There might be some per-context activation going on in the current thread;
// we need to propogate it to the new thread.
Status =
RtlQueryInformationActivationContext(
RTL_QUERY_INFORMATION_ACTIVATION_CONTEXT_FLAG_USE_ACTIVE_ACTIVATION_CONTEXT,
NULL,
0,
ActivationContextInfoClass,
&ActivationContextInfo,
sizeof(ActivationContextInfo),
NULL
);
if (!NT_SUCCESS(Status)) {
DbgPrint("SXS: %s - Failing thread create because RtlQueryInformationActivationContext() failed with status %08lx\n", __FUNCTION__, Status);
__leave;
}
// Only do the propogation if an activation context other than the process default is active and the NO_INHERIT flag isn't set.
if ((ActivationContextInfo.ActivationContext != NULL) &&
(!(ActivationContextInfo.Flags & ACTIVATION_CONTEXT_FLAG_NO_INHERIT))) {
Status = RtlActivateActivationContextEx(
RTL_ACTIVATE_ACTIVATION_CONTEXT_EX_FLAG_RELEASE_ON_STACK_DEALLOCATION,
tbi.TebBaseAddress,
ActivationContextInfo.ActivationContext,
&Cookie);
if (!NT_SUCCESS(Status)) {
DbgPrint("SXS: %s - Failing thread create because RtlActivateActivationContextEx() failed with status %08lx\n", __FUNCTION__, Status);
__leave;
}
}
}
//
// Call the Windows server to let it know about the
// thread.
//
if ( !BaseRunningInServerProcess ) {
#if defined(BUILD_WOW6432)
Status = CsrBasepCreateThread(Handle,
ClientId
);
#else
a->ThreadHandle = Handle;
a->ClientId = ClientId;
CsrClientCallServer( (PCSR_API_MSG)&m,
NULL,
CSR_MAKE_API_NUMBER( BASESRV_SERVERDLL_INDEX,
BasepCreateThread
),
sizeof( *a )
);
Status = m.ReturnValue;
#endif
} else {
if (hProcess != NtCurrentProcess()) {
CSRREMOTEPROCPROC ProcAddress;
ProcAddress = (CSRREMOTEPROCPROC)GetProcAddress(
GetModuleHandleA("csrsrv"),
"CsrCreateRemoteThread"
);
if (ProcAddress) {
Status = (ProcAddress)(Handle, &ClientId);
}
}
}
if (!NT_SUCCESS(Status)) {
Status = (NTSTATUS)STATUS_NO_MEMORY;
} else {
if ( ARGUMENT_PRESENT(lpThreadId) ) {
*lpThreadId = HandleToUlong(ClientId.UniqueThread);
}
if (!( dwCreationFlags & CREATE_SUSPENDED) ) {
NtResumeThread(Handle,&i);
}
}
} __finally {
if (ActivationContextInfo.ActivationContext != NULL) {
RtlReleaseActivationContext(ActivationContextInfo.ActivationContext);
}
if (!NT_SUCCESS(Status)) {
//
// A second release is needed because we activated the activation context
// on the new thread but we did not succeed in completing creation of the
// thread. Had the thread been created, it would have deactivated the
// activation context upon exit (RtlFreeThreadActivationContextStack).
// This extra addref/releasing is triggered
// by the flags ACTIVATE_ACTIVATION_CONTEXT_FLAG_RELEASE_ON_STACK_DEALLOCATION
// and ACTIVATION_CONTEXT_STACK_FRAME_RELEASE_ON_DEACTIVATION.
//
if (ActivationContextInfo.ActivationContext != NULL) {
RtlReleaseActivationContext (ActivationContextInfo.ActivationContext);
}
NtTerminateThread (Handle, Status);
//
// Wait for the thread before deleting its stack. the kernel might be in the
// process of writing to it until we exit (say in user APC dispatch).
//
WaitForSingleObject (Handle, INFINITE);
BaseFreeThreadStack (hProcess,
Handle,
&InitialTeb);
NtClose (Handle);
BaseSetLastNTError (Status);
Handle = NULL;
}
}
return Handle;
}
NTSTATUS
NTAPI
BaseCreateThreadPoolThread(
PUSER_THREAD_START_ROUTINE Function,
PVOID Parameter,
HANDLE * ThreadHandleReturn
)
{
NTSTATUS Status;
RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME Frame = { sizeof(Frame), RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME_FORMAT_WHISTLER };
RtlActivateActivationContextUnsafeFast(&Frame, NULL);
__try {
*ThreadHandleReturn
= CreateRemoteThread(
NtCurrentProcess(),
NULL,
0,
(LPTHREAD_START_ROUTINE) Function,
Parameter,
CREATE_SUSPENDED,
NULL);
if (*ThreadHandleReturn) {
Status = STATUS_SUCCESS;
} else {
Status = NtCurrentTeb()->LastStatusValue;
if (NT_SUCCESS(Status)) {
Status = STATUS_UNSUCCESSFUL;
}
}
} __finally {
RtlDeactivateActivationContextUnsafeFast(&Frame);
}
return Status;
}
NTSTATUS
NTAPI
BaseExitThreadPoolThread(
NTSTATUS Status
)
{
ExitThread( (DWORD) Status );
return STATUS_SUCCESS ;
}
HANDLE
WINAPI
OpenThread(
DWORD dwDesiredAccess,
BOOL bInheritHandle,
DWORD dwThreadId
)
/*++
Routine Description:
A handle to a thread object may be created using OpenThread.
Opening a thread creates a handle to the specified thread.
Associated with the thread handle is a set of access rights that
may be performed using the thread handle. The caller specifies the
desired access to the thread using the DesiredAccess parameter.
Arguments:
mDesiredAccess - Supplies the desired access to the thread object.
For NT/Win32, this access is checked against any security
descriptor on the target thread. The following object type
specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED access flags.
DesiredAccess Flags:
THREAD_TERMINATE - This access is required to terminate the
thread using TerminateThread.
THREAD_SUSPEND_RESUME - This access is required to suspend and
resume the thread using SuspendThread and ResumeThread.
THREAD_GET_CONTEXT - This access is required to use the
GetThreadContext API on a thread object.
THREAD_SET_CONTEXT - This access is required to use the
SetThreadContext API on a thread object.
THREAD_SET_INFORMATION - This access is required to set certain
information in the thread object.
THREAD_SET_THREAD_TOKEN - This access is required to set the
thread token using SetTokenInformation.
THREAD_QUERY_INFORMATION - This access is required to read
certain information from the thread object.
SYNCHRONIZE - This access is required to wait on a thread object.
THREAD_ALL_ACCESS - This set of access flags specifies all of the
possible access flags for a thread object.
bInheritHandle - Supplies a flag that indicates whether or not the
returned handle is to be inherited by a new process during
process creation. A value of TRUE indicates that the new
process will inherit the handle.
dwThreadId - Supplies the thread id of the thread to open.
Return Value:
NON-NULL - Returns an open handle to the specified thread. The
handle may be used by the calling process in any API that
requires a handle to a thread. If the open is successful, the
handle is granted access to the thread object only to the
extent that it requested access through the DesiredAccess
parameter.
NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
OBJECT_ATTRIBUTES Obja;
HANDLE Handle;
CLIENT_ID ClientId;
ClientId.UniqueThread = (HANDLE)LongToHandle(dwThreadId);
ClientId.UniqueProcess = (HANDLE)NULL;
InitializeObjectAttributes(
&Obja,
NULL,
(bInheritHandle ? OBJ_INHERIT : 0),
NULL,
NULL
);
Status = NtOpenThread(
&Handle,
(ACCESS_MASK)dwDesiredAccess,
&Obja,
&ClientId
);
if ( NT_SUCCESS(Status) ) {
return Handle;
}
else {
BaseSetLastNTError(Status);
return NULL;
}
}
BOOL
APIENTRY
SetThreadPriority(
HANDLE hThread,
int nPriority
)
/*++
Routine Description:
The specified thread's priority can be set using SetThreadPriority.
A thread's priority may be set using SetThreadPriority. This call
allows the thread's relative execution importance to be communicated
to the system. The system normally schedules threads according to
their priority. The system is free to temporarily boost the
priority of a thread when signifigant events occur (e.g. keyboard
or mouse input...). Similarly, as a thread runs without blocking,
the system will decay its priority. The system will never decay the
priority below the value set by this call.
In the absence of system originated priority boosts, threads will be
scheduled in a round-robin fashion at each priority level from
THREAD_PRIORITY_TIME_CRITICAL to THREAD_PRIORITY_IDLE. Only when there
are no runnable threads at a higher level, will scheduling of
threads at a lower level take place.
All threads initially start at THREAD_PRIORITY_NORMAL.
If for some reason the thread needs more priority, it can be
switched to THREAD_PRIORITY_ABOVE_NORMAL or THREAD_PRIORITY_HIGHEST.
Switching to THREAD_PRIORITY_TIME_CRITICAL should only be done in extreme
situations. Since these threads are given the highes priority, they
should only run in short bursts. Running for long durations will
soak up the systems processing bandwidth starving threads at lower
levels.
If a thread needs to do low priority work, or should only run there
is nothing else to do, its priority should be set to
THREAD_PRIORITY_BELOW_NORMAL or THREAD_PRIORITY_LOWEST. For extreme
cases, THREAD_PRIORITY_IDLE can be used.
Care must be taken when manipulating priorites. If priorities are
used carelessly (every thread is set to THREAD_PRIORITY_TIME_CRITICAL),
the effects of priority modifications can produce undesireable
effects (e.g. starvation, no effect...).
Arguments:
hThread - Supplies a handle to the thread whose priority is to be
set. The handle must have been created with
THREAD_SET_INFORMATION access.
nPriority - Supplies the priority value for the thread. The
following five priority values (ordered from lowest priority to
highest priority) are allowed.
nPriority Values:
THREAD_PRIORITY_IDLE - The thread's priority should be set to
the lowest possible settable priority.
THREAD_PRIORITY_LOWEST - The thread's priority should be set to
the next lowest possible settable priority.
THREAD_PRIORITY_BELOW_NORMAL - The thread's priority should be
set to just below normal.
THREAD_PRIORITY_NORMAL - The thread's priority should be set to
the normal priority value. This is the value that all
threads begin execution at.
THREAD_PRIORITY_ABOVE_NORMAL - The thread's priority should be
set to just above normal priority.
THREAD_PRIORITY_HIGHEST - The thread's priority should be set to
the next highest possible settable priority.
THREAD_PRIORITY_TIME_CRITICAL - The thread's priority should be set
to the highest possible settable priority. This priority is
very likely to interfere with normal operation of the
system.
Return Value:
TRUE - The operation was successful
FALSE/NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
LONG BasePriority;
BasePriority = (LONG)nPriority;
//
// saturation is indicated by calling with a value of 16 or -16
//
if ( BasePriority == THREAD_PRIORITY_TIME_CRITICAL ) {
BasePriority = ((HIGH_PRIORITY + 1) / 2);
}
else if ( BasePriority == THREAD_PRIORITY_IDLE ) {
BasePriority = -((HIGH_PRIORITY + 1) / 2);
}
Status = NtSetInformationThread(
hThread,
ThreadBasePriority,
&BasePriority,
sizeof(BasePriority)
);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return FALSE;
}
return TRUE;
}
int
APIENTRY
GetThreadPriority(
HANDLE hThread
)
/*++
Routine Description:
The specified thread's priority can be read using GetThreadPriority.
Arguments:
hThread - Supplies a handle to the thread whose priority is to be
set. The handle must have been created with
THREAD_QUERY_INFORMATION access.
Return Value:
The value of the thread's current priority is returned. If an error
occured, the value THREAD_PRIORITY_ERROR_RETURN is returned.
Extended error status is available using GetLastError.
--*/
{
NTSTATUS Status;
THREAD_BASIC_INFORMATION BasicInfo;
int returnvalue;
Status = NtQueryInformationThread(
hThread,
ThreadBasicInformation,
&BasicInfo,
sizeof(BasicInfo),
NULL
);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return (int)THREAD_PRIORITY_ERROR_RETURN;
}
returnvalue = (int)BasicInfo.BasePriority;
if ( returnvalue == ((HIGH_PRIORITY + 1) / 2) ) {
returnvalue = THREAD_PRIORITY_TIME_CRITICAL;
}
else if ( returnvalue == -((HIGH_PRIORITY + 1) / 2) ) {
returnvalue = THREAD_PRIORITY_IDLE;
}
return returnvalue;
}
BOOL
WINAPI
SetThreadPriorityBoost(
HANDLE hThread,
BOOL bDisablePriorityBoost
)
{
NTSTATUS Status;
ULONG DisableBoost;
DisableBoost = bDisablePriorityBoost ? 1 : 0;
Status = NtSetInformationThread(
hThread,
ThreadPriorityBoost,
&DisableBoost,
sizeof(DisableBoost)
);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return FALSE;
}
return TRUE;
}
BOOL
WINAPI
GetThreadPriorityBoost(
HANDLE hThread,
PBOOL pDisablePriorityBoost
)
{
NTSTATUS Status;
DWORD DisableBoost;
Status = NtQueryInformationThread(
hThread,
ThreadPriorityBoost,
&DisableBoost,
sizeof(DisableBoost),
NULL
);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return FALSE;
}
*pDisablePriorityBoost = DisableBoost;
return TRUE;
}
VOID
BaseRundownFls (
IN PFLS_DATA FlsData
)
/*++
Routine Description:
This routine removes the specified fiber local storage data structure
from the process list and runs down data entries by invoking callback
routines as necessary.
Arguments:
FlsData - Supplies a pointer to fiber local storage data structure.
Return Value:
None.
--*/
{
PFLS_CALLBACK_FUNCTION Callback;
DWORD HighIndex;
DWORD Index;
PPEB Peb;
//
// Remove the fiber local storage data structure from the process list.
//
Peb = NtCurrentPeb();
RtlAcquirePebLock();
try {
HighIndex = Peb->FlsHighIndex;
RemoveEntryList(&FlsData->Entry);
} finally {
RtlReleasePebLock();
}
//
// Scan the process fiber local storage callback array and invoke callback
// routines as necessary.
//
// N.B. If the callback pointers are corrupted or a DLL has leaked memory
// and been freed, then an exception can occur during the processing
// of callbacks. This exception will be ignored and will stop callback
// processing.
try {
for (Index = 1; Index <= HighIndex; Index += 1) {
Callback = Peb->FlsCallback[Index];
if ((Callback != NULL) && (FlsData->Slots[Index] != NULL)) {
(Callback)(FlsData->Slots[Index]);
}
}
} except (EXCEPTION_EXECUTE_HANDLER) {
NOTHING;
}
//
// Deallocate fiber local storage data structure.
//
RtlFreeHeap(Peb->ProcessHeap, 0, FlsData);
return;
}
VOID
APIENTRY
ExitThread(
DWORD dwExitCode
)
/*++
Routine Description:
The current thread can exit using ExitThread.
ExitThread is the prefered method of exiting a thread. When this
API is called (either explicitly or by returning from a thread
procedure), The current thread's stack is deallocated and the thread
terminates. If the thread is the last thread in the process when
this API is called, the behavior of this API does not change. DLLs
are not notified as a result of a call to ExitThread.
Arguments:
dwExitCode - Supplies the termination status for the thread.
Return Value:
None.
--*/
{
PFIBER Fiber;
MEMORY_BASIC_INFORMATION MemInfo;
NTSTATUS st;
ULONG LastThread;
PTEB Teb = NtCurrentTeb();
#if DBG
{
//
// Assert on exiting while holding loader lock.
//
PRTL_CRITICAL_SECTION LoaderLock;
LoaderLock = NtCurrentPeb()->LoaderLock;
if (LoaderLock != NULL) {
ASSERT(Teb->ClientId.UniqueThread != LoaderLock->OwningThread);
}
}
#endif
//
// Check if this is the last thread in the process.
//
st = NtQueryInformationThread(NtCurrentThread(),
ThreadAmILastThread,
&LastThread,
sizeof(LastThread),
NULL);
//
// If this is the last thread in the process, then exit the process.
// Otherwise, exit the thread.
//
if ((st == STATUS_SUCCESS) && LastThread) {
ExitProcess(dwExitCode);
} else {
RtlFreeThreadActivationContextStack();
LdrShutdownThread();
//
// If expansion slots have been allocated, then free the memory.
//
// N.B. The following code needs to hold the PEB lock to prevent
// heap corruption.
//
if (Teb->TlsExpansionSlots != NULL) {
RtlAcquirePebLock();
try {
RtlFreeHeap(RtlProcessHeap(), 0, Teb->TlsExpansionSlots);
Teb->TlsExpansionSlots = NULL;
} finally {
RtlReleasePebLock();
}
}
//
// If a fiber local storage data structure has been allocated, then
// rundown the structure.
//
if (Teb->FlsData != NULL) {
BaseRundownFls((PFLS_DATA)Teb->FlsData);
Teb->FlsData = NULL;
}
//
// If the thread is associated with a fiber, then free the fiber
// storage.
//
if (Teb->HasFiberData == TRUE) {
Fiber = Teb->NtTib.FiberData;
Teb->NtTib.FiberData = NULL;
ASSERT(Fiber != NULL);
RtlFreeHeap(RtlProcessHeap(), 0, Fiber);
}
Teb->FreeStackOnTermination = TRUE;
NtTerminateThread(NULL, (NTSTATUS)dwExitCode);
ExitProcess(dwExitCode);
}
}
BOOL
APIENTRY
TerminateThread(
HANDLE hThread,
DWORD dwExitCode
)
/*++
Routine Description:
A thread may be terminated using TerminateThread.
TerminateThread is used to cause a thread to terminate user-mode
execution. There is nothing a thread can to to predict or prevent
when this occurs. If a process has a handle with appropriate
termination access to the thread or to the threads process, then the
thread can be unconditionally terminated without notice. When this
occurs, the target thread has no chance to execute any user-mode
code and its initial stack is not deallocated. The thread attains a
state of signaled satisfying any waits on the thread. The thread's
termination status is updated from its initial value of
STATUS_PENDING to the value of the TerminationStatus parameter.
Terminating a thread does not remove a thread from the system. The
thread is not removed from the system until the last handle to the
thread is closed.
Arguments:
hThread - Supplies a handle to the thread to terminate. The handle
must have been created with THREAD_TERMINATE access.
dwExitCode - Supplies the termination status for the thread.
Return Value:
TRUE - The operation was successful
FALSE/NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
#if DBG
PRTL_CRITICAL_SECTION LoaderLock;
HANDLE ThreadId;
THREAD_BASIC_INFORMATION ThreadInfo;
#endif
if ( hThread == NULL ) {
SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
//
// Assert on suicide while holding loader lock
//
#if DBG
LoaderLock = NtCurrentPeb()->LoaderLock;
if (LoaderLock) {
Status = NtQueryInformationThread(
hThread,
ThreadBasicInformation,
&ThreadInfo,
sizeof(ThreadInfo),
NULL
);
if (NT_SUCCESS(Status)) {
ASSERT( NtCurrentTeb()->ClientId.UniqueThread != ThreadInfo.ClientId.UniqueThread ||
NtCurrentTeb()->ClientId.UniqueThread != LoaderLock->OwningThread);
}
}
#endif
Status = NtTerminateThread(hThread,(NTSTATUS)dwExitCode);
if ( NT_SUCCESS(Status) ) {
return TRUE;
}
else {
BaseSetLastNTError(Status);
return FALSE;
}
}
BOOL
APIENTRY
GetExitCodeThread(
HANDLE hThread,
LPDWORD lpExitCode
)
/*++
Routine Description:
The termination status of a thread can be read using
GetExitCodeThread.
If a Thread is in the signaled state, calling this function returns
the termination status of the thread. If the thread is not yet
signaled, the termination status returned is STILL_ACTIVE.
Arguments:
hThread - Supplies a handle to the thread whose termination status is
to be read. The handle must have been created with
THREAD_QUERY_INFORMATION access.
lpExitCode - Returns the current termination status of the
thread.
Return Value:
TRUE - The operation was successful
FALSE/NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
THREAD_BASIC_INFORMATION BasicInformation;
Status = NtQueryInformationThread(
hThread,
ThreadBasicInformation,
&BasicInformation,
sizeof(BasicInformation),
NULL
);
if ( NT_SUCCESS(Status) ) {
*lpExitCode = BasicInformation.ExitStatus;
return TRUE;
}
else {
BaseSetLastNTError(Status);
return FALSE;
}
}
HANDLE
APIENTRY
GetCurrentThread(
VOID
)
/*++
Routine Description:
A pseudo handle to the current thread may be retrieved using
GetCurrentThread.
A special constant is exported by Win32 that is interpreted as a
handle to the current thread. This handle may be used to specify
the current thread whenever a thread handle is required. On Win32,
this handle has THREAD_ALL_ACCESS to the current thread. On
NT/Win32, this handle has the maximum access allowed by any security
descriptor placed on the current thread.
Arguments:
None.
Return Value:
Returns the pseudo handle of the current thread.
--*/
{
return NtCurrentThread();
}
DWORD
APIENTRY
GetCurrentThreadId(
VOID
)
/*++
Routine Description:
The thread ID of the current thread may be retrieved using
GetCurrentThreadId.
Arguments:
None.
Return Value:
Returns a unique value representing the thread ID of the currently
executing thread. The return value may be used to identify a thread
in the system.
--*/
{
return HandleToUlong(NtCurrentTeb()->ClientId.UniqueThread);
}
DWORD
APIENTRY
GetThreadId(
HANDLE Thread
)
/*++
Routine Description:
Gets the thread ID of the thread open via the specified handle
Arguments:
Thread - Handle of thread to do the query on
Return Value:
Returns a unique value representing the thread ID of the
executing thread. The return value may be used to identify a thread
in the system. If the function fails the return value is zero.
--*/
{
NTSTATUS Status;
THREAD_BASIC_INFORMATION tbi;
Status = NtQueryInformationThread (Thread,
ThreadBasicInformation,
&tbi,
sizeof (tbi),
NULL);
if (!NT_SUCCESS (Status)) {
BaseSetLastNTError (Status);
return 0;
}
return HandleToUlong (tbi.ClientId.UniqueThread);
}
DWORD
APIENTRY
GetProcessIdOfThread(
HANDLE Thread
)
/*++
Routine Description:
Gets the process ID of the thread opened via the specified handle
Arguments:
Thread - Handle of thread to do the query on
Return Value:
Returns a unique value representing the process ID of the
executing thread. The return value may be used to identify a process
in the system. If the function fails the return value is zero.
--*/
{
NTSTATUS Status;
THREAD_BASIC_INFORMATION tbi;
Status = NtQueryInformationThread (Thread,
ThreadBasicInformation,
&tbi,
sizeof (tbi),
NULL);
if (!NT_SUCCESS (Status)) {
BaseSetLastNTError (Status);
return 0;
}
return HandleToUlong (tbi.ClientId.UniqueProcess);
}
BOOL
APIENTRY
GetThreadContext(
HANDLE hThread,
LPCONTEXT lpContext
)
/*++
Routine Description:
The context of a specified thread can be retreived using
GetThreadContext.
This function is used to retreive the context of the specified
thread. The API allows selective context to be retrieved based on
the value of the ContextFlags field of the context structure. The
specified thread does not have to be being debugged in order for
this API to operate. The caller must simply have a handle to the
thread that was created with THREAD_GET_CONTEXT access.
Arguments:
hThread - Supplies an open handle to a thread whose context is to be
retreived. The handle must have been created with
THREAD_GET_CONTEXT access to the thread.
lpContext - Supplies the address of a context structure that
receives the appropriate context of the specified thread. The
value of the ContextFlags field of this structure specifies
which portions of a threads context are to be retreived. The
context structure is highly machine specific. There are
currently two versions of the context structure. One version
exists for x86 processors, and another exists for MIPS
processors.
Return Value:
TRUE - The operation was successful.
FALSE/NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
Status = NtGetContextThread (hThread, lpContext);
if (!NT_SUCCESS (Status)) {
BaseSetLastNTError (Status);
return FALSE;
} else {
return TRUE;
}
}
BOOL
APIENTRY
SetThreadContext(
HANDLE hThread,
CONST CONTEXT *lpContext
)
/*++
Routine Description:
This function is used to set the context in the specified thread.
The API allows selective context to be set based on the value of the
ContextFlags field of the context structure. The specified thread
does not have to be being debugged in order for this API to operate.
The caller must simply have a handle to the thread that was created
with THREAD_SET_CONTEXT access.
Arguments:
hThread - Supplies an open handle to a thread whose context is to be
written. The handle must have been created with
THREAD_SET_CONTEXT access to the thread.
lpContext - Supplies the address of a context structure that
contains the context that is to be set in the specified thread.
The value of the ContextFlags field of this structure specifies
which portions of a threads context are to be set. Some values
in the context structure are not settable and are silently set
to the correct value. This includes cpu status register bits
that specify the priviledged processor mode, debug register
global enabling bits, and other state that must be completely
controlled by the operating system.
Return Value:
TRUE - The operation was successful.
FALSE/NULL - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
Status = NtSetContextThread(hThread,(PCONTEXT)lpContext);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return FALSE;
}
else {
return TRUE;
}
}
DWORD
APIENTRY
SuspendThread(
HANDLE hThread
)
/*++
Routine Description:
A thread can be suspended using SuspendThread.
Suspending a thread causes the thread to stop executing user-mode
(or application) code. Each thread has a suspend count (with a
maximum value of MAXIMUM_SUSPEND_COUNT). If the suspend count is
greater than zero, the thread is suspended; otherwise, the thread is
not suspended and is eligible for execution.
Calling SuspendThread causes the target thread's suspend count to
increment. Attempting to increment past the maximum suspend count
causes an error without incrementing the count.
Arguments:
hThread - Supplies a handle to the thread that is to be suspended.
The handle must have been created with THREAD_SUSPEND_RESUME
access to the thread.
Return Value:
-1 - The operation failed. Extended error status is available using
GetLastError.
Other - The target thread was suspended. The return value is the thread's
previous suspend count.
--*/
{
NTSTATUS Status;
DWORD PreviousSuspendCount;
Status = NtSuspendThread(hThread,&PreviousSuspendCount);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return (DWORD)-1;
}
else {
return PreviousSuspendCount;
}
}
DWORD
APIENTRY
ResumeThread(
IN HANDLE hThread
)
/*++
Routine Description:
A thread can be resumed using ResumeThread.
Resuming a thread object checks the suspend count of the subject
thread. If the suspend count is zero, then the thread is not
currently suspended and no operation is performed. Otherwise, the
subject thread's suspend count is decremented. If the resultant
value is zero , then the execution of the subject thread is resumed.
The previous suspend count is returned as the function value. If
the return value is zero, then the subject thread was not previously
suspended. If the return value is one, then the subject thread's
the subject thread is still suspended and must be resumed the number
of times specified by the return value minus one before it will
actually resume execution.
Note that while reporting debug events, all threads withing the
reporting process are frozen. This has nothing to do with
SuspendThread or ResumeThread. Debuggers are expected to use
SuspendThread and ResumeThread to limit the set of threads that can
execute within a process. By suspending all threads in a process
except for the one reporting a debug event, it is possible to
"single step" a single thread. The other threads will not be
released by a continue if they are suspended.
Arguments:
hThread - Supplies a handle to the thread that is to be resumed.
The handle must have been created with THREAD_SUSPEND_RESUME
access to the thread.
Return Value:
-1 - The operation failed. Extended error status is available using
GetLastError.
Other - The target thread was resumed (or was not previously
suspended). The return value is the thread's previous suspend
count.
--*/
{
NTSTATUS Status;
DWORD PreviousSuspendCount;
Status = NtResumeThread(hThread,&PreviousSuspendCount);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return (DWORD)-1;
}
else {
return PreviousSuspendCount;
}
}
VOID
APIENTRY
RaiseException(
DWORD dwExceptionCode,
DWORD dwExceptionFlags,
DWORD nNumberOfArguments,
CONST ULONG_PTR *lpArguments
)
/*++
Routine Description:
Raising an exception causes the exception dispatcher to go through
its search for an exception handler. This includes debugger
notification, frame based handler searching, and system default
actions.
Arguments:
dwExceptionCode - Supplies the exception code of the exception being
raised. This value may be obtained in exception filters and in
exception handlers by calling GetExceptionCode.
dwExceptionFlags - Supplies a set of flags associated with the exception.
dwExceptionFlags Flags:
EXCEPTION_NONCONTINUABLE - The exception is non-continuable.
Returning EXCEPTION_CONTINUE_EXECUTION from an exception
marked in this way causes the
STATUS_NONCONTINUABLE_EXCEPTION exception.
nNumberOfArguments - Supplies the number of arguments associated
with the exception. This value may not exceed
EXCEPTION_MAXIMUM_PARAMETERS. This parameter is ignored if
lpArguments is NULL.
lpArguments - An optional parameter, that if present supplies the
arguments for the exception.
Return Value:
None.
--*/
{
EXCEPTION_RECORD ExceptionRecord;
ULONG n;
PULONG_PTR s,d;
ExceptionRecord.ExceptionCode = (DWORD)dwExceptionCode;
ExceptionRecord.ExceptionFlags = dwExceptionFlags & EXCEPTION_NONCONTINUABLE;
ExceptionRecord.ExceptionRecord = NULL;
ExceptionRecord.ExceptionAddress = (PVOID)RaiseException;
if ( ARGUMENT_PRESENT(lpArguments) ) {
n = nNumberOfArguments;
if ( n > EXCEPTION_MAXIMUM_PARAMETERS ) {
n = EXCEPTION_MAXIMUM_PARAMETERS;
}
ExceptionRecord.NumberParameters = n;
s = (PULONG_PTR)lpArguments;
d = ExceptionRecord.ExceptionInformation;
while(n--){
*d++ = *s++;
}
}
else {
ExceptionRecord.NumberParameters = 0;
}
RtlRaiseException(&ExceptionRecord);
}
BOOLEAN BasepAlreadyHadHardError = FALSE;
LPTOP_LEVEL_EXCEPTION_FILTER BasepCurrentTopLevelFilter;
LPTOP_LEVEL_EXCEPTION_FILTER
WINAPI
SetUnhandledExceptionFilter(
LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter
)
/*++
Routine Description:
This function allows an application to supersede the top level
exception handler that Win32 places at the top of each thread and
process.
If an exception occurs, and it makes it to the Win32 unhandled
exception filter, and the process is not being debugged, the Win32
filter will call the unhandled exception filter specified by
lpTopLevelExceptionFilter.
This filter may return:
EXCEPTION_EXECUTE_HANDLER - Return from the Win32
UnhandledExceptionFilter and execute the associated
exception handler. This will usually result in process
termination
EXCEPTION_CONTINUE_EXECUTION - Return from the Win32
UnhandledExceptionFilter and continue execution from the
point of the exception. The filter is of course free to
modify the continuation state my modifying the passed
exception information.
EXCEPTION_CONTINUE_SEARCH - Proceed with normal execution of the
Win32 UnhandledExceptionFilter. e.g. obey the SetErrorMode
flags, or invoke the Application Error popup.
This function is not a general vectored exception handling
mechanism. It is intended to be used to establish a per-process
exception filter that can monitor unhandled exceptions at the
process level and respond to these exceptions appropriately.
Arguments:
lpTopLevelExceptionFilter - Supplies the address of a top level
filter function that will be called whenever the Win32
UnhandledExceptionFilter gets control, and the process is NOT
being debugged. A value of NULL specifies default handling
within the Win32 UnhandledExceptionFilter.
Return Value:
This function returns the address of the previous exception filter
established with this API. A value of NULL means that there is no
current top level handler.
--*/
{
LPTOP_LEVEL_EXCEPTION_FILTER PreviousTopLevelFilter;
PreviousTopLevelFilter = BasepCurrentTopLevelFilter;
BasepCurrentTopLevelFilter = lpTopLevelExceptionFilter;
return PreviousTopLevelFilter;
}
LONG
BasepCheckForReadOnlyResource(
PVOID Va
)
{
SIZE_T RegionSize;
ULONG OldProtect;
NTSTATUS Status;
MEMORY_BASIC_INFORMATION MemInfo;
PIMAGE_RESOURCE_DIRECTORY ResourceDirectory;
ULONG ResourceSize;
char *rbase, *va;
LONG ReturnValue;
//
// Locate the base address that continas this va
//
Status = NtQueryVirtualMemory(
NtCurrentProcess(),
Va,
MemoryBasicInformation,
(PVOID)&MemInfo,
sizeof(MemInfo),
NULL
);
if ( !NT_SUCCESS(Status) ) {
return EXCEPTION_CONTINUE_SEARCH;
}
//
// if the va is readonly and in an image then continue
//
if ( !((MemInfo.Protect == PAGE_READONLY) && (MemInfo.Type == MEM_IMAGE)) ){
return EXCEPTION_CONTINUE_SEARCH;
}
ReturnValue = EXCEPTION_CONTINUE_SEARCH;
try {
ResourceDirectory = (PIMAGE_RESOURCE_DIRECTORY)
RtlImageDirectoryEntryToData(MemInfo.AllocationBase,
TRUE,
IMAGE_DIRECTORY_ENTRY_RESOURCE,
&ResourceSize
);
rbase = (char *)ResourceDirectory;
va = (char *)Va;
if ( rbase && va >= rbase && va < rbase+ResourceSize ) {
RegionSize = 1;
Status = NtProtectVirtualMemory(
NtCurrentProcess(),
&va,
&RegionSize,
PAGE_READWRITE,
&OldProtect
);
if ( NT_SUCCESS(Status) ) {
ReturnValue = EXCEPTION_CONTINUE_EXECUTION;
}
}
}
except (EXCEPTION_EXECUTE_HANDLER) {
;
}
return ReturnValue;
}
//
// Used for fault reporting in UnhandledExceptionFilter
//
static WCHAR *WStrStrIA(const WCHAR *cs1, const WCHAR *cs2)
{
WCHAR *cp = (WCHAR *)cs1;
WCHAR *s1, *s2;
while (*cp != L'\0')
{
s1 = cp;
s2 = (WCHAR *)cs2;
while (*s1 != L'\0' && *s2 !=L'\0' && (towlower(*s1) - towlower(*s2)) == 0)
s1++, s2++;
if (*s2 == L'\0')
return(cp);
cp++;
}
return(NULL);
}
LONG
UnhandledExceptionFilter(
struct _EXCEPTION_POINTERS *ExceptionInfo
)
{
EFaultRepRetVal frrv = frrvErrNoDW;
NTSTATUS Status;
ULONG_PTR Parameters[ 4 ];
ULONG Response;
HANDLE DebugPort;
WCHAR AeDebuggerCmdLine[256];
CHAR AeAutoDebugString[8];
BOOLEAN AeAutoDebug;
ULONG ResponseFlag;
LONG FilterReturn;
PRTL_CRITICAL_SECTION PebLockPointer;
JOBOBJECT_BASIC_LIMIT_INFORMATION BasicLimit;
//
// If we take a write fault, then attempt to make the memory writable. If this
// succeeds, then silently proceed.
//
if ( ExceptionInfo->ExceptionRecord->ExceptionCode == STATUS_ACCESS_VIOLATION
&& ExceptionInfo->ExceptionRecord->ExceptionInformation[0] ) {
FilterReturn = BasepCheckForReadOnlyResource((PVOID)ExceptionInfo->ExceptionRecord->ExceptionInformation[1]);
if ( FilterReturn == EXCEPTION_CONTINUE_EXECUTION ) {
return FilterReturn;
}
}
//
// If the process is being debugged, just let the exception happen
// so that the debugger can see it. This way the debugger can ignore
// all first chance exceptions.
//
DebugPort = (HANDLE)NULL;
Status = NtQueryInformationProcess(
GetCurrentProcess(),
ProcessDebugPort,
(PVOID)&DebugPort,
sizeof(DebugPort),
NULL
);
if ( NT_SUCCESS(Status) && DebugPort ) {
//
// Process is being debugged.
// Return a code that specifies that the exception
// processing is to continue
//
return EXCEPTION_CONTINUE_SEARCH;
}
if ( BasepCurrentTopLevelFilter ) {
FilterReturn = (BasepCurrentTopLevelFilter)(ExceptionInfo);
if ( FilterReturn == EXCEPTION_EXECUTE_HANDLER ||
FilterReturn == EXCEPTION_CONTINUE_EXECUTION ) {
return FilterReturn;
}
}
if ( (GetErrorMode() & SEM_NOGPFAULTERRORBOX)
|| (RtlGetThreadErrorMode() & RTL_ERRORMODE_NOGPFAULTERRORBOX)) {
return EXCEPTION_EXECUTE_HANDLER;
}
//
// See if the process's job has been programmed to NOGPFAULTERRORBOX
//
Status = NtQueryInformationJobObject(
NULL,
JobObjectBasicLimitInformation,
&BasicLimit,
sizeof(BasicLimit),
NULL
);
if ( NT_SUCCESS(Status) && (BasicLimit.LimitFlags & JOB_OBJECT_LIMIT_DIE_ON_UNHANDLED_EXCEPTION) ) {
return EXCEPTION_EXECUTE_HANDLER;
}
//
// The process is not being debugged, so do the hard error
// popup.
//
Parameters[ 0 ] = (ULONG_PTR)ExceptionInfo->ExceptionRecord->ExceptionCode;
Parameters[ 1 ] = (ULONG_PTR)ExceptionInfo->ExceptionRecord->ExceptionAddress;
//
// For inpage i/o errors, juggle the real status code to overwrite the
// read/write field
//
if ( ExceptionInfo->ExceptionRecord->ExceptionCode == STATUS_IN_PAGE_ERROR ) {
Parameters[ 2 ] = ExceptionInfo->ExceptionRecord->ExceptionInformation[ 2 ];
}
else {
Parameters[ 2 ] = ExceptionInfo->ExceptionRecord->ExceptionInformation[ 0 ];
}
Parameters[ 3 ] = ExceptionInfo->ExceptionRecord->ExceptionInformation[ 1 ];
//
// See if a debugger has been programmed in. If so, use the
// debugger specified. If not then there is no AE Cancel support
// DEVL systems will default the debugger command line. Retail
// systems will not.
// Also, check to see if we need to report the exception up to anyone
//
ResponseFlag = OptionOk;
AeAutoDebug = FALSE;
//
// If we are holding the PebLock, then the createprocess will fail
// because a new thread will also need this lock. Avoid this by peeking
// inside the PebLock and looking to see if we own it. If we do, then just allow
// a regular popup.
//
PebLockPointer = NtCurrentPeb()->FastPebLock;
if ( PebLockPointer->OwningThread != NtCurrentTeb()->ClientId.UniqueThread ) {
HMODULE hmodFaultRep = NULL;
if (GetProfileStringW(L"AeDebug",
L"Debugger",
NULL,
AeDebuggerCmdLine,
RTL_NUMBER_OF(AeDebuggerCmdLine)-1)) {
ResponseFlag = OptionOkCancel;
}
if (GetProfileString ("AeDebug",
"Auto",
"0",
AeAutoDebugString,
sizeof(AeAutoDebugString)-1)) {
if (!strcmp (AeAutoDebugString, "1")) {
if (ResponseFlag == OptionOkCancel) {
AeAutoDebug = TRUE;
}
}
}
//
// Attempt to report the fault back to Microsoft. ReportFault
// will return the following:
// frrvErrNoDW: Always show our own fault notification.
//
// frrvErrTimeout: see frrvOkHeadless
// frrvOkQueued: see frrvOkHeadless
// frrvOkHeadless: If we need to ask whether to launch a debugger,
// then we ask. Otherwise, show nothing else.
//
// frrvOk: see frrvOkManifest
// frrvOkManifest: We're done. Show nothing else.
//
// frrvLaunchDebugger: Launch the configured debugger.
//
frrv = frrvErrNoDW;
if ( BasepAlreadyHadHardError == FALSE &&
(AeAutoDebug == FALSE ||
WStrStrIA(AeDebuggerCmdLine, L"drwtsn32") != NULL)) {
WCHAR wszDll[MAX_PATH];
PVOID pvLdrLockCookie = NULL;
ULONG ulLockState = 0;
/*
* Insure that we get the full %sys32%\faultrep.dll" correctly formed path,
* or else we can fail in a well mannered way.
*/
if (GetSystemDirectoryW(wszDll, (sizeof(wszDll) / sizeof(WCHAR)) - 1 - wcslen (L"\\faultrep.dll")))
{
wcscat(wszDll, L"\\faultrep.dll");
}
else
wszDll[0] = 0;
// make sure that no one else owns the loader lock because we
// could otherwise deadlock
LdrLockLoaderLock(LDR_LOCK_LOADER_LOCK_FLAG_TRY_ONLY, &ulLockState,
&pvLdrLockCookie);
if (ulLockState == LDR_LOCK_LOADER_LOCK_DISPOSITION_LOCK_ACQUIRED) {
hmodFaultRep = LoadLibraryExW(wszDll, NULL, 0);
LdrUnlockLoaderLock(0, pvLdrLockCookie);
}
if (hmodFaultRep != NULL) {
pfn_REPORTFAULT pfn;
DWORD dwDebug;
// parameter 2 to ReportFault should be:
// froNoDebugWait: don't display a debug button but wait
// for DW to finish- this is a special
// case to make sure DW is done before
// Dr. Watson starts
// froNoDebugWait : don't display a debug button
// froDebug : display a debug button and wait for DW to
// finish
if (ResponseFlag == OptionOkCancel) {
dwDebug = (AeAutoDebug) ? froNoDebugWait : froDebug;
} else {
dwDebug = froNoDebug;
}
pfn = (pfn_REPORTFAULT)GetProcAddress(hmodFaultRep,
"ReportFault");
if (pfn != NULL)
frrv = (*pfn)(ExceptionInfo, dwDebug);
FreeLibrary(hmodFaultRep);
hmodFaultRep = NULL;
}
}
//
// Since we're supposed to launch the debugger anyway, just set the
// AeAutoDebug flag to true to minimize code munging below
//
if ( frrv == frrvLaunchDebugger ) {
AeAutoDebug = TRUE;
}
}
//
// only display this dialog if we couldn't show DW & we're not set to
// automatically launch a debugger. The conditions here are:
// 1. cannot be directly launching a debugger (auto == 1)
// 2a. DW must have failed to launch
// -or-
// we needed to ask the user if he wanted to debug but could not (due
// to either no UI being shown or us not being able to wait long enuf
// to find out.)
if ( !AeAutoDebug &&
( frrv == frrvErrNoDW ||
( ResponseFlag == OptionOkCancel &&
( frrv == frrvErrTimeout || frrv == frrvOkQueued ||
frrv == frrvOkHeadless ) ) ) )
{
Status =NtRaiseHardError( STATUS_UNHANDLED_EXCEPTION | HARDERROR_OVERRIDE_ERRORMODE,
4,
0,
Parameters,
BasepAlreadyHadHardError ? OptionOk : ResponseFlag,
&Response
);
}
else {
Status = STATUS_SUCCESS;
Response = (AeAutoDebug) ? ResponseCancel : ResponseOk;
}
//
// Internally, send OkCancel. If we get back Ok then die.
// If we get back Cancel, then enter the debugger
//
if ( NT_SUCCESS(Status) && Response == ResponseCancel && BasepAlreadyHadHardError == FALSE) {
if ( !BaseRunningInServerProcess ) {
BOOL b = FALSE;
STARTUPINFOW StartupInfo;
PROCESS_INFORMATION ProcessInformation;
PWCHAR CmdLine;
NTSTATUS Status;
HANDLE EventHandle;
SECURITY_ATTRIBUTES sa;
HANDLE CurrentProcess;
HANDLE CurrentThread;
ULONG cchSysDir;
// 21 => 10 for the pid, 10 for the handle, 1 for the
// trailing null.
ULONG cchAeCmdLine = wcslen(AeDebuggerCmdLine) + 21;
//
// Duplicate the processes handle. We make it inheritable so the debugger will get a copy of it.
// We do this to prevent the process ID from being reused if this process gets killed before the
// attach occurs. Process ID are reused very quickly and attaching to the wrong process is
// confusing.
//
if (!DuplicateHandle (GetCurrentProcess (),
GetCurrentProcess (),
GetCurrentProcess (),
&CurrentProcess,
0,
TRUE,
DUPLICATE_SAME_ACCESS)) {
CurrentProcess = NULL;
}
if (!DuplicateHandle (GetCurrentProcess (),
GetCurrentThread (),
GetCurrentProcess (),
&CurrentThread,
0,
TRUE,
DUPLICATE_SAME_ACCESS)) {
CurrentThread = NULL;
}
sa.nLength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
EventHandle = CreateEvent(&sa,TRUE,FALSE,NULL);
RtlZeroMemory(&StartupInfo,sizeof(StartupInfo));
//
// If there's a leading quote, assume that the writer of
// the regkey knew what it was doing. Otherwise, if it's
// not a relative name, assume the writer knew what it was
// doing.
//
if (AeDebuggerCmdLine[0] != L'\"'
&& RtlDetermineDosPathNameType_U(AeDebuggerCmdLine)
== RtlPathTypeRelative) {
//
// There's no leading quote, and it's a relative name
// -- so force it into the system directory
//
cchSysDir = GetSystemDirectoryW(NULL, 0);
if (!cchSysDir || (cchSysDir + cchAeCmdLine + 1) > MAX_PATH) {
// MAX_PATH is the limit to what we're willing to allocate.
goto cleanup;
}
try {
CmdLine = (PWCHAR) _alloca((cchSysDir + cchAeCmdLine + 1)
* sizeof(WCHAR));
} except (EXCEPTION_EXECUTE_HANDLER) {
goto cleanup;
}
cchSysDir = GetSystemDirectoryW(CmdLine, cchSysDir);
if (! cchSysDir) {
goto cleanup;
}
if (CmdLine[cchSysDir - 1] != L'\\') {
CmdLine[cchSysDir] = L'\\';
cchSysDir++;
}
} else {
cchSysDir = 0;
if (cchAeCmdLine > MAX_PATH) {
// MAX_PATH is the limit to what we're willing to allocate.
goto cleanup;
}
try {
CmdLine = (PWCHAR) _alloca(cchAeCmdLine * sizeof(WCHAR));
} except (EXCEPTION_EXECUTE_HANDLER) {
goto cleanup;
}
}
if (FAILED(StringCchPrintfW(CmdLine + cchSysDir,
cchAeCmdLine,
AeDebuggerCmdLine,
GetCurrentProcessId(),EventHandle))) {
goto cleanup;
}
StartupInfo.cb = sizeof(StartupInfo);
StartupInfo.lpDesktop = L"Winsta0\\Default";
CsrIdentifyAlertableThread();
b = CreateProcessW(
NULL,
CmdLine,
NULL,
NULL,
TRUE,
0,
NULL,
NULL,
&StartupInfo,
&ProcessInformation
);
cleanup:
if (CurrentProcess != NULL) {
CloseHandle (CurrentProcess);
}
if (CurrentThread != NULL) {
CloseHandle (CurrentThread);
}
if ( b && EventHandle) {
//
// Do an alertable wait on the event
//
do {
HANDLE WaitHandles[2];
WaitHandles[0] = EventHandle;
WaitHandles[1] = ProcessInformation.hProcess;
Status = NtWaitForMultipleObjects (2,
WaitHandles,
WaitAny,
TRUE,
NULL);
} while (Status == STATUS_USER_APC || Status == STATUS_ALERTED);
//
// If the debugger process died then see if the debugger is now
// attached by another thread
//
if (Status == 1) {
Status = NtQueryInformationProcess (GetCurrentProcess(),
ProcessDebugPort,
&DebugPort,
sizeof (DebugPort),
NULL);
if (!NT_SUCCESS (Status) || DebugPort == NULL) {
BasepAlreadyHadHardError = TRUE;
}
}
CloseHandle (EventHandle);
CloseHandle (ProcessInformation.hProcess);
CloseHandle (ProcessInformation.hThread);
return EXCEPTION_CONTINUE_SEARCH;
}
}
BasepAlreadyHadHardError = TRUE;
}
#if DBG
if (!NT_SUCCESS( Status )) {
DbgPrint( "BASEDLL: Unhandled exception: %lx IP: %x\n",
ExceptionInfo->ExceptionRecord->ExceptionCode,
ExceptionInfo->ExceptionRecord->ExceptionAddress
);
}
#endif
if ( BasepAlreadyHadHardError ) {
NtTerminateProcess(NtCurrentProcess(),ExceptionInfo->ExceptionRecord->ExceptionCode);
}
return EXCEPTION_EXECUTE_HANDLER;
}
DWORD
APIENTRY
TlsAlloc(
VOID
)
/*++
Routine Description:
A TLS index may be allocated using TlsAlloc. Win32 garuntees a
minimum number of TLS indexes are available in each process. The
constant TLS_MINIMUM_AVAILABLE defines the minimum number of
available indexes. This minimum is at least 64 for all Win32
systems.
Arguments:
None.
Return Value:
Not-0xffffffff - Returns a TLS index that may be used in a
subsequent call to TlsFree, TlsSetValue, or TlsGetValue. The
storage associated with the index is initialized to NULL.
0xffffffff - The operation failed. Extended error status is available
using GetLastError.
--*/
{
PPEB Peb;
PTEB Teb;
DWORD Index;
Teb = NtCurrentTeb();
Peb = Teb->ProcessEnvironmentBlock;
RtlAcquirePebLock();
try {
Index = RtlFindClearBitsAndSet((PRTL_BITMAP)Peb->TlsBitmap,1,0);
if ( Index == 0xffffffff ) {
Index = RtlFindClearBitsAndSet((PRTL_BITMAP)Peb->TlsExpansionBitmap,1,0);
if ( Index == 0xffffffff ) {
BaseSetLastNTError(STATUS_NO_MEMORY);
}
else {
if ( !Teb->TlsExpansionSlots ) {
Teb->TlsExpansionSlots = RtlAllocateHeap(
RtlProcessHeap(),
MAKE_TAG( TMP_TAG ) | HEAP_ZERO_MEMORY,
TLS_EXPANSION_SLOTS * sizeof(PVOID)
);
if ( !Teb->TlsExpansionSlots ) {
RtlClearBits((PRTL_BITMAP)Peb->TlsExpansionBitmap,Index,1);
Index = 0xffffffff;
BaseSetLastNTError(STATUS_NO_MEMORY);
leave;
}
}
Teb->TlsExpansionSlots[Index] = NULL;
Index += TLS_MINIMUM_AVAILABLE;
}
}
else {
Teb->TlsSlots[Index] = NULL;
}
}
finally {
RtlReleasePebLock();
}
return Index;
}
LPVOID
APIENTRY
TlsGetValue(
DWORD dwTlsIndex
)
/*++
Routine Description:
This function is used to retrive the value in the TLS storage
associated with the specified index.
If the index is valid this function clears the value returned by
GetLastError(), and returns the value stored in the TLS slot
associated with the specified index. Otherwise a value of NULL is
returned with GetLastError updated appropriately.
It is expected, that DLLs will use TlsAlloc and TlsGetValue as
follows:
- Upon DLL initialization, a TLS index will be allocated using
TlsAlloc. The DLL will then allocate some dynamic storage and
store its address in the TLS slot using TlsSetValue. This
completes the per thread initialization for the initial thread
of the process. The TLS index is stored in instance data for
the DLL.
- Each time a new thread attaches to the DLL, the DLL will
allocate some dynamic storage and store its address in the TLS
slot using TlsSetValue. This completes the per thread
initialization for the new thread.
- Each time an initialized thread makes a DLL call requiring the
TLS, the DLL will call TlsGetValue to get the TLS data for the
thread.
Arguments:
dwTlsIndex - Supplies a TLS index allocated using TlsAlloc. The
index specifies which TLS slot is to be located. Translating a
TlsIndex does not prevent a TlsFree call from proceding.
Return Value:
NON-NULL - The function was successful. The value is the data stored
in the TLS slot associated with the specified index.
NULL - The operation failed, or the value associated with the
specified index was NULL. Extended error status is available
using GetLastError. If this returns non-zero, the index was
invalid.
--*/
{
PTEB Teb;
LPVOID *Slot;
Teb = NtCurrentTeb();
if ( dwTlsIndex < TLS_MINIMUM_AVAILABLE ) {
Slot = &Teb->TlsSlots[dwTlsIndex];
Teb->LastErrorValue = 0;
return *Slot;
}
else {
if ( dwTlsIndex >= TLS_MINIMUM_AVAILABLE+TLS_EXPANSION_SLOTS ) {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
return NULL;
}
else {
Teb->LastErrorValue = 0;
if ( Teb->TlsExpansionSlots ) {
return Teb->TlsExpansionSlots[dwTlsIndex-TLS_MINIMUM_AVAILABLE];
}
else {
return NULL;
}
}
}
}
BOOL
APIENTRY
TlsSetValue(
DWORD dwTlsIndex,
LPVOID lpTlsValue
)
/*++
Routine Description:
This function is used to store a value in the TLS storage associated
with the specified index.
If the index is valid this function stores the value and returns
TRUE. Otherwise a value of FALSE is returned.
It is expected, that DLLs will use TlsAlloc and TlsSetValue as
follows:
- Upon DLL initialization, a TLS index will be allocated using
TlsAlloc. The DLL will then allocate some dynamic storage and
store its address in the TLS slot using TlsSetValue. This
completes the per thread initialization for the initial thread
of the process. The TLS index is stored in instance data for
the DLL.
- Each time a new thread attaches to the DLL, the DLL will
allocate some dynamic storage and store its address in the TLS
slot using TlsSetValue. This completes the per thread
initialization for the new thread.
- Each time an initialized thread makes a DLL call requiring the
TLS, the DLL will call TlsGetValue to get the TLS data for the
thread.
Arguments:
dwTlsIndex - Supplies a TLS index allocated using TlsAlloc. The
index specifies which TLS slot is to be located. Translating a
TlsIndex does not prevent a TlsFree call from proceding.
lpTlsValue - Supplies the value to be stored in the TLS Slot.
Return Value:
TRUE - The function was successful. The value lpTlsValue was
stored.
FALSE - The operation failed. Extended error status is available
using GetLastError.
--*/
{
PTEB Teb;
Teb = NtCurrentTeb();
if ( dwTlsIndex >= TLS_MINIMUM_AVAILABLE ) {
dwTlsIndex -= TLS_MINIMUM_AVAILABLE;
if ( dwTlsIndex < TLS_EXPANSION_SLOTS ) {
if ( !Teb->TlsExpansionSlots ) {
RtlAcquirePebLock();
if ( !Teb->TlsExpansionSlots ) {
Teb->TlsExpansionSlots = RtlAllocateHeap(
RtlProcessHeap(),
MAKE_TAG( TMP_TAG ) | HEAP_ZERO_MEMORY,
TLS_EXPANSION_SLOTS * sizeof(PVOID)
);
if ( !Teb->TlsExpansionSlots ) {
RtlReleasePebLock();
BaseSetLastNTError(STATUS_NO_MEMORY);
return FALSE;
}
}
RtlReleasePebLock();
}
Teb->TlsExpansionSlots[dwTlsIndex] = lpTlsValue;
}
else {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
return FALSE;
}
}
else {
Teb->TlsSlots[dwTlsIndex] = lpTlsValue;
}
return TRUE;
}
BOOL
APIENTRY
TlsFree(
DWORD dwTlsIndex
)
/*++
Routine Description:
A valid TLS index may be free'd using TlsFree.
Arguments:
dwTlsIndex - Supplies a TLS index allocated using TlsAlloc. If the
index is a valid index, it is released by this call and is made
available for reuse. DLLs should be carefull to release any
per-thread data pointed to by all of their threads TLS slots
before calling this function. It is expected that DLLs will
only call this function (if at ALL) during their process detach
routine.
Return Value:
TRUE - The operation was successful. Calling TlsTranslateIndex with
this index will fail. TlsAlloc is free to reallocate this
index.
FALSE - The operation failed. Extended error status is available
using GetLastError.
--*/
{
PPEB Peb;
BOOLEAN ValidIndex;
PRTL_BITMAP TlsBitmap;
NTSTATUS Status;
DWORD Index2;
Peb = NtCurrentPeb();
RtlAcquirePebLock();
try {
if ( dwTlsIndex >= TLS_MINIMUM_AVAILABLE ) {
Index2 = dwTlsIndex - TLS_MINIMUM_AVAILABLE;
if ( Index2 >= TLS_EXPANSION_SLOTS ) {
ValidIndex = FALSE;
}
else {
TlsBitmap = (PRTL_BITMAP)Peb->TlsExpansionBitmap;
ValidIndex = RtlAreBitsSet(TlsBitmap,Index2,1);
}
}
else {
TlsBitmap = (PRTL_BITMAP)Peb->TlsBitmap;
Index2 = dwTlsIndex;
ValidIndex = RtlAreBitsSet(TlsBitmap,Index2,1);
}
if ( ValidIndex ) {
Status = NtSetInformationThread(
NtCurrentThread(),
ThreadZeroTlsCell,
&dwTlsIndex,
sizeof(dwTlsIndex)
);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
ValidIndex = FALSE;
leave;
}
RtlClearBits(TlsBitmap,Index2,1);
}
else {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
}
}
finally {
RtlReleasePebLock();
}
return ValidIndex;
}
BOOL
WINAPI
GetThreadTimes(
HANDLE hThread,
LPFILETIME lpCreationTime,
LPFILETIME lpExitTime,
LPFILETIME lpKernelTime,
LPFILETIME lpUserTime
)
/*++
Routine Description:
This function is used to return various timing information about the
thread specified by hThread.
All times are in units of 100ns increments. For lpCreationTime and lpExitTime,
the times are in terms of the SYSTEM time or GMT time.
Arguments:
hThread - Supplies an open handle to the specified thread. The
handle must have been created with THREAD_QUERY_INFORMATION
access.
lpCreationTime - Returns a creation time of the thread.
lpExitTime - Returns the exit time of a thread. If the thread has
not exited, this value is not defined.
lpKernelTime - Returns the amount of time that this thread has
executed in kernel-mode.
lpUserTime - Returns the amount of time that this thread has
executed in user-mode.
Return Value:
TRUE - The API was successful
FALSE - The operation failed. Extended error status is available
using GetLastError.
--*/
{
NTSTATUS Status;
KERNEL_USER_TIMES TimeInfo;
Status = NtQueryInformationThread(
hThread,
ThreadTimes,
(PVOID)&TimeInfo,
sizeof(TimeInfo),
NULL
);
if ( !NT_SUCCESS(Status) ) {
BaseSetLastNTError(Status);
return FALSE;
}
*lpCreationTime = *(LPFILETIME)&TimeInfo.CreateTime;
*lpExitTime = *(LPFILETIME)&TimeInfo.ExitTime;
*lpKernelTime = *(LPFILETIME)&TimeInfo.KernelTime;
*lpUserTime = *(LPFILETIME)&TimeInfo.UserTime;
return TRUE;
}
BOOL
WINAPI
GetThreadIOPendingFlag(
IN HANDLE hThread,
OUT PBOOL lpIOIsPending
)
/*++
Routine Description:
This function is used to determine whether the thread in question
has any IO requests pending.
Arguments:
hThread - Specifies an open handle to the desired thread. The
handle must have been created with
THREAD_QUERY_INFORMATION access.
lpIOIsPending - Specifes the location to receive the flag.
Return Value:
TRUE - The call was successful.
FALSE - The call failed. Extended error status is available
using GetLastError().
--*/
{
NTSTATUS Status;
ULONG Pending;
Status = NtQueryInformationThread(hThread,
ThreadIsIoPending,
&Pending,
sizeof(Pending),
NULL);
if (! NT_SUCCESS(Status)) {
BaseSetLastNTError(Status);
return FALSE;
}
*lpIOIsPending = (Pending ? TRUE : FALSE);
return TRUE;
}
DWORD_PTR
WINAPI
SetThreadAffinityMask(
HANDLE hThread,
DWORD_PTR dwThreadAffinityMask
)
/*++
Routine Description:
This function is used to set the specified thread's processor
affinity mask. The thread affinity mask is a bit vector where each
bit represents the processors that the thread is allowed to run on.
The affinity mask MUST be a proper subset of the containing process'
process level affinity mask.
Arguments:
hThread - Supplies a handle to the thread whose priority is to be
set. The handle must have been created with
THREAD_SET_INFORMATION access.
dwThreadAffinityMask - Supplies the affinity mask to be used for the
specified thread.
Return Value:
non-0 - The API was successful. The return value is the previous
affinity mask for the thread.
0 - The operation failed. Extended error status is available
using GetLastError.
--*/
{
THREAD_BASIC_INFORMATION BasicInformation;
NTSTATUS Status;
DWORD_PTR rv;
DWORD_PTR LocalThreadAffinityMask;
Status = NtQueryInformationThread(
hThread,
ThreadBasicInformation,
&BasicInformation,
sizeof(BasicInformation),
NULL
);
if ( !NT_SUCCESS(Status) ) {
rv = 0;
}
else {
LocalThreadAffinityMask = dwThreadAffinityMask;
Status = NtSetInformationThread(
hThread,
ThreadAffinityMask,
&LocalThreadAffinityMask,
sizeof(LocalThreadAffinityMask)
);
if ( !NT_SUCCESS(Status) ) {
rv = 0;
}
else {
rv = BasicInformation.AffinityMask;
}
}
if ( !rv ) {
BaseSetLastNTError(Status);
}
return rv;
}
VOID
BaseDispatchAPC(
LPVOID lpApcArgument1,
LPVOID lpApcArgument2,
LPVOID lpApcArgument3
)
{
PAPCFUNC pfnAPC;
ULONG_PTR dwData;
PACTIVATION_CONTEXT ActivationContext;
NTSTATUS Status;
RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME ActivationFrame = { sizeof(ActivationFrame), RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME_FORMAT_WHISTLER };
pfnAPC = (PAPCFUNC) lpApcArgument1;
dwData = (ULONG_PTR) lpApcArgument2;
ActivationContext = (PACTIVATION_CONTEXT) lpApcArgument3;
if (ActivationContext == INVALID_ACTIVATION_CONTEXT) {
(*pfnAPC)(dwData);
} else {
RtlActivateActivationContextUnsafeFast(&ActivationFrame, ActivationContext);
__try {
(*pfnAPC)(dwData);
} __finally {
RtlDeactivateActivationContextUnsafeFast(&ActivationFrame);
RtlReleaseActivationContext(ActivationContext);
}
}
}
WINBASEAPI
DWORD
WINAPI
QueueUserAPC(
PAPCFUNC pfnAPC,
HANDLE hThread,
ULONG_PTR dwData
)
/*++
Routine Description:
This function is used to queue a user-mode APC to the specified thread. The APC
will fire when the specified thread does an alertable wait.
Arguments:
pfnAPC - Supplies the address of the APC routine to execute when the
APC fires.
hHandle - Supplies a handle to a thread object. The caller
must have THREAD_SET_CONTEXT access to the thread.
dwData - Supplies a DWORD passed to the APC
Return Value:
TRUE - The operations was successful
FALSE - The operation failed. GetLastError() is not defined.
--*/
{
NTSTATUS Status;
PVOID Argument1 = (PVOID) pfnAPC;
PVOID Argument2 = (PVOID) dwData;
PVOID Argument3 = NULL;
ACTIVATION_CONTEXT_BASIC_INFORMATION acbi = { 0 };
Status =
RtlQueryInformationActivationContext(
RTL_QUERY_INFORMATION_ACTIVATION_CONTEXT_FLAG_USE_ACTIVE_ACTIVATION_CONTEXT,
NULL,
0,
ActivationContextBasicInformation,
&acbi,
sizeof(acbi),
NULL);
if (!NT_SUCCESS(Status)) {
DbgPrint("SXS: %s failing because RtlQueryInformationActivationContext() returned status %08lx\n", __FUNCTION__, Status);
return FALSE;
}
Argument3 = acbi.ActivationContext;
if (acbi.Flags & ACTIVATION_CONTEXT_FLAG_NO_INHERIT) {
// We're not supposed to propogate the activation context; set it to a value to indicate such.
Argument3 = INVALID_ACTIVATION_CONTEXT;
}
Status = NtQueueApcThread(
hThread,
&BaseDispatchAPC,
Argument1,
Argument2,
Argument3
);
if ( !NT_SUCCESS(Status) ) {
return 0;
}
return 1;
}
DWORD
WINAPI
SetThreadIdealProcessor(
HANDLE hThread,
DWORD dwIdealProcessor
)
{
NTSTATUS Status;
ULONG rv;
Status = NtSetInformationThread(
hThread,
ThreadIdealProcessor,
&dwIdealProcessor,
sizeof(dwIdealProcessor)
);
if ( !NT_SUCCESS(Status) ) {
rv = (DWORD)0xFFFFFFFF;
BaseSetLastNTError(Status);
}
else {
rv = (ULONG)Status;
}
return rv;
}
DWORD
APIENTRY
FlsAlloc (
IN PFLS_CALLBACK_FUNCTION lpCallback OPTIONAL
)
/*++
Routine Description:
This function allocates a fiber local storage index.
N.B. Fiber local storage is per fiber per thread and is context switched
on fiber switches. Fiber local storage indexes are allocate across
a process.
Arguments:
lpCallback - Supplies an optional pointer to a callback function.
Return Value:
If no fiber local storage index is available, then the last error value
is set and the distinguished value 0xffffffff is returned. Otherwise,
the callback function address is saved and the allocated fiber local
storage index is returned.
--*/
{
DWORD Index;
PPEB Peb;
PTEB Teb;
//
// Attempt to allocate a fiber local storage index.
//
Teb = NtCurrentTeb();
Peb = Teb->ProcessEnvironmentBlock;
RtlAcquirePebLock();
try {
//
// Search for the first free entry in the fiber local storage
// bitmap.
//
Index = RtlFindClearBitsAndSet((PRTL_BITMAP)Peb->FlsBitmap, 1, 0);
//
// If no fiber local storage is available, then set the last error
// value and return the distinguished value.
//
if (Index == 0xffffffff) {
BaseSetLastNTError(STATUS_NO_MEMORY);
} else {
//
// A fiber local storage index was successfully allocated.
//
// If a callback function array has not yet been allocated,
// then allocate it now.
//
if (Peb->FlsCallback == NULL) {
Peb->FlsCallback = RtlAllocateHeap(Peb->ProcessHeap,
MAKE_TAG(TMP_TAG) | HEAP_ZERO_MEMORY,
FLS_MAXIMUM_AVAILABLE * sizeof(PVOID));
//
// If a callback function array was not allocated, then clear
// the allocated slot in the bitmap, set the last error value,
// and return the distinguished value.
//
if (Peb->FlsCallback == NULL) {
RtlClearBits((PRTL_BITMAP)Peb->FlsBitmap, Index, 1);
Index = 0xffffffff;
BaseSetLastNTError(STATUS_NO_MEMORY);
leave;
}
}
//
// If the fiber local storage data structure has not yet been
// allocated for the current thread, then attempt to allocate
// it now.
//
if (Teb->FlsData == NULL) {
Teb->FlsData = RtlAllocateHeap(Peb->ProcessHeap,
MAKE_TAG(TMP_TAG) | HEAP_ZERO_MEMORY,
sizeof(FLS_DATA));
//
// If a fiber local storage data structure was allocated, then
// insert the allocated data structure in the process local
// storage data structure list. Otherwise, clear the allocated
// slot in the bitmap, set the last error value, return the
// distuiguished value.
//
if (Teb->FlsData != NULL) {
InsertTailList(&Peb->FlsListHead,
&((PFLS_DATA)Teb->FlsData)->Entry);
} else {
RtlClearBits((PRTL_BITMAP)Peb->FlsBitmap, Index, 1);
Index = 0xffffffff;
BaseSetLastNTError(STATUS_NO_MEMORY);
leave;
}
}
//
// Initialize the free function callback address and the fiber
// local storage value.
//
Peb->FlsCallback[Index] = lpCallback;
((PFLS_DATA)Teb->FlsData)->Slots[Index] = NULL;
//
// If the allocated index is greater than the highest allocated
// index, then save the new high.
//
if (Index > Peb->FlsHighIndex) {
Peb->FlsHighIndex = Index;
}
}
} finally {
RtlReleasePebLock();
}
return Index;
}
PVOID
APIENTRY
FlsGetValue (
DWORD dwFlsIndex
)
/*++
Routine Description:
This function retrieves a value from the fiber local storage data entry
specified by the index value.
N.B. This routine is not synchronized with the possible freeing of
the specified fiber local storage slot. Therefore, it is possible
to get stale data. If this type of synchronization is desired it
must be supplied by the caller.
Arguments:
dwFlsIndex - Supplies a fiber local storage index.
Return Value:
If the specified fiber local storage index is valid, then the last error
value is cleared and the value of the fiber local storage data entry is
returned. Otherwise, the last error value is set and a value of NULL is
returned.
--*/
{
PTEB Teb;
//
// If the fiber local storage index is invalid or the fiber local storage
// data structure has not been allocated, then set the last error value
// and return NULL. Otherwise, return the specified value from fiber local
// storage data.
//
Teb = NtCurrentTeb();
if ((dwFlsIndex > 0) &&
(dwFlsIndex < FLS_MAXIMUM_AVAILABLE) &&
(Teb->FlsData != NULL)) {
ASSERT(RtlAreBitsSet((PRTL_BITMAP)NtCurrentPeb()->FlsBitmap, dwFlsIndex, 1));
ASSERT(dwFlsIndex <= NtCurrentPeb()->FlsHighIndex);
Teb->LastErrorValue = 0;
return ((PFLS_DATA)Teb->FlsData)->Slots[dwFlsIndex];
} else {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
return NULL;
}
}
BOOL
APIENTRY
FlsSetValue (
DWORD dwFlsIndex,
IN PVOID lpFlsData
)
/*++
Routine Description:
This function stores a value in the fiber local storage data entry
specified by the index value.
N.B. This routine is not synchronized with the possible freeing of
the specified fiber local storage slot. Therefore, it is possible
to set stale data. If this type of synchronization is desired it
must be supplied by the caller.
Arguments:
dwTlsIndex - Supplies a fiber local storage index.
lpFlsData - Supplies the value to be stored in the fiber local storage
data entry.
Return Value:
If the specified index is valid, then the specified value is stored in
the associated fiber local storage entry and TRUE is returned. Otherwise,
the last error value is set and FALSE is returned.
--*/
{
PPEB Peb;
PTEB Teb;
//
// If the fiber local storage index is invalid, then set the last error
// value and return FALSE. Otherwise, attempt to store the specified
// value in the associated fiber local storage data.
//
Teb = NtCurrentTeb();
Peb = Teb->ProcessEnvironmentBlock;
if ((dwFlsIndex > 0) && (dwFlsIndex < FLS_MAXIMUM_AVAILABLE)) {
ASSERT(RtlAreBitsSet((PRTL_BITMAP)Peb->FlsBitmap, dwFlsIndex, 1));
ASSERT(dwFlsIndex <= Peb->FlsHighIndex);
//
// If the fiber local storage data structure has not yet been
// allocated for the current thread, then attempt to allocate it
// now.
//
if (Teb->FlsData == NULL) {
Teb->FlsData = RtlAllocateHeap(Peb->ProcessHeap,
MAKE_TAG(TMP_TAG) | HEAP_ZERO_MEMORY,
sizeof(FLS_DATA));
//
// If a fiber local storage data structure was allocated, then
// insert the allocated structure in the process fiber local
// storage list. Otherwise, clear the allocated slot in the bitmap,
// set the last error value, return the distuiguished value.
//
if (Teb->FlsData != NULL) {
RtlAcquirePebLock();
try {
InsertTailList(&Peb->FlsListHead,
&((PFLS_DATA)Teb->FlsData)->Entry);
} finally {
RtlReleasePebLock();
}
} else {
BaseSetLastNTError(STATUS_NO_MEMORY);
return FALSE;
}
}
//
// Store the specfied value in the fiber local storage data entry and
// return TRUE.
//
((PFLS_DATA)Teb->FlsData)->Slots[dwFlsIndex] = lpFlsData;
return TRUE;
} else {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
return FALSE;
}
}
BOOL
APIENTRY
FlsFree (
DWORD dwFlsIndex
)
/*++
Routine Description:
This function frees a fiber local storage index.
Arguments:
dwFlsIndex - Supplies a fiber local storage index.
Return Value:
If the specified index is valid, then the callback function associated
with the fiber local storage data entry is called if necessary for all
instances of fiber local storage, the specified index is freed, and TRUE
is returned. Otherwise, the last error value is set and FALSE is returned.
--*/
{
PFLS_CALLBACK_FUNCTION Callback;
PFLS_DATA FlsData;
PLIST_ENTRY NextEntry;
PPEB Peb;
BOOLEAN Result;
PTEB Teb;
//
// If the fiber local storage index is invalid, then return FALSE.
// Otherwise, invoke the callback function associated with the fiber
// local storage data entry if necessary, free the specified index,
// and return TRUE.
//
Teb = NtCurrentTeb();
Peb = Teb->ProcessEnvironmentBlock;
RtlAcquirePebLock();
try {
if ((dwFlsIndex > 0) &&
(dwFlsIndex < FLS_MAXIMUM_AVAILABLE) &&
(RtlAreBitsSet((PRTL_BITMAP)Peb->FlsBitmap, dwFlsIndex, 1))) {
//
// Clear the allocated slot in the fiber local storage bitmap,
// enumerate fiber local data structures, and invoke callback
// routines if necessary.
//
RtlClearBits((PRTL_BITMAP)Peb->FlsBitmap, dwFlsIndex, 1);
Callback = Peb->FlsCallback[dwFlsIndex];
NextEntry = Peb->FlsListHead.Flink;
while (NextEntry != &Peb->FlsListHead) {
FlsData = CONTAINING_RECORD(NextEntry, FLS_DATA, Entry);
if ((Callback != NULL) && (FlsData->Slots[dwFlsIndex])) {
(Callback)(FlsData->Slots[dwFlsIndex]);
}
FlsData->Slots[dwFlsIndex] = NULL;
NextEntry = NextEntry->Flink;
}
Peb->FlsCallback[dwFlsIndex] = NULL;
Result = TRUE;
} else {
BaseSetLastNTError(STATUS_INVALID_PARAMETER);
Result = FALSE;
}
} finally {
RtlReleasePebLock();
}
return Result;
}
WINBASEAPI
LPVOID
WINAPI
CreateFiber(
SIZE_T dwStackSize,
LPFIBER_START_ROUTINE lpStartAddress,
LPVOID lpParameter
)
/*++
Routine Description:
This function creates a fiber that executing at lpStartAddress as soon
as a thread is switched to it.
Arguments:
dwStackSize - Commit size of the stack
lpStartAddress - Routine that the fiber will start running
lpParameter - Arbitrary context that is passed to the fiber
Return Value:
LPVOID - Handle to the Fiber
--*/
{
return CreateFiberEx (dwStackSize, // dwStackCommitSize
0, // dwStackReserveSize
0, // dwFlags
lpStartAddress,
lpParameter);
}
WINBASEAPI
LPVOID
WINAPI
CreateFiberEx(
SIZE_T dwStackCommitSize,
SIZE_T dwStackReserveSize,
DWORD dwFlags,
LPFIBER_START_ROUTINE lpStartAddress,
LPVOID lpParameter
)
/*++
Routine Description:
This function creates a fiber that executing at lpStartAddress as soon
as a thread is switched to it.
Arguments:
dwStackCommitSize - Commit size of the stack
dwStackReserveSize - Reserve size of the stack
dwFlags - Flags DWORD, FIBER_FLAG_FLOAT_SWITCH is the only valid flag
lpStartAddress - Routine that the fiber will start running
lpParameter - Arbitrary context that is passed to the fiber
Return Value:
LPVOID - Handle to the Fiber
--*/
{
PFIBER Fiber;
INITIAL_TEB InitialTeb;
NTSTATUS Status;
//
// If any reserved flags are set, then return an error.
//
if ((dwFlags & ~FIBER_FLAG_FLOAT_SWITCH) != 0) {
SetLastError (ERROR_INVALID_PARAMETER);
return NULL;
}
//
// Allocate the fiber structure.
//
Fiber = RtlAllocateHeap (RtlProcessHeap (), MAKE_TAG (TMP_TAG), sizeof(FIBER));
if (Fiber == NULL) {
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return Fiber;
}
Status = BaseCreateStack (NtCurrentProcess(),
dwStackCommitSize,
dwStackReserveSize,
&InitialTeb);
if (!NT_SUCCESS (Status)) {
BaseSetLastNTError (Status);
RtlFreeHeap (RtlProcessHeap(), 0, Fiber);
return NULL;
}
RtlZeroMemory (&Fiber->FiberContext, sizeof (Fiber->FiberContext));
//
// Initialize the fiber data.
//
Fiber->FiberData = lpParameter;
Fiber->StackBase = InitialTeb.StackBase;
Fiber->StackLimit = InitialTeb.StackLimit;
Fiber->DeallocationStack = InitialTeb.StackAllocationBase;
Fiber->ExceptionList = (struct _EXCEPTION_REGISTRATION_RECORD *)-1;
Fiber->Wx86Tib = NULL;
Fiber->FlsData = NULL;
//
// If switching of the floating state is specified, then set the floating
// point flag in the fiber context.
//
if ((dwFlags & FIBER_FLAG_FLOAT_SWITCH) != 0) {
Fiber->FiberContext.ContextFlags = CONTEXT_FLOATING_POINT;
} else {
Fiber->FiberContext.ContextFlags = 0;
}
#ifdef _IA64_
Fiber->BStoreLimit = InitialTeb.BStoreLimit;
Fiber->DeallocationBStore = (PVOID) ((ULONG_PTR)InitialTeb.StackBase +
((ULONG_PTR)InitialTeb.StackBase - (ULONG_PTR)InitialTeb.StackAllocationBase));
#endif // _IA64_
//
// Create an initial context for the new fiber.
//
BaseInitializeContext (&Fiber->FiberContext,
lpParameter,
(PVOID)lpStartAddress,
InitialTeb.StackBase,
BaseContextTypeFiber);
return Fiber;
}
WINBASEAPI
VOID
WINAPI
DeleteFiber(
LPVOID lpFiber
)
{
SIZE_T dwStackSize;
PFIBER Fiber = lpFiber;
PTEB Teb;
//
// If the current fiber makes this call, then it's just a thread exit
//
Teb = NtCurrentTeb();
if ((Teb->HasFiberData != FALSE) && (Teb->NtTib.FiberData == Fiber)) {
ExitThread(1);
}
dwStackSize = 0;
NtFreeVirtualMemory(NtCurrentProcess(),
&Fiber->DeallocationStack,
&dwStackSize,
MEM_RELEASE);
#if defined (WX86)
if (Fiber->Wx86Tib && Fiber->Wx86Tib->Size == sizeof(WX86TIB)) {
PVOID BaseAddress = Fiber->Wx86Tib->DeallocationStack;
dwStackSize = 0;
NtFreeVirtualMemory(NtCurrentProcess(),
&BaseAddress,
&dwStackSize,
MEM_RELEASE);
}
#endif
//
// If a fiber local storage data structure has been allocated, then
// rundown the structure.
//
if (Fiber->FlsData != NULL) {
BaseRundownFls((PFLS_DATA)Fiber->FlsData);
}
//
// Free fiber storage.
//
RtlFreeHeap(RtlProcessHeap(), 0, Fiber);
return;
}
WINBASEAPI
LPVOID
WINAPI
ConvertThreadToFiber(
IN LPVOID lpParameter
)
{
return ConvertThreadToFiberEx(lpParameter, 0);
}
WINBASEAPI
LPVOID
WINAPI
ConvertThreadToFiberEx(
IN LPVOID lpParameter,
IN DWORD dwFlags
)
{
PFIBER Fiber;
PTEB Teb;
//
// If any reserved flags are set, then return an error.
//
if ((dwFlags & ~FIBER_FLAG_FLOAT_SWITCH) != 0) {
SetLastError(ERROR_INVALID_PARAMETER);
return NULL;
}
//
// If the thread has already been converted to a fiber, then return an
// error.
//
Teb = NtCurrentTeb();
if (Teb->HasFiberData != FALSE) {
SetLastError(ERROR_ALREADY_FIBER);
return NULL;
}
//
// Allocate the fiber structure.
//
Fiber = RtlAllocateHeap(RtlProcessHeap(), MAKE_TAG(TMP_TAG), sizeof(FIBER));
if (Fiber == NULL) {
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return NULL;
}
//
// Initialize the fiber data.
//
Fiber->FiberData = lpParameter;
Fiber->StackBase = Teb->NtTib.StackBase;
Fiber->StackLimit = Teb->NtTib.StackLimit;
Fiber->DeallocationStack = Teb->DeallocationStack;
Fiber->ExceptionList = Teb->NtTib.ExceptionList;
Fiber->FlsData = Teb->FlsData;
//
// If switching of the floating state is specified, then set the floating
// point flag in the fiber context.
//
Fiber->FiberContext.ContextFlags = CONTEXT_FULL;
if ((dwFlags & FIBER_FLAG_FLOAT_SWITCH) != 0) {
Fiber->FiberContext.ContextFlags |= CONTEXT_FLOATING_POINT;
}
#ifdef _IA64_
Fiber->BStoreLimit = Teb->BStoreLimit;
Fiber->DeallocationBStore = Teb->DeallocationBStore;
#endif // _IA64_
//
// Initialize the fiber address and set thread has fiber data.
//
Fiber->Wx86Tib = NULL;
Teb->NtTib.FiberData = Fiber;
Teb->HasFiberData = TRUE;
return Fiber;
}
WINBASEAPI
BOOL
WINAPI
ConvertFiberToThread(
VOID
)
{
PFIBER Fiber;
PTEB Teb;
//
// If the current thread has been converted to a fiber, then convert
// if back to a thread and return TRUE. Otherwise, set the last error
// value and return FALSE.
//
Teb = NtCurrentTeb();
if (Teb->HasFiberData == FALSE) {
SetLastError(ERROR_ALREADY_THREAD);
return FALSE;
} else {
Teb->HasFiberData = FALSE;
Fiber = Teb->NtTib.FiberData;
Teb->NtTib.FiberData = NULL;
ASSERT(Fiber != NULL);
RtlFreeHeap(RtlProcessHeap (), 0, Fiber);
return TRUE;
}
}
BOOL
WINAPI
SwitchToThread(
VOID
)
/*++
Routine Description:
This function causes a yield from the running thread to any other
thread that is ready and can run on the current processor. The
yield will be effective for up to one quantum and then the yielding
thread will be scheduled again according to its priority and
whatever other threads may also be avaliable to run. The thread
that yields will not bounce to another processor even it another
processor is idle or running a lower priority thread.
Arguments:
None
Return Value:
TRUE - Calling this function caused a switch to another thread to occur
FALSE - There were no other ready threads, so no context switch occured
--*/
{
if (NtYieldExecution() == STATUS_NO_YIELD_PERFORMED) {
return FALSE;
} else {
return TRUE;
}
}
BOOL
WINAPI
RegisterWaitForSingleObject(
PHANDLE phNewWaitObject,
HANDLE hObject,
WAITORTIMERCALLBACK Callback,
PVOID Context,
ULONG dwMilliseconds,
ULONG dwFlags
)
/*++
Routine Description:
This function registers a wait for a particular object, with an optional
timeout. This differs from WaitForSingleObject because the wait is performed
by a different thread that combines several such calls for efficiency. The
function supplied in Callback is called when the object is signalled, or the
timeout expires.
Arguments:
phNewWaitObject - pointer to new WaitObject returned by this function.
hObject - HANDLE to a Win32 kernel object (Event, Mutex, File, Process,
Thread, etc.) that will be waited on. Note: if the object
handle does not immediately return to the not-signalled state,
e.g. an auto-reset event, then either WT_EXECUTEINWAITTHREAD or
WT_EXECUTEONLYONCE should be specified. Otherwise, the thread
pool will continue to fire the callbacks. If WT_EXECUTEINWAITTHREAD
is specified, the the object should be deregistered or reset in the
callback.
Callback - Function that will be called when the object is signalled or the
timer expires.
Context - Context that will be passed to the callback function.
dwMilliseconds - timeout for the wait. Each time the timer is fired or the event
is fired, the timer is reset (except if WT_EXECUTEONLYONCE is set).
dwFlags - Flags indicating options for this wait:
WT_EXECUTEDEFAULT - Default (0)
WT_EXECUTEINIOTHREAD - Select an I/O thread for execution
WT_EXECUTEINUITHREAD - Select a UI thread for execution
WT_EXECUTEINWAITTHREAD - Execute in the thread that handles waits
WT_EXECUTEONLYONCE - The callback function will be called only once
WT_EXECUTELONGFUNCTION - The Callback function can potentially block
for a long time. Is valid only if
WT_EXECUTEINWAITTHREAD flag is not set.
Return Value:
FALSE - an error occurred, use GetLastError() for more information.
TRUE - success.
--*/
{
NTSTATUS Status ;
PPEB Peb;
*phNewWaitObject = NULL;
Peb = NtCurrentPeb();
switch( HandleToUlong(hObject) )
{
case STD_INPUT_HANDLE: hObject = Peb->ProcessParameters->StandardInput;
break;
case STD_OUTPUT_HANDLE: hObject = Peb->ProcessParameters->StandardOutput;
break;
case STD_ERROR_HANDLE: hObject = Peb->ProcessParameters->StandardError;
break;
}
if (CONSOLE_HANDLE(hObject) && VerifyConsoleIoHandle(hObject))
{
hObject = GetConsoleInputWaitHandle();
}
Status = RtlRegisterWait(
phNewWaitObject,
hObject,
Callback,
Context,
dwMilliseconds,
dwFlags );
if ( NT_SUCCESS( Status ) )
{
return TRUE ;
}
BaseSetLastNTError( Status );
return FALSE ;
}
HANDLE
WINAPI
RegisterWaitForSingleObjectEx(
HANDLE hObject,
WAITORTIMERCALLBACK Callback,
PVOID Context,
ULONG dwMilliseconds,
ULONG dwFlags
)
/*++
Routine Description:
This function registers a wait for a particular object, with an optional
timeout. This differs from WaitForSingleObject because the wait is performed
by a different thread that combines several such calls for efficiency. The
function supplied in Callback is called when the object is signalled, or the
timeout expires.
Arguments:
hObject - HANDLE to a Win32 kernel object (Event, Mutex, File, Process,
Thread, etc.) that will be waited on. Note: if the object
handle does not immediately return to the not-signalled state,
e.g. an auto-reset event, then either WT_EXECUTEINWAITTHREAD or
WT_EXECUTEONLYONCE should be specified. Otherwise, the thread
pool will continue to fire the callbacks. If WT_EXECUTEINWAITTHREAD
is specified, the the object should be deregistered or reset in the
callback.
Callback - Function that will be called when the object is signalled or the
timer expires.
Context - Context that will be passed to the callback function.
dwMilliseconds - timeout for the wait. Each time the timer is fired or the event
is fired, the timer is reset (except if WT_EXECUTEONLYONCE is set).
dwFlags - Flags indicating options for this wait:
WT_EXECUTEDEFAULT - Default (0)
WT_EXECUTEINIOTHREAD - Select an I/O thread for execution
WT_EXECUTEINUITHREAD - Select a UI thread for execution
WT_EXECUTEINWAITTHREAD - Execute in the thread that handles waits
WT_EXECUTEONLYONCE - The callback function will be called only once
WT_EXECUTELONGFUNCTION - The Callback function can potentially block
for a long time. Is valid only if
WT_EXECUTEINWAITTHREAD flag is not set.
Return Value:
NULL - an error occurred, use GetLastError() for more information.
non-NULL - a virtual handle that can be passed later to
UnregisterWait
--*/
{
HANDLE WaitHandle ;
NTSTATUS Status ;
PPEB Peb;
Peb = NtCurrentPeb();
switch( HandleToUlong(hObject) )
{
case STD_INPUT_HANDLE: hObject = Peb->ProcessParameters->StandardInput;
break;
case STD_OUTPUT_HANDLE: hObject = Peb->ProcessParameters->StandardOutput;
break;
case STD_ERROR_HANDLE: hObject = Peb->ProcessParameters->StandardError;
break;
}
if (CONSOLE_HANDLE(hObject) && VerifyConsoleIoHandle(hObject))
{
hObject = GetConsoleInputWaitHandle();
}
Status = RtlRegisterWait(
&WaitHandle,
hObject,
Callback,
Context,
dwMilliseconds,
dwFlags );
if ( NT_SUCCESS( Status ) )
{
return WaitHandle ;
}
BaseSetLastNTError( Status );
return NULL ;
}
BOOL
WINAPI
UnregisterWait(
HANDLE WaitHandle
)
/*++
Routine Description:
This function cancels a wait for a particular object.
All objects that were registered by the RtlWaitForSingleObject(Ex) call
should be deregistered. This is a non-blocking call, and the associated
callback function can still be executing after the return of this function.
Arguments:
WaitHandle - Handle returned from RegisterWaitForSingleObject(Ex)
Return Value:
TRUE - The wait was cancelled
FALSE - an error occurred or a callback function was still executing,
use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
if ( WaitHandle )
{
Status = RtlDeregisterWait( WaitHandle );
// set error if it is a non-blocking call and STATUS_PENDING was returned
if ( Status == STATUS_PENDING || !NT_SUCCESS( Status ) )
{
BaseSetLastNTError( Status );
return FALSE;
}
return TRUE ;
}
SetLastError( ERROR_INVALID_HANDLE );
return FALSE ;
}
BOOL
WINAPI
UnregisterWaitEx(
HANDLE WaitHandle,
HANDLE CompletionEvent
)
/*++
Routine Description:
This function cancels a wait for a particular object.
All objects that were registered by the RtlWaitForSingleObject(Ex) call
should be deregistered.
Arguments:
WaitHandle - Handle returned from RegisterWaitForSingleObject
CompletionEvent - Handle to wait on for completion.
NULL - NonBlocking call.
INVALID_HANDLE_VALUE - Blocking call. Block till all Callback functions
associated with the WaitHandle have completed
Event - NonBlocking call. The Object is deregistered. The Event is signalled
when the last callback function has completed execution.
Return Value:
TRUE - The wait was cancelled
FALSE - an error occurred or a callback was still executing,
use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
if ( WaitHandle )
{
Status = RtlDeregisterWaitEx( WaitHandle, CompletionEvent );
// set error if it is a non-blocking call and STATUS_PENDING was returned
if ( (CompletionEvent != INVALID_HANDLE_VALUE && Status == STATUS_PENDING)
|| ( ! NT_SUCCESS( Status ) ) )
{
BaseSetLastNTError( Status );
return FALSE;
}
return TRUE ;
}
SetLastError( ERROR_INVALID_HANDLE );
return FALSE ;
}
BOOL
WINAPI
QueueUserWorkItem(
LPTHREAD_START_ROUTINE Function,
PVOID Context,
ULONG Flags
)
/*++
Routine Description:
This function queues a work item to a thread out of the thread pool. The
function passed is invoked in a different thread, and passed the Context
pointer. The caller can specify whether the thread pool should select
a thread that can have I/O pending, or any thread.
Arguments:
Function - Function to call
Context - Pointer passed to the function when it is invoked.
Flags -
- WT_EXECUTEINIOTHREAD
Indictes to the thread pool that this thread will perform
I/O. A thread that starts an asynchronous I/O operation
must wait for it to complete. If a thread exits with
outstanding I/O requests, those requests will be cancelled.
This flag is a hint to the thread pool that this function
will start I/O, so that a thread which can have pending I/O
will be used.
- WT_EXECUTELONGFUNCTION
Indicates to the thread pool that the function might block
for a long time.
Return Value:
TRUE - The work item was queued to another thread.
FALSE - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
Status = RtlQueueWorkItem(
(WORKERCALLBACKFUNC) Function,
Context,
Flags );
if ( NT_SUCCESS( Status ) )
{
return TRUE ;
}
BaseSetLastNTError( Status );
return FALSE ;
}
BOOL
WINAPI
BindIoCompletionCallback (
HANDLE FileHandle,
LPOVERLAPPED_COMPLETION_ROUTINE Function,
ULONG Flags
)
/*++
Routine Description:
This function binds the FileHandle opened for overlapped operations
to the IO completion port associated with worker threads.
Arguments:
FileHandle - File Handle on which IO operations will be initiated.
Function - Function executed in a non-IO worker thread when the
IO operation completes.
Flags - Currently set to 0. Not used.
Return Value:
TRUE - The file handle was associated with the IO completion port.
FALSE - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
Status = RtlSetIoCompletionCallback(
FileHandle,
(APC_CALLBACK_FUNCTION) Function,
Flags );
if ( NT_SUCCESS( Status ) )
{
return TRUE ;
}
BaseSetLastNTError( Status );
return FALSE ;
}
//+---------------------------------------------------------------------------
//+---------------------------------------------------------------------------
//
// Function: BasepCreateDefaultTimerQueue
//
// Synopsis: Creates the default timer queue for the process
//
// Arguments: (none)
//
// History: 5-26-98 RichardW Created
//
// Notes:
//
//----------------------------------------------------------------------------
BOOL
BasepCreateDefaultTimerQueue(
VOID
)
{
NTSTATUS Status ;
while ( 1 )
{
if ( !InterlockedExchange( &BasepTimerQueueInitFlag, 1 ) )
{
//
// Force the done flag to 0. If it was 1, so one already tried to
// init and failed.
//
InterlockedExchange( &BasepTimerQueueDoneFlag, 0 );
Status = RtlCreateTimerQueue( &BasepDefaultTimerQueue );
if ( NT_SUCCESS( Status ) )
{
InterlockedIncrement( &BasepTimerQueueDoneFlag );
return TRUE ;
}
//
// This is awkward. We aren't able to create a timer queue,
// probably because of low memory. We will fail this call, but decrement
// the init flag, so that others can try again later. Need to increment
// the done flag, or any other threads would be stuck.
//
BaseSetLastNTError( Status );
InterlockedIncrement( &BasepTimerQueueDoneFlag );
InterlockedDecrement( &BasepTimerQueueInitFlag );
return FALSE ;
}
else
{
LARGE_INTEGER TimeOut ;
TimeOut.QuadPart = -1 * 10 * 10000 ;
//
// yield the quantum so that the other thread can
// try to create the timer queue.
//
while ( !BasepTimerQueueDoneFlag )
{
NtDelayExecution( FALSE, &TimeOut );
}
//
// Make sure it was created. Otherwise, try it again (memory might have
// freed up). This way, every thread gets an individual chance to create
// the queue if another thread failed.
//
if ( BasepDefaultTimerQueue )
{
return TRUE ;
}
}
}
}
HANDLE
WINAPI
CreateTimerQueue(
VOID
)
/*++
Routine Description:
This function creates a queue for timers. Timers on a timer queue are
lightweight objects that allow the caller to specify a function to
be called at some point in the future. Any number of timers can be
created in a particular timer queue.
Arguments:
None.
Return Value:
non-NULL - a timer queue handle that can be passed to SetTimerQueueTimer,
ChangeTimerQueueTimer, CancelTimerQueueTimer, and
DeleteTimerQueue.
NULL - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
HANDLE Handle ;
Status = RtlCreateTimerQueue( &Handle );
if ( NT_SUCCESS( Status ) )
{
return Handle ;
}
BaseSetLastNTError( Status );
return NULL ;
}
BOOL
WINAPI
CreateTimerQueueTimer(
PHANDLE phNewTimer,
HANDLE TimerQueue,
WAITORTIMERCALLBACK Callback,
PVOID Parameter,
DWORD DueTime,
DWORD Period,
ULONG Flags
)
/*++
Routine Description:
This function creates a timer queue timer, a lightweight timer that
will fire at the DueTime, and then every Period milliseconds afterwards.
When the timer fires, the function passed in Callback will be invoked,
and passed the Parameter pointer.
Arguments:
phNewTimer - pointer to new timer handle
TimerQueue - Timer Queue to attach this timer to. NULL indicates that the
default process timer queue be used.
Function - Function to call
Context - Pointer passed to the function when it is invoked.
DueTime - Time from now that the timer should fire, expressed in
milliseconds. If set to INFINITE, then it will never fire.
If set to 0, then it will fire immediately.
Period - Time in between firings of this timer.
If 0, then it is a one shot timer.
Flags - by default the Callback function is queued to a non-IO worker thread.
- WT_EXECUTEINIOTHREAD
Indictes to the thread pool that this thread will perform
I/O. A thread that starts an asynchronous I/O operation
must wait for it to complete. If a thread exits with
outstanding I/O requests, those requests will be cancelled.
This flag is a hint to the thread pool that this function
will start I/O, so that a thread with I/O already pending
will be used.
- WT_EXECUTEINTIMERTHREAD
The callback function will be executed in the timer thread.
- WT_EXECUTELONGFUNCTION
Indicates that the function might block for a long time. Useful
only if it is queued to a worker thread.
Return Value:
TRUE - no error
FALSE - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
*phNewTimer = NULL ;
//
// if the passed timer queue is NULL, use the default one. If it is null,
// call the initializer that will do it in a nice thread safe fashion.
//
if ( !TimerQueue )
{
if ( !BasepDefaultTimerQueue )
{
if ( !BasepCreateDefaultTimerQueue( ) )
{
return FALSE ;
}
}
TimerQueue = BasepDefaultTimerQueue ;
}
Status = RtlCreateTimer(
TimerQueue,
phNewTimer,
Callback,
Parameter,
DueTime,
Period,
Flags );
if ( NT_SUCCESS( Status ) )
{
return TRUE ;
}
BaseSetLastNTError( Status );
return FALSE ;
}
BOOL
WINAPI
ChangeTimerQueueTimer(
HANDLE TimerQueue,
HANDLE Timer,
ULONG DueTime,
ULONG Period
)
/*++
Routine Description:
This function updates a timer queue timer created with SetTimerQueueTimer.
Arguments:
TimerQueue - Timer Queue to attach this timer to. NULL indicates the default
process timer queue.
Timer - Handle returned from SetTimerQueueTimer.
DueTime - Time from now that the timer should fire, expressed in
milliseconds.
Period - Time in between firings of this timer. If set to 0, then it becomes
a one shot timer.
Return Value:
TRUE - the timer was changed
FALSE - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
//
// Use the default timer queue if none was passed in. If there isn't one, then
// the process hasn't created one with SetTimerQueueTimer, and that's an error.
//
if ( !TimerQueue )
{
TimerQueue = BasepDefaultTimerQueue ;
if ( !TimerQueue )
{
SetLastError( ERROR_INVALID_PARAMETER );
return FALSE ;
}
}
Status = RtlUpdateTimer( TimerQueue,
Timer,
DueTime,
Period );
if ( NT_SUCCESS( Status ) )
{
return TRUE ;
}
BaseSetLastNTError( Status );
return FALSE ;
}
BOOL
WINAPI
DeleteTimerQueueTimer(
HANDLE TimerQueue,
HANDLE Timer,
HANDLE CompletionEvent
)
/*++
Routine Description:
This function cancels a timer queue timer created with SetTimerQueueTimer.
Arguments:
TimerQueue - Timer Queue that this timer was created on.
Timer - Handle returned from SetTimerQueueTimer.
CompletionEvent -
- NULL : NonBlocking call. returns immediately.
- INVALID_HANDLE_VALUE : Blocking call. Returns after all callbacks have executed
- Event (handle to an event) : NonBlocking call. Returns immediately.
Event signalled after all callbacks have executed.
Return Value:
TRUE - the timer was cancelled.
FALSE - an error occurred or the call is pending, use GetLastError()
for more information.
--*/
{
NTSTATUS Status ;
//
// Use the default timer queue if none was passed in. If there isn't one, then
// the process hasn't created one with SetTimerQueueTimer, and that's an error.
//
if ( !TimerQueue )
{
TimerQueue = BasepDefaultTimerQueue ;
if ( !TimerQueue )
{
SetLastError( ERROR_INVALID_PARAMETER );
return FALSE ;
}
}
Status = RtlDeleteTimer( TimerQueue, Timer, CompletionEvent );
// set error if it is a non-blocking call and STATUS_PENDING was returned
if ( (CompletionEvent != INVALID_HANDLE_VALUE && Status == STATUS_PENDING)
|| ( ! NT_SUCCESS( Status ) ) )
{
BaseSetLastNTError( Status );
return FALSE;
}
return TRUE ;
}
BOOL
WINAPI
DeleteTimerQueueEx(
HANDLE TimerQueue,
HANDLE CompletionEvent
)
/*++
Routine Description:
This function deletes a timer queue created with CreateTimerQueue.
Any pending timers on the timer queue are cancelled and deleted.
Arguments:
TimerQueue - Timer Queue to delete.
CompletionEvent -
- NULL : NonBlocking call. returns immediately.
- INVALID_HANDLE_VALUE : Blocking call. Returns after all callbacks
have executed
- Event (handle to an event) : NonBlocking call. Returns immediately.
Event signalled after all callbacks have executed.
Return Value:
TRUE - the timer queue was deleted.
FALSE - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
if ( TimerQueue )
{
Status = RtlDeleteTimerQueueEx( TimerQueue, CompletionEvent );
// set error if it is a non-blocking call and STATUS_PENDING was returned
if ( (CompletionEvent != INVALID_HANDLE_VALUE && Status == STATUS_PENDING)
|| ( ! NT_SUCCESS( Status ) ) )
{
BaseSetLastNTError( Status );
return FALSE;
}
return TRUE ;
}
SetLastError( ERROR_INVALID_HANDLE );
return FALSE ;
}
BOOL
WINAPI
ThreadPoolCleanup (
ULONG Flags
)
/*++
Routine Description:
Called by terminating process for thread pool to cleanup and
delete all its threads.
Arguments:
Flags - currently not used
Return Value:
NO_ERROR
--*/
{
// RtlThreadPoolCleanup( Flags ) ;
return TRUE ;
}
/*OBSOLETE FUNCTION - REPLACED BY CreateTimerQueueTimer */
HANDLE
WINAPI
SetTimerQueueTimer(
HANDLE TimerQueue,
WAITORTIMERCALLBACK Callback,
PVOID Parameter,
DWORD DueTime,
DWORD Period,
BOOL PreferIo
)
/*OBSOLETE FUNCTION - REPLACED BY CreateTimerQueueTimer */
{
NTSTATUS Status ;
HANDLE Handle ;
//
// if the passed timer queue is NULL, use the default one. If it is null,
// call the initializer that will do it in a nice thread safe fashion.
//
if ( !TimerQueue )
{
if ( !BasepDefaultTimerQueue )
{
if ( !BasepCreateDefaultTimerQueue( ) )
{
return NULL ;
}
}
TimerQueue = BasepDefaultTimerQueue ;
}
Status = RtlCreateTimer(
TimerQueue,
&Handle,
Callback,
Parameter,
DueTime,
Period,
(PreferIo ? WT_EXECUTEINIOTHREAD : 0 ) );
if ( NT_SUCCESS( Status ) )
{
return Handle ;
}
BaseSetLastNTError( Status );
return NULL ;
}
/*OBSOLETE: Replaced by DeleteTimerQueueEx */
BOOL
WINAPI
DeleteTimerQueue(
HANDLE TimerQueue
)
/*++
OBSOLETE: Replaced by DeleteTimerQueueEx
Routine Description:
This function deletes a timer queue created with CreateTimerQueue.
Any pending timers on the timer queue are cancelled and deleted.
This is a non-blocking call. Callbacks might still be running after
this call returns.
Arguments:
TimerQueue - Timer Queue to delete.
Return Value:
TRUE - the timer queue was deleted.
FALSE - an error occurred, use GetLastError() for more information.
--*/
{
NTSTATUS Status ;
if (TimerQueue)
{
Status = RtlDeleteTimerQueueEx( TimerQueue, NULL );
// set error if it is a non-blocking call and STATUS_PENDING was returned
/*
if ( Status == STATUS_PENDING || ! NT_SUCCESS( Status ) )
{
BaseSetLastNTError( Status );
return FALSE;
}
*/
return TRUE ;
}
SetLastError( ERROR_INVALID_HANDLE );
return FALSE ;
}
/*OBSOLETE: USE DeleteTimerQueueTimer*/
BOOL
WINAPI
CancelTimerQueueTimer(
HANDLE TimerQueue,
HANDLE Timer
)
/*OBSOLETE: USE DeleteTimerQueueTimer*/
{
NTSTATUS Status ;
//
// Use the default timer queue if none was passed in. If there isn't one, then
// the process hasn't created one with SetTimerQueueTimer, and that's an error.
//
if ( !TimerQueue )
{
TimerQueue = BasepDefaultTimerQueue ;
if ( !TimerQueue )
{
SetLastError( ERROR_INVALID_PARAMETER );
return FALSE ;
}
}
Status = RtlDeleteTimer( TimerQueue, Timer, NULL );
if ( NT_SUCCESS( Status ) )
{
return TRUE ;
}
BaseSetLastNTError( Status );
return FALSE ;
}