Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4699 lines
125 KiB

/*++
Copyright (C) 1991-5 Microsoft Corporation
Module Name:
stripewp.cxx
Abstract:
This module contains the code specific to stripes with parity for the fault
tolerance driver.
Author:
Bob Rinne (bobri) 2-Feb-1992
Mike Glass (mglass)
Norbert Kusters 2-Feb-1995
Environment:
kernel mode only
Notes:
Revision History:
--*/
extern "C" {
#include <ntddk.h>
}
#include <ftdisk.h>
#ifdef ALLOC_PRAGMA
#pragma code_seg("PAGE")
#endif
NTSTATUS
STRIPE_WP::Initialize(
IN OUT PROOT_EXTENSION RootExtension,
IN FT_LOGICAL_DISK_ID LogicalDiskId,
IN OUT PFT_VOLUME* VolumeArray,
IN USHORT ArraySize,
IN PVOID ConfigInfo,
IN PVOID StateInfo
)
/*++
Routine Description:
Initialize routine for FT_VOLUME of type STRIPE with PARITY.
Arguments:
RootExtension - Supplies the root device extension.
LogicalDiskId - Supplies the logical disk id for this volume.
VolumeArray - Supplies the array of volumes for this volume set.
ArraySize - Supplies the number of volumes in the volume array.
ConfigInfo - Supplies the configuration information.
StateInfo - Supplies the state information.
Return Value:
None.
--*/
{
PFT_STRIPE_SET_WITH_PARITY_CONFIGURATION_INFORMATION configInfo;
NTSTATUS status;
USHORT i;
if (ArraySize < 3) {
return STATUS_INVALID_PARAMETER;
}
status = COMPOSITE_FT_VOLUME::Initialize(RootExtension, LogicalDiskId,
VolumeArray, ArraySize,
ConfigInfo, StateInfo);
if (!NT_SUCCESS(status)) {
return status;
}
configInfo = (PFT_STRIPE_SET_WITH_PARITY_CONFIGURATION_INFORMATION) ConfigInfo;
_stripeSize = configInfo->StripeSize;
if (_stripeSize < QuerySectorSize()) {
return STATUS_INVALID_PARAMETER;
}
for (i = 0; _stripeSize%2 == 0; i++) {
_stripeSize /= 2;
}
if (_stripeSize != 1) {
return STATUS_INVALID_PARAMETER;
}
_stripeSize = configInfo->StripeSize;
_memberSize = configInfo->MemberSize;
for (i = 0; i < ArraySize; i++) {
if (VolumeArray[i] &&
VolumeArray[i]->QueryVolumeSize() < _memberSize) {
break;
}
}
if (i < ArraySize) {
return STATUS_INVALID_PARAMETER;
}
_memberSize = _memberSize/_stripeSize*_stripeSize;
_volumeSize = _memberSize*(ArraySize - 1);
RtlCopyMemory(&_state, StateInfo, sizeof(_state));
_originalDirtyBit = _state.IsDirty;
_orphanedBecauseOfMissingMember = FALSE;
_syncOk = TRUE;
_stopSyncs = FALSE;
status = _overlappedIoManager.Initialize(_stripeSize);
if (!NT_SUCCESS(status)) {
return status;
}
status = _parityIoManager.Initialize(_stripeSize, QuerySectorSize());
if (!NT_SUCCESS(status)) {
return status;
}
_ePacket = new SWP_WRITE_TP;
if (!_ePacket ||
!_ePacket->AllocateMdls(_stripeSize) ||
!_ePacket->AllocateMdl((PVOID) 1, _stripeSize)) {
return STATUS_INSUFFICIENT_RESOURCES;
}
_ePacketInUse = FALSE;
_ePacketQueueBeingServiced = FALSE;
InitializeListHead(&_ePacketQueue);
_eRegeneratePacket = new SWP_REGENERATE_TP;
if (!_eRegeneratePacket ||
!_eRegeneratePacket->AllocateMdl(_stripeSize)) {
return STATUS_INSUFFICIENT_RESOURCES;
}
_eRegeneratePacketInUse = FALSE;
InitializeListHead(&_eRegeneratePacketQueue);
_eRecoverPacket = new SWP_RECOVER_TP;
if (!_eRecoverPacket ||
!_eRecoverPacket->AllocateMdls(QuerySectorSize())) {
return STATUS_INSUFFICIENT_RESOURCES;
}
_eRecoverPacketInUse = FALSE;
InitializeListHead(&_eRecoverPacketQueue);
return STATUS_SUCCESS;
}
FT_LOGICAL_DISK_TYPE
STRIPE_WP::QueryLogicalDiskType(
)
/*++
Routine Description:
This routine returns the type of the logical disk.
Arguments:
None.
Return Value:
The type of the logical disk.
--*/
{
return FtStripeSetWithParity;
}
NTSTATUS
STRIPE_WP::QueryPhysicalOffsets(
IN LONGLONG LogicalOffset,
OUT PVOLUME_PHYSICAL_OFFSET* PhysicalOffsets,
OUT PULONG NumberOfPhysicalOffsets
)
/*++
Routine Description:
This routine returns physical disk and offset for a given volume
logical offset.
Arguments:
LogicalOffset - Supplies the logical offset
PhysicalOffsets - Returns the physical offsets
NumberOfPhysicalOffsets - Returns the number of physical offsets
Return Value:
NTSTATUS
--*/
{
USHORT n, whichMember, parityStripe;
LONGLONG whichStripe, whichRow, logicalOffsetInMember;
PFT_VOLUME vol;
if (LogicalOffset < 0 ||
_volumeSize <= LogicalOffset) {
return STATUS_INVALID_PARAMETER;
}
n = QueryNumMembers();
ASSERT(n > 1);
ASSERT(_stripeSize);
whichStripe = LogicalOffset/_stripeSize;
whichRow = whichStripe/(n - 1);
whichMember = (USHORT) (whichStripe%(n - 1));
parityStripe = (USHORT) (whichRow%n);
if (whichMember >= parityStripe) {
whichMember++;
}
vol = GetMember(whichMember);
if (!vol) {
return STATUS_INVALID_PARAMETER;
}
logicalOffsetInMember = whichRow*_stripeSize + LogicalOffset%_stripeSize;
return vol->QueryPhysicalOffsets(logicalOffsetInMember, PhysicalOffsets, NumberOfPhysicalOffsets);
}
NTSTATUS
STRIPE_WP::QueryLogicalOffset(
IN PVOLUME_PHYSICAL_OFFSET PhysicalOffset,
OUT PLONGLONG LogicalOffset
)
/*++
Routine Description:
This routine returns the volume logical offset for a given disk number
and physical offset.
Arguments:
PhysicalOffset - Supplies the physical offset
LogicalOffset - Returns the logical offset
Return Value:
NTSTATUS
--*/
{
USHORT n, i, parityStripe;
LONGLONG whichStripe, whichRow;
LONGLONG logicalOffset, logicalOffsetInMember;
NTSTATUS status;
PFT_VOLUME vol;
n = QueryNumMembers();
ASSERT(_stripeSize);
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol) {
continue;
}
status = vol->QueryLogicalOffset(PhysicalOffset, &logicalOffsetInMember);
if (NT_SUCCESS(status)) {
whichRow = logicalOffsetInMember/_stripeSize;
parityStripe = (USHORT) (whichRow%n);
if (i == parityStripe) {
return STATUS_INVALID_PARAMETER;
}
whichStripe = whichRow*(n-1) + i;
if (parityStripe < i) {
whichStripe--;
}
logicalOffset = whichStripe*_stripeSize + logicalOffsetInMember%_stripeSize;
if (_volumeSize <= logicalOffset) {
return STATUS_INVALID_PARAMETER;
}
*LogicalOffset = logicalOffset;
return status;
}
}
return STATUS_INVALID_PARAMETER;
}
#ifdef ALLOC_PRAGMA
#pragma code_seg("PAGELK")
#endif
NTSTATUS
STRIPE_WP::OrphanMember(
IN USHORT MemberNumber,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine tries to orphan the given member of this logical disk.
A completion routine will be called if and only if this attempt is successful.
Arguments:
MemberNumber - Supplies the member number to orphan.
Return Value:
NTSTATUS
--*/
{
KIRQL irql;
NTSTATUS status = STATUS_SUCCESS;
BOOLEAN b;
if (MemberNumber >= QueryNumMembers()) {
return STATUS_INVALID_PARAMETER;
}
KeAcquireSpinLock(&_spinLock, &irql);
b = SetMemberState(MemberNumber, FtMemberOrphaned);
KeReleaseSpinLock(&_spinLock, irql);
if (b) {
PropogateStateChanges(CompletionRoutine, Context);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(), FT_ORPHANING,
STATUS_SUCCESS, 2);
}
return b ? STATUS_SUCCESS : STATUS_INVALID_PARAMETER;
}
VOID
StripeWpCompositeVolumeCompletionRoutine(
IN PVOID Context,
IN NTSTATUS Status
)
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
KIRQL irql;
LONG count;
context = (PFT_COMPLETION_ROUTINE_CONTEXT) Context;
KeAcquireSpinLock(&context->SpinLock, &irql);
if (!NT_SUCCESS(Status) &&
FtpIsWorseStatus(Status, context->Status)) {
context->Status = Status;
}
count = --context->RefCount;
KeReleaseSpinLock(&context->SpinLock, irql);
if (!count) {
context->CompletionRoutine(context->Context, STATUS_SUCCESS);
ExFreePool(context);
}
}
VOID
StripeWpSyncCleanup(
IN PSWP_REBUILD_TP TransferPacket
)
/*++
Routine Description:
This is the cleanup routine for the initialize check data process.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
context = TransferPacket->Context;
delete TransferPacket;
StripeWpCompositeVolumeCompletionRoutine(context, STATUS_SUCCESS);
}
VOID
StripeWpSyncCompletionRoutine(
IN PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for an initialize check data request.
This routine is called over and over again until the volume
is completely initialized.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_REBUILD_TP transferPacket = (PSWP_REBUILD_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
NTSTATUS status = transferPacket->IoStatus.Status;
KIRQL irql;
ULONG parityMember;
BOOLEAN b;
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_stopSyncs ||
t->QueryMemberState(transferPacket->WhichMember) == FtMemberOrphaned) {
t->_syncOk = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
t->_overlappedIoManager.ReleaseIoRegion(transferPacket);
StripeWpSyncCleanup(transferPacket);
return;
}
KeReleaseSpinLock(&t->_spinLock, irql);
if (!NT_SUCCESS(status)) {
// We can't get a VERIFY_REQUIRED because we put IrpFlags equal
// to SL_OVERRIDE_VERIFY_VOLUME.
ASSERT(status != STATUS_VERIFY_REQUIRED);
if (FsRtlIsTotalDeviceFailure(status)) {
if (!transferPacket->ReadPacket) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 3);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL,
NULL);
}
}
// The initialize cannot continue.
KeAcquireSpinLock(&t->_spinLock, &irql);
t->_syncOk = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
t->_overlappedIoManager.ReleaseIoRegion(transferPacket);
StripeWpSyncCleanup(transferPacket);
return;
}
// Transfer the maximum amount that we can. This will always
// complete successfully and log bad sector errors for
// those sectors that it could not transfer.
t->MaxTransfer(transferPacket);
return;
}
transferPacket->Thread = PsGetCurrentThread();
if (transferPacket->ReadPacket) {
transferPacket->ReadPacket = FALSE;
TRANSFER(transferPacket);
return;
}
t->_overlappedIoManager.ReleaseIoRegion(transferPacket);
transferPacket->ReadPacket = TRUE;
transferPacket->Offset += t->_stripeSize;
if (transferPacket->Initialize) {
transferPacket->WhichMember = (transferPacket->WhichMember + 1)%
t->QueryNumMembers();
transferPacket->TargetVolume = t->GetMemberUnprotected(
transferPacket->WhichMember);
}
if (transferPacket->Offset < t->_memberSize) {
t->RegeneratePacket(transferPacket, TRUE);
return;
}
if (transferPacket->Initialize) {
KeAcquireSpinLock(&t->_spinLock, &irql);
t->_state.IsInitializing = FALSE;
t->_syncOk = TRUE;
t->_originalDirtyBit = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
t->PropogateStateChanges(NULL, NULL);
t->Notify();
} else {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember, FtMemberHealthy);
t->_syncOk = TRUE;
t->_originalDirtyBit = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
}
}
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_REGENERATION_ENDED, STATUS_SUCCESS, 0);
StripeWpSyncCleanup(transferPacket);
}
NTSTATUS
STRIPE_WP::RegenerateMember(
IN USHORT MemberNumber,
IN OUT PFT_VOLUME NewMember,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine regenerates the given member of this volume with
the given volume.
Arguments:
MemberNumber - Supplies the member number to regenerate.
NewMember - Supplies the new member to regenerate to.
CompletionRoutine - Supplies the completion routine.
Context - Supplies the completion routine context.
Return Value:
NTSTATUS
--*/
{
KIRQL irql;
PFT_COMPLETION_ROUTINE_CONTEXT context;
BOOLEAN b;
PSWP_REBUILD_TP packet;
USHORT i, n;
NTSTATUS status;
n = QueryNumMembers();
if (MemberNumber >= n ||
NewMember->QueryVolumeSize() < _memberSize) {
return STATUS_INVALID_PARAMETER;
}
context = (PFT_COMPLETION_ROUTINE_CONTEXT)
ExAllocatePool(NonPagedPool,
sizeof(FT_COMPLETION_ROUTINE_CONTEXT));
packet = new SWP_REBUILD_TP;
if (packet && !packet->AllocateMdl(_stripeSize)) {
delete packet;
packet = NULL;
}
if (!context || !packet) {
if (context) {
ExFreePool(context);
}
if (packet) {
delete packet;
}
return STATUS_INSUFFICIENT_RESOURCES;
}
KeInitializeSpinLock(&context->SpinLock);
context->Status = STATUS_SUCCESS;
context->RefCount = 1;
context->CompletionRoutine = CompletionRoutine;
context->Context = Context;
context->ParentVolume = this;
packet->Length = _stripeSize;
packet->Offset = 0;
packet->CompletionRoutine = StripeWpSyncCompletionRoutine;
packet->Thread = PsGetCurrentThread();
packet->IrpFlags = SL_OVERRIDE_VERIFY_VOLUME;
packet->ReadPacket = TRUE;
packet->StripeWithParity = this;
packet->Context = context;
packet->Initialize = FALSE;
KeAcquireSpinLock(&_spinLock, &irql);
if (_syncOk) {
_syncOk = FALSE;
_stopSyncs = FALSE;
} else {
KeReleaseSpinLock(&_spinLock, irql);
delete packet;
ExFreePool(context);
return STATUS_INVALID_PARAMETER;
}
status = STATUS_SUCCESS;
if (_state.IsInitializing) {
status = STATUS_INVALID_PARAMETER;
} else {
if (_state.UnhealthyMemberState != FtMemberHealthy) {
if (MemberNumber == _state.UnhealthyMemberNumber) {
if (_state.UnhealthyMemberState == FtMemberRegenerating) {
status = STATUS_INVALID_PARAMETER;
}
} else {
status = STATUS_INVALID_PARAMETER;
}
}
}
if (!NT_SUCCESS(status)) {
_syncOk = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
ExFreePool(context);
delete packet;
return status;
}
packet->WhichMember = MemberNumber;
packet->TargetVolume = NewMember;
SetMemberUnprotected(MemberNumber, NewMember);
b = SetMemberState(MemberNumber, FtMemberRegenerating);
KeReleaseSpinLock(&_spinLock, irql);
ASSERT(b);
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(), FT_REGENERATION_STARTED,
STATUS_SUCCESS, 0);
RegeneratePacket(packet, TRUE);
return STATUS_SUCCESS;
}
VOID
STRIPE_WP::Transfer(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
Transfer routine for STRIPE_WP type FT_VOLUME. Figure out
which volumes this request needs to be dispatched to.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
KIRQL irql;
if (TransferPacket->Offset + TransferPacket->Length > _volumeSize) {
TransferPacket->IoStatus.Status = STATUS_INVALID_PARAMETER;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
return;
}
KeAcquireSpinLock(&_spinLock, &irql);
if ((_ePacketInUse || _ePacketQueueBeingServiced) &&
TransferPacket->Mdl) {
InsertTailList(&_ePacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
KeReleaseSpinLock(&_spinLock, irql);
if (!TransferPacket->Mdl) {
TransferPacket->ReadPacket = TRUE;
}
if (!LaunchParallel(TransferPacket)) {
if (!TransferPacket->Mdl) {
TransferPacket->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
return;
}
KeAcquireSpinLock(&_spinLock, &irql);
if (_ePacketInUse || _ePacketQueueBeingServiced) {
InsertTailList(&_ePacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_ePacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
LaunchSequential(TransferPacket);
}
}
VOID
STRIPE_WP::ReplaceBadSector(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is a no-op since replacing bad sectors doesn't make sense
on an FT component with redundancy built in to it.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
TransferPacket->IoStatus.Status = STATUS_UNSUCCESSFUL;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
}
VOID
STRIPE_WP::StartSyncOperations(
IN BOOLEAN RegenerateOrphans,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This aroutine restarts any regenerate or initialize requests that
were suspended because of a reboot. The volume examines the member
state of all of its constituents and restarts any regenerations pending.
Arguments:
RegenerateOrphans - Supplies whether or not to try and regenerate
orphaned members.
CompletionRoutine - Supplies the completion routine.
Context - Supplies the context for the completion routine.
Return Value:
None.
--*/
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
BOOLEAN dirty, regen, init;
KIRQL irql;
PFT_VOLUME vol;
PSWP_REBUILD_TP packet;
PVOID buffer;
LONG regenMember;
context = (PFT_COMPLETION_ROUTINE_CONTEXT)
ExAllocatePool(NonPagedPool,
sizeof(FT_COMPLETION_ROUTINE_CONTEXT));
if (!context) {
CompletionRoutine(Context, STATUS_INSUFFICIENT_RESOURCES);
return;
}
KeInitializeSpinLock(&context->SpinLock);
context->Status = STATUS_SUCCESS;
context->RefCount = 2;
context->CompletionRoutine = CompletionRoutine;
context->Context = Context;
context->ParentVolume = this;
// Kick off the recursive initialize.
COMPOSITE_FT_VOLUME::StartSyncOperations(RegenerateOrphans,
StripeWpCompositeVolumeCompletionRoutine, context);
if (_orphanedBecauseOfMissingMember) {
RegenerateOrphans = TRUE;
_orphanedBecauseOfMissingMember = FALSE;
}
// Make sure that all member are healthy.
dirty = FALSE;
regen = FALSE;
init = FALSE;
KeAcquireSpinLock(&_spinLock, &irql);
if (_syncOk) {
_syncOk = FALSE;
_stopSyncs = FALSE;
} else {
KeReleaseSpinLock(&_spinLock, irql);
StripeWpCompositeVolumeCompletionRoutine(context, STATUS_SUCCESS);
return;
}
if (_state.UnhealthyMemberState == FtMemberOrphaned &&
RegenerateOrphans &&
GetMemberUnprotected(_state.UnhealthyMemberNumber)) {
_state.UnhealthyMemberState = FtMemberRegenerating;
PropogateStateChanges(NULL, NULL);
}
if (_state.IsInitializing) {
regenMember = -1;
init = TRUE;
} else if (_state.UnhealthyMemberState == FtMemberRegenerating) {
regenMember = _state.UnhealthyMemberNumber;
regen = TRUE;
} else if (_originalDirtyBit &&
_state.UnhealthyMemberState == FtMemberHealthy) {
regenMember = -1;
dirty = TRUE;
} else {
regenMember = -2;
}
KeReleaseSpinLock(&_spinLock, irql);
if (dirty) {
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_DIRTY_SHUTDOWN, STATUS_SUCCESS, 0);
}
if (regen) {
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_REGENERATION_STARTED, STATUS_SUCCESS, 0);
Notify();
}
if (init) {
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_PARITY_INITIALIZATION_STARTED, STATUS_SUCCESS, 0);
Notify();
}
if (regenMember == -2) {
KeAcquireSpinLock(&_spinLock, &irql);
_syncOk = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
StripeWpCompositeVolumeCompletionRoutine(context, STATUS_SUCCESS);
return;
}
packet = new SWP_REBUILD_TP;
if (packet && !packet->AllocateMdl(_stripeSize)) {
delete packet;
packet = NULL;
}
if (!packet) {
KeAcquireSpinLock(&_spinLock, &irql);
_syncOk = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
StripeWpCompositeVolumeCompletionRoutine(context,
STATUS_INSUFFICIENT_RESOURCES);
return;
}
packet->Length = _stripeSize;
packet->Offset = 0;
packet->CompletionRoutine = StripeWpSyncCompletionRoutine;
packet->Thread = PsGetCurrentThread();
packet->IrpFlags = SL_OVERRIDE_VERIFY_VOLUME;
packet->ReadPacket = TRUE;
packet->MasterPacket = NULL;
packet->StripeWithParity = this;
packet->Context = context;
if (regenMember >= 0) {
packet->WhichMember = (USHORT) regenMember;
packet->Initialize = FALSE;
} else {
packet->WhichMember = 0;
packet->Initialize = TRUE;
}
packet->TargetVolume = GetMemberUnprotected(packet->WhichMember);
RegeneratePacket(packet, TRUE);
}
VOID
STRIPE_WP::StopSyncOperations(
)
/*++
Routine Description:
This routine stops all sync operations.
Arguments:
None.
Return Value:
None.
--*/
{
KIRQL irql;
COMPOSITE_FT_VOLUME::StopSyncOperations();
KeAcquireSpinLock(&_spinLock, &irql);
if (!_syncOk) {
_stopSyncs = TRUE;
}
KeReleaseSpinLock(&_spinLock, irql);
}
LONGLONG
STRIPE_WP::QueryVolumeSize(
)
/*++
Routine Description:
Returns the number of bytes on the entire volume.
Arguments:
None.
Return Value:
The volume size in bytes.
--*/
{
return _volumeSize;
}
VOID
STRIPE_WP::SetDirtyBit(
IN BOOLEAN IsDirty,
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine sets the dirty bit on the volume. This bit is used at
startup to determine whether or not there was a clean shutdown.
Arguments:
IsDirty - Supplies the value of the dirty bit.
Return Value:
None.
--*/
{
PFT_COMPLETION_ROUTINE_CONTEXT context;
KIRQL irql;
if (CompletionRoutine) {
context = (PFT_COMPLETION_ROUTINE_CONTEXT)
ExAllocatePool(NonPagedPool,
sizeof(FT_COMPLETION_ROUTINE_CONTEXT));
if (!context) {
CompletionRoutine(Context, STATUS_INSUFFICIENT_RESOURCES);
return;
}
KeInitializeSpinLock(&context->SpinLock);
context->Status = STATUS_SUCCESS;
context->RefCount = 2;
context->CompletionRoutine = CompletionRoutine;
context->Context = Context;
context->ParentVolume = this;
COMPOSITE_FT_VOLUME::SetDirtyBit(IsDirty,
StripeWpCompositeVolumeCompletionRoutine, context);
} else {
COMPOSITE_FT_VOLUME::SetDirtyBit(IsDirty, NULL, NULL);
}
KeAcquireSpinLock(&_spinLock, &irql);
if (IsDirty || _syncOk) {
if (!_stopSyncs) {
_state.IsDirty = IsDirty;
}
}
KeReleaseSpinLock(&_spinLock, irql);
if (CompletionRoutine) {
PropogateStateChanges(StripeWpCompositeVolumeCompletionRoutine, context);
} else {
PropogateStateChanges(NULL, NULL);
}
}
BOOLEAN
STRIPE_WP::IsComplete(
IN BOOLEAN IoPending
)
/*++
Routine Description:
This routine computes whether or not this volume has either all
(if IoPending is FALSE) of its members or enough (if IoPending is TRUE) of
its members.
Arguments:
IoPending - Supplies whether or not there is IO pending.
Return Value:
None.
--*/
{
BOOLEAN b;
USHORT n, i, orphanMember;
PFT_VOLUME vol;
b = COMPOSITE_FT_VOLUME::IsComplete(IoPending);
if (b) {
return TRUE;
}
if (!IoPending || _state.IsInitializing) {
return FALSE;
}
n = QueryNumMembers();
orphanMember = n;
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol || !vol->IsComplete(IoPending)) {
if (orphanMember < n) {
return FALSE;
}
orphanMember = i;
}
}
if (orphanMember < n) {
if (_state.UnhealthyMemberState != FtMemberHealthy &&
_state.UnhealthyMemberNumber != orphanMember) {
return FALSE;
}
}
return TRUE;
}
VOID
STRIPE_WP::CompleteNotification(
IN BOOLEAN IoPending
)
/*++
Routine Description:
This routine is called to notify the volume that it is complete and
to therefore prepare for incoming requests.
Arguments:
IoPending - Supplies whether or not there is IO pending.
Return Value:
None.
--*/
{
USHORT n, i, orphanMember;
PFT_VOLUME vol;
COMPOSITE_FT_VOLUME::CompleteNotification(IoPending);
n = QueryNumMembers();
orphanMember = n;
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol || !vol->IsComplete(IoPending)) {
orphanMember = i;
break;
}
}
if (orphanMember < n) {
if (SetMemberState(orphanMember, FtMemberOrphaned)) {
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 1);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
_orphanedBecauseOfMissingMember = TRUE;
}
}
}
NTSTATUS
STRIPE_WP::CheckIo(
OUT PBOOLEAN IsIoOk
)
/*++
Routine Description:
This routine returns whether or not IO is possible on the given
logical disk.
Arguments:
IsIoOk - Returns the state of IO.
Return Value:
NTSTATUS
--*/
{
NTSTATUS status;
KIRQL irql;
USHORT n, numOk, skipVol, i;
PFT_VOLUME vol;
BOOLEAN ok, b;
n = QueryNumMembers();
numOk = 0;
KeAcquireSpinLock(&_spinLock, &irql);
if (_state.UnhealthyMemberState == FtMemberHealthy) {
skipVol = n;
} else {
skipVol = _state.UnhealthyMemberNumber;
}
KeReleaseSpinLock(&_spinLock, irql);
for (i = 0; i < n; i++) {
if (i == skipVol) {
continue;
}
vol = GetMemberUnprotected(i);
if (!vol) {
continue;
}
status = vol->CheckIo(&ok);
if (!NT_SUCCESS(status)) {
return status;
}
if (ok) {
numOk++;
}
}
if (numOk >= n - 1) {
*IsIoOk = TRUE;
} else {
*IsIoOk = FALSE;
}
return STATUS_SUCCESS;
}
BOOLEAN
STRIPE_WP::IsVolumeSuitableForRegenerate(
IN USHORT MemberNumber,
IN PFT_VOLUME Volume
)
/*++
Routine Description:
This routine computes whether or not the given volume is suitable
for a regenerate operation.
Arguments:
MemberNumber - Supplies the member number.
Volume - Supplies the volume.
Return Value:
FALSE - The volume is not suitable.
TRUE - The volume is suitable.
--*/
{
KIRQL irql;
if (Volume->QueryVolumeSize() < _memberSize) {
return FALSE;
}
KeAcquireSpinLock(&_spinLock, &irql);
if (!_syncOk ||
_state.IsInitializing ||
_state.UnhealthyMemberState != FtMemberOrphaned ||
_state.UnhealthyMemberNumber != MemberNumber) {
KeReleaseSpinLock(&_spinLock, irql);
return FALSE;
}
KeReleaseSpinLock(&_spinLock, irql);
return TRUE;
}
VOID
STRIPE_WP::NewStateArrival(
IN PVOID NewStateInstance
)
/*++
Routine Description:
This routine takes the new state instance arrival combined with its
current state to come up with the new current state for the volume.
If the two states cannot be reconciled then this routine returns FALSE
indicating that the volume is invalid and should be broken into its
constituant parts.
Arguments:
NewStateInstance - Supplies the new state instance.
Return Value:
None.
--*/
{
BOOLEAN changed = FALSE;
BOOLEAN severeInconsistency = FALSE;
PFT_MIRROR_AND_SWP_STATE_INFORMATION state;
state = (PFT_MIRROR_AND_SWP_STATE_INFORMATION) NewStateInstance;
if (state->IsDirty) {
if (!_state.IsDirty) {
_originalDirtyBit = _state.IsDirty = state->IsDirty;
changed = TRUE;
}
}
if (state->IsInitializing) {
if (_state.UnhealthyMemberState == FtMemberHealthy) {
if (!_state.IsInitializing) {
_state.IsInitializing = TRUE;
changed = TRUE;
}
} else {
severeInconsistency = TRUE;
}
} else if (state->UnhealthyMemberState != FtMemberHealthy) {
if (state->UnhealthyMemberNumber >= QueryNumMembers()) {
severeInconsistency = TRUE;
} else if (_state.IsInitializing) {
severeInconsistency = TRUE;
} else if (_state.UnhealthyMemberState == FtMemberHealthy) {
_state.UnhealthyMemberState = state->UnhealthyMemberState;
_state.UnhealthyMemberNumber = state->UnhealthyMemberNumber;
changed = TRUE;
} else if (_state.UnhealthyMemberNumber == state->UnhealthyMemberNumber) {
if (state->UnhealthyMemberState == FtMemberOrphaned) {
if (_state.UnhealthyMemberState != FtMemberOrphaned) {
_state.UnhealthyMemberState = FtMemberOrphaned;
changed = TRUE;
}
}
} else {
severeInconsistency = TRUE;
}
}
if (severeInconsistency) {
_state.IsInitializing = TRUE;
_state.UnhealthyMemberState = FtMemberHealthy;
changed = TRUE;
FtpLogError(_rootExtension, QueryLogicalDiskId(),
FT_SWP_STATE_CORRUPTION, STATUS_SUCCESS,
0);
}
if (changed) {
PropogateStateChanges(NULL, NULL);
}
}
BOOLEAN
STRIPE_WP::QueryVolumeState(
IN PFT_VOLUME Volume,
OUT PFT_MEMBER_STATE State
)
/*++
Routine Description:
This routine returns the state of the given volume considered as a
member of this volume.
Arguments:
Volume - Supplies the volume to query the state for.
State - Returns the state.
Return Value:
FALSE - The given Volume is not a member of this volume.
TRUE - The state was successfully computed.
--*/
{
USHORT n, i;
PFT_VOLUME vol;
KIRQL irql;
FT_MEMBER_STATE state;
n = QueryNumMembers();
for (i = 0; i < n; i++) {
vol = GetMember(i);
if (!vol) {
continue;
}
if (!vol->QueryVolumeState(Volume, State)) {
continue;
}
KeAcquireSpinLock(&_spinLock, &irql);
state = QueryMemberState(i);
if (state != FtMemberHealthy) {
if (*State != FtMemberOrphaned) {
*State = state;
}
}
KeReleaseSpinLock(&_spinLock, irql);
return TRUE;
}
return FALSE;
}
STRIPE_WP::STRIPE_WP(
)
/*++
Routine Description:
Constructor.
Arguments:
None.
Return Value:
None.
--*/
{
_ePacket = NULL;
_eRegeneratePacket = NULL;
_eRecoverPacket = NULL;
}
STRIPE_WP::~STRIPE_WP(
)
/*++
Routine Description:
Routine called to cleanup resources being used by the object.
Arguments:
None.
Return Value:
None.
--*/
{
if (_ePacket) {
delete _ePacket;
_ePacket = NULL;
}
if (_eRegeneratePacket) {
delete _eRegeneratePacket;
_eRegeneratePacket = NULL;
}
if (_eRecoverPacket) {
delete _eRecoverPacket;
_eRecoverPacket = NULL;
}
}
BOOLEAN
STRIPE_WP::SetMemberState(
IN USHORT MemberNumber,
IN FT_MEMBER_STATE MemberState
)
/*++
Routine Description:
This routine sets the given member to the given state.
Arguments:
MemberNumber - Supplies the member number.
MemberState - Supplies the member state.
Return Value:
FALSE - There was no state change.
TRUE - A state change took place.
Notes:
The caller must be holding the class spin lock.
--*/
{
if (_state.IsInitializing) {
return FALSE;
}
if (_state.UnhealthyMemberState == FtMemberHealthy) {
if (MemberNumber >= QueryNumMembers()) {
KeBugCheckEx(FTDISK_INTERNAL_ERROR, (ULONG_PTR) this,
MemberNumber, MemberState, 0);
}
_state.UnhealthyMemberNumber = MemberNumber;
_state.UnhealthyMemberState = MemberState;
return TRUE;
}
if (_state.UnhealthyMemberNumber == MemberNumber &&
_state.UnhealthyMemberState != MemberState) {
_state.UnhealthyMemberState = MemberState;
return TRUE;
}
return FALSE;
}
VOID
StripeWpParallelTransferCompletionRoutine(
IN PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
Completion routine for STRIPE_WP::Transfer function.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = (PSTRIPE_WP) transferPacket->StripeWithParity;
PTRANSFER_PACKET masterPacket = transferPacket->MasterPacket;
NTSTATUS status = transferPacket->IoStatus.Status;
KIRQL irql;
PLIST_ENTRY l;
PTRANSFER_PACKET p;
LONG count;
BOOLEAN b, serviceQueue;
PSWP_WRITE_TP writePacket;
if (NT_SUCCESS(status)) {
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Information +=
transferPacket->IoStatus.Information;
}
if (transferPacket->OneReadFailed &&
FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
}
} else {
// Should we orphan the drive?
if (transferPacket->ReadPacket &&
!transferPacket->OneReadFailed &&
status != STATUS_VERIFY_REQUIRED) {
if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 4);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL,
NULL);
}
t->RegeneratePacket(transferPacket, TRUE);
return;
}
// Is this something that we should retry for bad sectors?
if (transferPacket->Mdl) {
transferPacket->OneReadFailed = TRUE;
t->Recover(transferPacket, TRUE);
return;
}
}
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
}
count = --masterPacket->RefCount;
KeReleaseSpinLock(&masterPacket->SpinLock, irql);
serviceQueue = FALSE;
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_ePacketInUse && !t->_ePacketQueueBeingServiced) {
t->_ePacketQueueBeingServiced = TRUE;
serviceQueue = TRUE;
}
KeReleaseSpinLock(&t->_spinLock, irql);
delete transferPacket;
if (!count) {
masterPacket->CompletionRoutine(masterPacket);
}
if (serviceQueue) {
for (;;) {
KeAcquireSpinLock(&t->_spinLock, &irql);
if (IsListEmpty(&t->_ePacketQueue)) {
t->_ePacketQueueBeingServiced = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
break;
}
l = RemoveHeadList(&t->_ePacketQueue);
KeReleaseSpinLock(&t->_spinLock, irql);
p = CONTAINING_RECORD(l, TRANSFER_PACKET, QueueEntry);
if (!t->LaunchParallel(p)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_ePacketInUse) {
InsertHeadList(&t->_ePacketQueue, l);
t->_ePacketQueueBeingServiced = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
} else {
t->_ePacketInUse = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
t->LaunchSequential(p);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (!t->_ePacketInUse) {
KeReleaseSpinLock(&t->_spinLock, irql);
continue;
}
t->_ePacketQueueBeingServiced = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
}
break;
}
}
}
}
BOOLEAN
STRIPE_WP::LaunchParallel(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine launches a transfer packet in parallel accross the
stripe members.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
FALSE - Insufficient resources.
TRUE - Success.
--*/
{
LONGLONG offset, whichStripe, whichRow, off;
ULONG length, stripeRemainder, numRequests, arraySize;
USHORT whichMember, parityStripe;
ULONG len;
PSWP_TP p;
ULONG i;
PCHAR vp;
LIST_ENTRY q;
PLIST_ENTRY l;
// Compute the number of pieces for this transfer.
offset = TransferPacket->Offset;
length = TransferPacket->Length;
stripeRemainder = _stripeSize - (ULONG) (offset%_stripeSize);
if (length > stripeRemainder) {
length -= stripeRemainder;
numRequests = length/_stripeSize;
length -= numRequests*_stripeSize;
if (length) {
numRequests += 2;
} else {
numRequests++;
}
} else {
numRequests = 1;
}
KeInitializeSpinLock(&TransferPacket->SpinLock);
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = 0;
TransferPacket->RefCount = numRequests;
length = TransferPacket->Length;
if (TransferPacket->Mdl && numRequests > 1) {
vp = (PCHAR) MmGetMdlVirtualAddress(TransferPacket->Mdl);
}
whichStripe = offset/_stripeSize;
arraySize = QueryNumMembers();
InitializeListHead(&q);
for (i = 0; i < numRequests; i++, whichStripe++) {
whichRow = whichStripe/(arraySize - 1);
whichMember = (USHORT) (whichStripe%(arraySize - 1));
parityStripe = (USHORT) (whichRow%arraySize);
if (whichMember >= parityStripe) {
whichMember++;
}
if (i == 0) {
off = whichRow*_stripeSize + offset%_stripeSize;
len = stripeRemainder > length ? length : stripeRemainder;
} else if (i == numRequests - 1) {
off = whichRow*_stripeSize;
len = length;
} else {
off = whichRow*_stripeSize;
len = _stripeSize;
}
length -= len;
if (TransferPacket->ReadPacket) {
p = new SWP_TP;
} else {
p = new SWP_WRITE_TP;
if (p && !((PSWP_WRITE_TP) p)->AllocateMdls(len)) {
delete p;
p = NULL;
}
}
if (p) {
if (TransferPacket->Mdl && numRequests > 1) {
if (p->AllocateMdl(vp, len)) {
IoBuildPartialMdl(TransferPacket->Mdl, p->Mdl, vp, len);
} else {
delete p;
p = NULL;
}
vp += len;
} else {
p->Mdl = TransferPacket->Mdl;
}
}
if (!p) {
while (!IsListEmpty(&q)) {
l = RemoveHeadList(&q);
p = CONTAINING_RECORD(l, SWP_TP, QueueEntry);
delete p;
}
return FALSE;
}
p->Length = len;
p->Offset = off;
p->CompletionRoutine = StripeWpParallelTransferCompletionRoutine;
p->Thread = TransferPacket->Thread;
p->IrpFlags = TransferPacket->IrpFlags;
p->ReadPacket = TransferPacket->ReadPacket;
p->MasterPacket = TransferPacket;
p->StripeWithParity = this;
p->WhichMember = whichMember;
p->SavedCompletionRoutine = StripeWpParallelTransferCompletionRoutine;
p->OneReadFailed = FALSE;
InsertTailList(&q, &p->QueueEntry);
}
while (!IsListEmpty(&q)) {
l = RemoveHeadList(&q);
p = CONTAINING_RECORD(l, SWP_TP, QueueEntry);
ASSERT(p->ReadPacket == TransferPacket->ReadPacket);
if (p->ReadPacket) {
ReadPacket(p);
} else {
WritePacket((PSWP_WRITE_TP) p);
}
}
return TRUE;
}
VOID
StripeWpSequentialTransferCompletionRoutine(
IN PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
Completion routine for STRIPE::Transfer function.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PTRANSFER_PACKET masterPacket = transferPacket->MasterPacket;
NTSTATUS status = transferPacket->IoStatus.Status;
PSTRIPE_WP t = transferPacket->StripeWithParity;
LONGLONG rowNumber, stripeNumber, masterOffset;
KIRQL irql;
PLIST_ENTRY l;
PTRANSFER_PACKET p;
USHORT parityStripe;
BOOLEAN b;
PSWP_WRITE_TP writePacket;
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Information +=
transferPacket->IoStatus.Information;
}
if (transferPacket->OneReadFailed &&
FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
}
} else {
// Should we orphan the drive?
if (transferPacket->ReadPacket &&
!transferPacket->OneReadFailed &&
status != STATUS_VERIFY_REQUIRED) {
if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 5);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL,
NULL);
}
t->RegeneratePacket(transferPacket, TRUE);
return;
}
// Is this something that we should retry for bad sectors.
if (transferPacket->Mdl) {
transferPacket->OneReadFailed = TRUE;
t->Recover(transferPacket, TRUE);
return;
}
}
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
}
MmPrepareMdlForReuse(transferPacket->Mdl);
t->_overlappedIoManager.ReleaseIoRegion(transferPacket);
rowNumber = transferPacket->Offset/t->_stripeSize;
parityStripe = (USHORT) rowNumber%t->QueryNumMembers();
stripeNumber = rowNumber*(t->QueryNumMembers() - 1) +
transferPacket->WhichMember;
if (transferPacket->WhichMember > parityStripe) {
stripeNumber--;
}
masterOffset = stripeNumber*t->_stripeSize +
transferPacket->Offset%t->_stripeSize +
transferPacket->Length;
if (masterOffset == masterPacket->Offset + masterPacket->Length) {
masterPacket->CompletionRoutine(masterPacket);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_ePacketQueueBeingServiced) {
t->_ePacketInUse = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
return;
}
t->_ePacketQueueBeingServiced = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
for (;;) {
KeAcquireSpinLock(&t->_spinLock, &irql);
if (IsListEmpty(&t->_ePacketQueue)) {
t->_ePacketInUse = FALSE;
t->_ePacketQueueBeingServiced = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
break;
}
l = RemoveHeadList(&t->_ePacketQueue);
KeReleaseSpinLock(&t->_spinLock, irql);
p = CONTAINING_RECORD(l, TRANSFER_PACKET, QueueEntry);
if (!t->LaunchParallel(p)) {
t->LaunchSequential(p);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (!t->_ePacketInUse) {
KeReleaseSpinLock(&t->_spinLock, irql);
continue;
}
t->_ePacketQueueBeingServiced = FALSE;
KeReleaseSpinLock(&t->_spinLock, irql);
break;
}
}
return;
}
transferPacket->WhichMember++;
if (transferPacket->WhichMember == t->QueryNumMembers()) {
transferPacket->WhichMember = 0;
rowNumber++;
} else if (transferPacket->WhichMember == parityStripe) {
transferPacket->WhichMember++;
if (transferPacket->WhichMember == t->QueryNumMembers()) {
transferPacket->WhichMember = 1;
rowNumber++;
}
}
transferPacket->Offset = rowNumber*t->_stripeSize;
transferPacket->Length = t->_stripeSize;
if (masterOffset + transferPacket->Length >
masterPacket->Offset + masterPacket->Length) {
transferPacket->Length = (ULONG) (masterPacket->Offset +
masterPacket->Length - masterOffset);
}
IoBuildPartialMdl(masterPacket->Mdl, transferPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (masterOffset - masterPacket->Offset),
transferPacket->Length);
if (transferPacket->ReadPacket) {
t->ReadPacket(transferPacket);
} else {
t->WritePacket((PSWP_WRITE_TP) transferPacket);
}
}
VOID
STRIPE_WP::LaunchSequential(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine launches a transfer packet sequentially accross the
stripe members using the emergency packet.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
FALSE - Insufficient resources.
TRUE - Success.
--*/
{
PSWP_WRITE_TP p;
LONGLONG offset, whichStripe, whichRow, o;
USHORT whichMember, arraySize, parityStripe;
ULONG l, stripeRemainder;
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = 0;
offset = TransferPacket->Offset;
p = _ePacket;
arraySize = QueryNumMembers();
stripeRemainder = _stripeSize - (ULONG) (offset%_stripeSize);
whichStripe = offset/_stripeSize;
whichRow = whichStripe/(arraySize - 1);
whichMember = (USHORT) (whichStripe%(arraySize - 1));
parityStripe = (USHORT) (whichRow%arraySize);
if (whichMember >= parityStripe) {
whichMember++;
}
o = whichRow*_stripeSize + offset%_stripeSize;
l = stripeRemainder;
if (l > TransferPacket->Length) {
l = TransferPacket->Length;
}
IoBuildPartialMdl(TransferPacket->Mdl, p->Mdl,
MmGetMdlVirtualAddress(TransferPacket->Mdl), l);
p->Length = l;
p->Offset = o;
p->CompletionRoutine = StripeWpSequentialTransferCompletionRoutine;
p->Thread = TransferPacket->Thread;
p->IrpFlags = TransferPacket->IrpFlags;
p->ReadPacket = TransferPacket->ReadPacket;
p->MasterPacket = TransferPacket;
p->StripeWithParity = this;
p->WhichMember = whichMember;
p->SavedCompletionRoutine = StripeWpSequentialTransferCompletionRoutine;
p->OneReadFailed = FALSE;
if (p->ReadPacket) {
ReadPacket(p);
} else {
WritePacket(p);
}
}
VOID
STRIPE_WP::ReadPacket(
IN OUT PSWP_TP TransferPacket
)
/*++
Routine Description:
This routine takes a packet that is restricted to a single
stripe region and reads that data.
Arguments:
TransferPacket - Supplies the main read packet.
Return Value:
None.
--*/
{
PTRANSFER_PACKET masterPacket = TransferPacket->MasterPacket;
KIRQL irql;
TransferPacket->TargetVolume = GetMemberUnprotected(TransferPacket->WhichMember);
KeAcquireSpinLock(&_spinLock, &irql);
if (QueryMemberState(TransferPacket->WhichMember) != FtMemberHealthy ||
masterPacket->SpecialRead == TP_SPECIAL_READ_SECONDARY) {
KeReleaseSpinLock(&_spinLock, irql);
RegeneratePacket(TransferPacket, TRUE);
} else {
KeReleaseSpinLock(&_spinLock, irql);
TRANSFER(TransferPacket);
}
}
VOID
StripeWpWritePhase31(
IN OUT PTRANSFER_PACKET Packet
)
/*++
Routine Description:
This is the completion routine for the final data write and the
final parity write of the write process. This packet's master packet
is the original write packet. This write packet exists because the data
has to be copied from the original write packet so that parity
may be correctly computed.
Arguments:
Packet - Supplies the update parity packet.
Return Value:
None.
--*/
{
PSWP_WRITE_TP masterPacket;
PSTRIPE_WP t;
KIRQL irql;
LONG count;
masterPacket = CONTAINING_RECORD(Packet, SWP_WRITE_TP, ParityPacket);
t = masterPacket->StripeWithParity;
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
count = --masterPacket->RefCount;
KeReleaseSpinLock(&masterPacket->SpinLock, irql);
if (!count) {
t->CompleteWrite(masterPacket);
}
}
VOID
StripeWpWritePhase30(
IN OUT PTRANSFER_PACKET Packet
)
/*++
Routine Description:
This is the completion routine for the final data write and the
final parity write of the write process. This packet's master packet
is the original write packet. This write packet exists because the data
has to be copied from the original write packet so that parity
may be correctly computed.
Arguments:
Packet - Supplies the write packet.
Return Value:
None.
--*/
{
PSWP_TP writePacket = (PSWP_TP) Packet;
PSWP_WRITE_TP masterPacket = (PSWP_WRITE_TP) writePacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
KIRQL irql;
LONG count;
BOOLEAN b;
PPARITY_TP parityPacket;
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
count = --masterPacket->RefCount;
b = (masterPacket->IrpFlags&SL_FT_SEQUENTIAL_WRITE) ? TRUE : FALSE;
KeReleaseSpinLock(&masterPacket->SpinLock, irql);
if (count) {
if (b) {
parityPacket = &masterPacket->ParityPacket;
t->_parityIoManager.UpdateParity(parityPacket);
}
} else {
t->CompleteWrite(masterPacket);
}
}
VOID
StripeWpWriteRecover(
IN OUT PTRANSFER_PACKET MasterPacket
)
/*++
Routine Description:
A bad sector on a read before write caused a promote to all members
in preparation for a recover.
Arguments:
TransferPacket - Supplies the master write packet.
Return Value:
None.
--*/
{
PSWP_WRITE_TP masterPacket = (PSWP_WRITE_TP) MasterPacket;
PSWP_TP readPacket = &masterPacket->ReadWritePacket;
PSTRIPE_WP t = (PSTRIPE_WP) readPacket->StripeWithParity;
masterPacket->CompletionRoutine = masterPacket->SavedCompletionRoutine;
readPacket->CompletionRoutine = StripeWpWritePhase2;
t->Recover(readPacket, FALSE);
}
VOID
StripeWpWritePhase2(
IN OUT PTRANSFER_PACKET ReadPacket
)
/*++
Routine Description:
This routine describes phase 3 of the write process. The region
that we are about to write has been preread. If the read was
successful then queue write and parity requests. If the read
was not successful then propogate the error and cleanup.
Arguments:
TransferPacket - Supplies the read packet.
Return Value:
None.
--*/
{
PSWP_TP readPacket = (PSWP_TP) ReadPacket;
PSTRIPE_WP t = readPacket->StripeWithParity;
PSWP_WRITE_TP masterPacket = (PSWP_WRITE_TP) readPacket->MasterPacket;
PPARITY_TP parityPacket = &masterPacket->ParityPacket;
PSWP_TP writePacket = &masterPacket->ReadWritePacket;
NTSTATUS status;
KIRQL irql;
FT_PARTITION_STATE state;
BOOLEAN b;
status = readPacket->IoStatus.Status;
if (!NT_SUCCESS(status)) {
if (!readPacket->OneReadFailed && status != STATUS_VERIFY_REQUIRED) {
if (FsRtlIsTotalDeviceFailure(status)) {
// Orphan this unit and then try again with a regenerate.
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(readPacket->WhichMember, FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 6);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL,
NULL);
}
readPacket->OneReadFailed = TRUE;
masterPacket->CompletionRoutine = StripeWpWritePhase1;
t->_overlappedIoManager.PromoteToAllMembers(masterPacket);
return;
}
// Bad sector case.
readPacket->OneReadFailed = TRUE;
masterPacket->SavedCompletionRoutine = masterPacket->CompletionRoutine;
masterPacket->CompletionRoutine = StripeWpWriteRecover;
t->_overlappedIoManager.PromoteToAllMembers(masterPacket);
return;
}
masterPacket->IoStatus = readPacket->IoStatus;
masterPacket->CompletionRoutine(masterPacket);
return;
}
KeInitializeSpinLock(&masterPacket->SpinLock);
masterPacket->IoStatus.Status = STATUS_SUCCESS;
masterPacket->IoStatus.Information = 0;
writePacket->Mdl = masterPacket->WriteMdl;
writePacket->CompletionRoutine = StripeWpWritePhase30;
writePacket->ReadPacket = FALSE;
parityPacket->Mdl = masterPacket->ReadAndParityMdl;
parityPacket->CompletionRoutine = StripeWpWritePhase31;
if (masterPacket->TargetState != FtMemberOrphaned) {
RtlCopyMemory(MmGetSystemAddressForMdl(writePacket->Mdl),
MmGetSystemAddressForMdl(masterPacket->Mdl),
writePacket->Length);
if (parityPacket->TargetVolume) {
FtpComputeParity(MmGetSystemAddressForMdl(parityPacket->Mdl),
MmGetSystemAddressForMdl(writePacket->Mdl),
parityPacket->Length);
masterPacket->RefCount = 2;
if (!(masterPacket->IrpFlags&SL_FT_SEQUENTIAL_WRITE)) {
t->_parityIoManager.UpdateParity(parityPacket);
}
} else {
masterPacket->RefCount = 1;
parityPacket->IoStatus.Status = STATUS_SUCCESS;
parityPacket->IoStatus.Information = parityPacket->Length;
}
TRANSFER(writePacket);
} else if (parityPacket->TargetVolume) {
FtpComputeParity(MmGetSystemAddressForMdl(parityPacket->Mdl),
MmGetSystemAddressForMdl(masterPacket->Mdl),
readPacket->Length);
masterPacket->RefCount = 1;
writePacket->IoStatus.Status = STATUS_SUCCESS;
writePacket->IoStatus.Information = writePacket->Length;
t->_parityIoManager.UpdateParity(parityPacket);
} else {
masterPacket->IoStatus.Status = STATUS_NO_SUCH_DEVICE;
masterPacket->IoStatus.Information = 0;
masterPacket->CompletionRoutine(masterPacket);
}
}
VOID
StripeWpWritePhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine describes phase 2 of the write process. This io
region has been acquired. We now send out the read packet and
wait until it completes.
Arguments:
TransferPacket - Supplies the main write packet.
Return Value:
None.
--*/
{
PSWP_WRITE_TP transferPacket = (PSWP_WRITE_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
PSWP_TP readPacket;
PPARITY_TP parityPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
parityPacket = &transferPacket->ParityPacket;
if (parityPacket->TargetVolume) {
t->_parityIoManager.StartReadForUpdateParity(
parityPacket->Offset, parityPacket->Length,
parityPacket->TargetVolume, parityPacket->Thread,
parityPacket->IrpFlags);
}
readPacket = &transferPacket->ReadWritePacket;
readPacket->CompletionRoutine = StripeWpWritePhase2;
if (readPacket->OneReadFailed) {
t->RegeneratePacket(readPacket, FALSE);
} else {
TRANSFER(readPacket);
}
}
VOID
STRIPE_WP::WritePacket(
IN OUT PSWP_WRITE_TP TransferPacket
)
/*++
Routine Description:
This routine takes a packet that is restricted to a single
stripe region and writes out that data along with the parity.
Arguments:
TransferPacket - Supplies the main write packet.
Return Value:
None.
--*/
{
USHORT parityMember;
KIRQL irql;
FT_MEMBER_STATE state, parityState;
PSWP_TP readPacket;
PPARITY_TP parityPacket;
parityMember = (USHORT) ((TransferPacket->Offset/_stripeSize)%
QueryNumMembers());
TransferPacket->TargetVolume =
GetMemberUnprotected(TransferPacket->WhichMember);
KeAcquireSpinLock(&_spinLock, &irql);
state = QueryMemberState(TransferPacket->WhichMember);
parityState = QueryMemberState(parityMember);
KeReleaseSpinLock(&_spinLock, irql);
readPacket = &TransferPacket->ReadWritePacket;
readPacket->Mdl = TransferPacket->ReadAndParityMdl;
readPacket->Length = TransferPacket->Length;
readPacket->Offset = TransferPacket->Offset;
readPacket->TargetVolume = TransferPacket->TargetVolume;
readPacket->Thread = TransferPacket->Thread;
readPacket->IrpFlags = TransferPacket->IrpFlags;
readPacket->ReadPacket = TRUE;
readPacket->MasterPacket = TransferPacket;
readPacket->StripeWithParity = this;
readPacket->WhichMember = TransferPacket->WhichMember;
readPacket->OneReadFailed = FALSE;
parityPacket = &TransferPacket->ParityPacket;
parityPacket->Length = TransferPacket->Length;
parityPacket->Offset = TransferPacket->Offset;
if (parityState != FtMemberOrphaned) {
parityPacket->TargetVolume = GetMemberUnprotected(parityMember);
} else {
parityPacket->TargetVolume = NULL;
}
parityPacket->Thread = TransferPacket->Thread;
parityPacket->IrpFlags = TransferPacket->IrpFlags;
parityPacket->ReadPacket = FALSE;
TransferPacket->CompletionRoutine = StripeWpWritePhase1;
TransferPacket->TargetState = state;
TransferPacket->ParityMember = parityMember;
if (state == FtMemberHealthy) {
if (TransferPacket->IrpFlags&SL_FT_SEQUENTIAL_WRITE) {
_overlappedIoManager.AcquireIoRegion(TransferPacket, TRUE);
} else {
_overlappedIoManager.AcquireIoRegion(TransferPacket, FALSE);
}
} else {
readPacket->OneReadFailed = TRUE;
_overlappedIoManager.AcquireIoRegion(TransferPacket, TRUE);
}
}
VOID
StripeWpSequentialRegenerateCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a regenerate operation where all of
the reads are being performed sequentially.
Arguments:
TransferPacket - Supplies the completed transfer packet.
Return Value:
None.
--*/
{
PSWP_REGENERATE_TP transferPacket = (PSWP_REGENERATE_TP) TransferPacket;
PSWP_TP masterPacket = transferPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = transferPacket->IoStatus.Status;
KIRQL irql;
ULONG count;
PLIST_ENTRY l;
PTRANSFER_PACKET packet;
USHORT i, n;
BOOLEAN b;
ULONG parityMember;
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus = transferPacket->IoStatus;
}
} else {
if (FsRtlIsTotalDeviceFailure(status) &&
status != STATUS_VERIFY_REQUIRED) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 7);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
}
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
}
count = (ULONG) (--masterPacket->RefCount);
if (masterPacket->Mdl) {
FtpComputeParity(MmGetSystemAddressForMdl(masterPacket->Mdl),
MmGetSystemAddressForMdl(transferPacket->Mdl),
masterPacket->Length);
}
n = t->QueryNumMembers();
if (count) {
transferPacket->WhichMember++;
if (transferPacket->WhichMember == masterPacket->WhichMember) {
transferPacket->WhichMember++;
}
transferPacket->TargetVolume = t->GetMemberUnprotected(
transferPacket->WhichMember);
TRANSFER(transferPacket);
return;
}
masterPacket->CompletionRoutine(masterPacket);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (IsListEmpty(&t->_eRegeneratePacketQueue)) {
t->_eRegeneratePacketInUse = FALSE;
packet = NULL;
} else {
l = RemoveHeadList(&t->_eRegeneratePacketQueue);
packet = CONTAINING_RECORD(l, SWP_TP, QueueEntry);
}
KeReleaseSpinLock(&t->_spinLock, irql);
if (packet) {
packet->CompletionRoutine(packet);
}
}
VOID
StripeWpSequentialEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine after waiting for an emergency
regenerate buffer.
Arguments:
TransferPacket - Supplies the completed transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
PSWP_REGENERATE_TP p = t->_eRegeneratePacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
p->Length = transferPacket->Length;
p->Offset = transferPacket->Offset;
p->CompletionRoutine = StripeWpSequentialRegenerateCompletion;
p->TargetVolume = t->GetMemberUnprotected(0);
p->Thread = transferPacket->Thread;
p->IrpFlags = transferPacket->IrpFlags;
p->ReadPacket = TRUE;
p->MasterPacket = transferPacket;
p->WhichMember = 0;
if (transferPacket->TargetVolume == p->TargetVolume) {
p->WhichMember = 1;
p->TargetVolume = t->GetMemberUnprotected(1);
}
TRANSFER(p);
}
VOID
StripeWpParallelRegenerateCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a regenerate operation where all of
the reads are being performed in parallel.
Arguments:
TransferPacket - Supplies the completed transfer packet.
Return Value:
None.
--*/
{
PSWP_REGENERATE_TP transferPacket = (PSWP_REGENERATE_TP) TransferPacket;
PSWP_TP masterPacket = transferPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = transferPacket->IoStatus.Status;
KIRQL irql;
LONG count;
PLIST_ENTRY l, s;
PTRANSFER_PACKET packet;
PVOID target, source;
BOOLEAN b;
USHORT i, n;
if (NT_SUCCESS(status)) {
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus = transferPacket->IoStatus;
}
} else {
if (FsRtlIsTotalDeviceFailure(status) &&
status != STATUS_VERIFY_REQUIRED) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(transferPacket->WhichMember,
FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 8);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
}
KeAcquireSpinLock(&masterPacket->SpinLock, &irql);
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
}
count = --masterPacket->RefCount;
KeReleaseSpinLock(&masterPacket->SpinLock, irql);
if (count) {
return;
}
s = &masterPacket->QueueEntry;
l = RemoveHeadList(s);
packet = CONTAINING_RECORD(l, SWP_REGENERATE_TP, RegenPacketList);
if (masterPacket->Mdl) {
target = MmGetSystemAddressForMdl(masterPacket->Mdl);
source = MmGetSystemAddressForMdl(packet->Mdl);
RtlCopyMemory(target, source, masterPacket->Length);
}
for (;;) {
delete packet;
if (IsListEmpty(s)) {
break;
}
l = RemoveHeadList(s);
packet = CONTAINING_RECORD(l, SWP_REGENERATE_TP, RegenPacketList);
if (masterPacket->Mdl) {
source = MmGetSystemAddressForMdl(packet->Mdl);
FtpComputeParity(target, source, masterPacket->Length);
}
}
masterPacket->CompletionRoutine(masterPacket);
}
VOID
StripeWpRegeneratePacketPhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is called after the io regions necessary for a regenerate
have been allocated. This routine spawns the reads necessary for
regeneration.
Arguments:
TransferPacket - Supplies the main write packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
USHORT i, n;
PSWP_REGENERATE_TP packet;
BOOLEAN sequential;
PLIST_ENTRY l, s;
ULONG r;
ULONG parityMember;
KIRQL irql;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
// Determine whether we're going to do this in parallel or
// sequentially by trying to allocate the memory.
n = t->QueryNumMembers();
InitializeListHead(&transferPacket->QueueEntry);
for (i = 0; i < n; i++) {
if (i == transferPacket->WhichMember) {
continue;
}
packet = new SWP_REGENERATE_TP;
if (packet && !packet->AllocateMdl(transferPacket->Length)) {
delete packet;
packet = NULL;
}
if (!packet) {
break;
}
packet->Length = transferPacket->Length;
packet->Offset = transferPacket->Offset;
packet->CompletionRoutine = StripeWpParallelRegenerateCompletion;
packet->TargetVolume = t->GetMemberUnprotected(i);
packet->Thread = transferPacket->Thread;
packet->IrpFlags = transferPacket->IrpFlags;
packet->ReadPacket = TRUE;
packet->MasterPacket = transferPacket;
packet->WhichMember = i;
InsertTailList(&transferPacket->QueueEntry, &packet->RegenPacketList);
}
if (i < n) {
sequential = TRUE;
s = &transferPacket->QueueEntry;
while (!IsListEmpty(s)) {
l = RemoveHeadList(s);
packet = CONTAINING_RECORD(l, SWP_REGENERATE_TP, RegenPacketList);
delete packet;
}
} else {
sequential = FALSE;
}
KeInitializeSpinLock(&transferPacket->SpinLock);
transferPacket->IoStatus.Status = STATUS_SUCCESS;
transferPacket->IoStatus.Information = 0;
transferPacket->RefCount = n - 1;
if (sequential) {
transferPacket->CompletionRoutine = StripeWpSequentialEmergencyCompletion;
RtlZeroMemory(MmGetSystemAddressForMdl(transferPacket->Mdl),
transferPacket->Length);
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_eRegeneratePacketInUse) {
InsertTailList(&t->_eRegeneratePacketQueue, &transferPacket->QueueEntry);
KeReleaseSpinLock(&t->_spinLock, irql);
return;
}
t->_eRegeneratePacketInUse = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
transferPacket->CompletionRoutine(transferPacket);
} else {
s = &transferPacket->QueueEntry;
l = s->Flink;
for (;;) {
packet = CONTAINING_RECORD(l, SWP_REGENERATE_TP, RegenPacketList);
l = l->Flink;
if (l == s) {
TRANSFER(packet);
break;
}
TRANSFER(packet);
}
}
}
VOID
STRIPE_WP::RegeneratePacket(
IN OUT PSWP_TP TransferPacket,
IN BOOLEAN AllocateRegion
)
/*++
Routine Description:
This routine regenerate the given transfer packet by reading
from the other drives and performing the xor. This routine first
attempts to do all of the read concurently but if the memory is
not available then the reads are done sequentially.
Arguments:
TransferPacket - Supplies the transfer packet to regenerate.
AllocateRegion - Supplies whether or not we need to acquire the
io region via the overlapped io manager before
starting the regenerate operation. This should
usually be set to TRUE unless the region has
already been allocated.
Return Value:
None.
--*/
{
USHORT i, n, parityMember;
KIRQL irql;
PFT_VOLUME vol;
BOOLEAN ok;
TransferPacket->OneReadFailed = TRUE;
// First make sure that all of the members are healthy.
n = QueryNumMembers();
parityMember = (USHORT) ((TransferPacket->Offset/_stripeSize)%n);
KeAcquireSpinLock(&_spinLock, &irql);
if (_state.IsInitializing) {
if (parityMember == TransferPacket->WhichMember) {
ok = TRUE;
} else {
ok = FALSE;
}
} else if (_state.UnhealthyMemberState == FtMemberHealthy ||
_state.UnhealthyMemberNumber == TransferPacket->WhichMember) {
ok = TRUE;
} else {
ok = FALSE;
}
KeReleaseSpinLock(&_spinLock, irql);
if (!ok) {
TransferPacket->IoStatus.Status = STATUS_NO_SUCH_DEVICE;
TransferPacket->IoStatus.Information = 0;
TransferPacket->CompletionRoutine(TransferPacket);
return;
}
TransferPacket->SavedCompletionRoutine = TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = StripeWpRegeneratePacketPhase1;
if (AllocateRegion) {
_overlappedIoManager.AcquireIoRegion(TransferPacket, TRUE);
} else {
TransferPacket->CompletionRoutine(TransferPacket);
}
}
VOID
StripeWpRecoverPhase8(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector read
of the main member after a write was done to check for
data integrity.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status) ||
RtlCompareMemory(MmGetSystemAddressForMdl(subPacket->PartialMdl),
MmGetSystemAddressForMdl(subPacket->VerifyMdl),
subPacket->Length) != subPacket->Length) {
masterPacket->IoStatus.Status = STATUS_FT_READ_RECOVERY_FROM_BACKUP;
FtpLogError(t->_rootExtension,
subPacket->TargetVolume->QueryLogicalDiskId(),
FT_SECTOR_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
}
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = StripeWpRecoverPhase2;
subPacket->ReadPacket = TRUE;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase7(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector write
of the main member after a replace sector was done.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status)) {
masterPacket->IoStatus.Status = STATUS_FT_READ_RECOVERY_FROM_BACKUP;
FtpLogError(t->_rootExtension,
subPacket->TargetVolume->QueryLogicalDiskId(),
FT_SECTOR_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = StripeWpRecoverPhase2;
subPacket->ReadPacket = TRUE;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
return;
}
subPacket->Mdl = subPacket->VerifyMdl;
subPacket->CompletionRoutine = StripeWpRecoverPhase8;
subPacket->ReadPacket = TRUE;
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase6(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector replace
of the main member.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
if (!NT_SUCCESS(status)) {
masterPacket->IoStatus.Status = STATUS_FT_READ_RECOVERY_FROM_BACKUP;
FtpLogError(t->_rootExtension,
subPacket->TargetVolume->QueryLogicalDiskId(),
FT_SECTOR_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = StripeWpRecoverPhase2;
subPacket->ReadPacket = TRUE;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
return;
}
// We were able to relocate the bad sector so now do a write and
// then read to make sure it's ok.
subPacket->Mdl = subPacket->PartialMdl;
subPacket->CompletionRoutine = StripeWpRecoverPhase7;
subPacket->ReadPacket = FALSE;
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase5(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector read
of the main member after a successful write to check and
see if the write was successful.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status) ||
RtlCompareMemory(MmGetSystemAddressForMdl(subPacket->PartialMdl),
MmGetSystemAddressForMdl(subPacket->VerifyMdl),
subPacket->Length) != subPacket->Length) {
subPacket->Mdl = subPacket->PartialMdl;
subPacket->CompletionRoutine = StripeWpRecoverPhase6;
subPacket->TargetVolume->ReplaceBadSector(subPacket);
return;
}
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Mdl = subPacket->PartialMdl;
subPacket->Offset += subPacket->Length;
subPacket->CompletionRoutine = StripeWpRecoverPhase2;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase4(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector write
of the main member.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (!NT_SUCCESS(status)) {
subPacket->CompletionRoutine = StripeWpRecoverPhase6;
subPacket->TargetVolume->ReplaceBadSector(subPacket);
return;
}
// Write was successful so try a read and then compare.
subPacket->Mdl = subPacket->VerifyMdl;
subPacket->CompletionRoutine = StripeWpRecoverPhase5;
subPacket->ReadPacket = TRUE;
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase3(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector read
of the other member.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
KIRQL irql;
BOOLEAN b;
if (!NT_SUCCESS(status)) {
if (status != STATUS_VERIFY_REQUIRED) {
status = STATUS_DEVICE_DATA_ERROR;
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_DOUBLE_FAILURE, status,
(ULONG) (subPacket->Offset/t->QuerySectorSize()));
}
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
// We have the data required in the subpacket partial mdl.
// Try writting it back to where the read failed and see
// if the sector just fixes itself.
subPacket->CompletionRoutine = StripeWpRecoverPhase4;
subPacket->ReadPacket = FALSE;
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase2(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a single sector transfer
that is part of a larger recover operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
KIRQL irql;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->OneReadFailed = FALSE;
masterPacket->IoStatus = subPacket->IoStatus;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (NT_SUCCESS(status)) {
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
TRANSFER(subPacket);
return;
}
// This read sector failed from a bad sector error. Try
// regenerating the data from the other members.
subPacket->CompletionRoutine = StripeWpRecoverPhase3;
t->RegeneratePacket(subPacket, FALSE);
}
VOID
StripeWpRecoverEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a recover operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
PSWP_RECOVER_TP subPacket = t->_eRecoverPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = StripeWpRecoverPhase2;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = TRUE;
subPacket->MasterPacket = transferPacket;
subPacket->StripeWithParity = t;
subPacket->WhichMember = transferPacket->WhichMember;
TRANSFER(subPacket);
}
VOID
StripeWpRecoverPhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for an acquire io region
to a recover operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
PSWP_RECOVER_TP subPacket;
KIRQL irql;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
transferPacket->IoStatus.Status = STATUS_SUCCESS;
transferPacket->IoStatus.Information = transferPacket->Length;
subPacket = new SWP_RECOVER_TP;
if (subPacket && !subPacket->AllocateMdls(t->QuerySectorSize())) {
delete subPacket;
subPacket = NULL;
}
if (!subPacket) {
KeAcquireSpinLock(&t->_spinLock, &irql);
if (t->_eRecoverPacketInUse) {
transferPacket->SavedCompletionRoutine =
transferPacket->CompletionRoutine;
transferPacket->CompletionRoutine = StripeWpRecoverEmergencyCompletion;
InsertTailList(&t->_eRecoverPacketQueue, &transferPacket->QueueEntry);
KeReleaseSpinLock(&t->_spinLock, irql);
return;
}
t->_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&t->_spinLock, irql);
subPacket = t->_eRecoverPacket;
}
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = StripeWpRecoverPhase2;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = TRUE;
subPacket->MasterPacket = transferPacket;
subPacket->StripeWithParity = t;
subPacket->WhichMember = transferPacket->WhichMember;
TRANSFER(subPacket);
}
VOID
STRIPE_WP::Recover(
IN OUT PSWP_TP TransferPacket,
IN BOOLEAN NeedAcquire
)
{
ASSERT(TransferPacket->ReadPacket);
TransferPacket->SavedCompletionRoutine = TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = StripeWpRecoverPhase1;
if (NeedAcquire) {
_overlappedIoManager.AcquireIoRegion(TransferPacket, TRUE);
} else {
TransferPacket->CompletionRoutine(TransferPacket);
}
}
VOID
StripeWpMaxTransferCompletionRoutine(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine for a sector transfer subordinate
to a MAX transfer operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
NTSTATUS status = subPacket->IoStatus.Status;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->IoStatus = subPacket->IoStatus;
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (subPacket->Offset + subPacket->Length ==
masterPacket->Offset + masterPacket->Length) {
t->RecycleRecoverTp(subPacket);
masterPacket->CompletionRoutine(masterPacket);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
if (subPacket->ReadPacket) {
t->RegeneratePacket(subPacket, FALSE);
} else {
TRANSFER(subPacket);
}
}
VOID
StripeWpMaxTransferEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a max transfer operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
PSWP_RECOVER_TP subPacket = t->_eRecoverPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = StripeWpMaxTransferCompletionRoutine;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = transferPacket->ReadPacket;
subPacket->MasterPacket = transferPacket;
subPacket->StripeWithParity = t;
subPacket->WhichMember = transferPacket->WhichMember;
if (subPacket->ReadPacket) {
t->RegeneratePacket(subPacket, FALSE);
} else {
TRANSFER(subPacket);
}
}
VOID
STRIPE_WP::MaxTransfer(
IN OUT PSWP_TP TransferPacket
)
/*++
Routine Description:
This routine transfers the maximum possible subset of the given transfer
by doing it one sector at a time.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket;
KIRQL irql;
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = TransferPacket->Length;
subPacket = new SWP_RECOVER_TP;
if (subPacket && !subPacket->AllocateMdls(QuerySectorSize())) {
delete subPacket;
subPacket = NULL;
}
if (!subPacket) {
KeAcquireSpinLock(&_spinLock, &irql);
if (_eRecoverPacketInUse) {
TransferPacket->SavedCompletionRoutine =
TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = StripeWpMaxTransferEmergencyCompletion;
InsertTailList(&_eRecoverPacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
subPacket = _eRecoverPacket;
}
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(TransferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(TransferPacket->Mdl),
QuerySectorSize());
subPacket->Length = QuerySectorSize();
subPacket->Offset = TransferPacket->Offset;
subPacket->CompletionRoutine = StripeWpMaxTransferCompletionRoutine;
subPacket->TargetVolume = TransferPacket->TargetVolume;
subPacket->Thread = TransferPacket->Thread;
subPacket->IrpFlags = TransferPacket->IrpFlags;
subPacket->ReadPacket = TransferPacket->ReadPacket;
subPacket->MasterPacket = TransferPacket;
subPacket->StripeWithParity = this;
subPacket->WhichMember = TransferPacket->WhichMember;
if (subPacket->ReadPacket) {
RegeneratePacket(subPacket, FALSE);
} else {
TRANSFER(subPacket);
}
}
VOID
STRIPE_WP::RecycleRecoverTp(
IN OUT PSWP_RECOVER_TP TransferPacket
)
/*++
Routine Description:
This routine recycles the given recover transfer packet and services
the emergency queue if need be.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
KIRQL irql;
PLIST_ENTRY l;
PTRANSFER_PACKET p;
if (TransferPacket != _eRecoverPacket) {
delete TransferPacket;
return;
}
MmPrepareMdlForReuse(_eRecoverPacket->PartialMdl);
KeAcquireSpinLock(&_spinLock, &irql);
if (IsListEmpty(&_eRecoverPacketQueue)) {
_eRecoverPacketInUse = FALSE;
KeReleaseSpinLock(&_spinLock, irql);
return;
}
l = RemoveHeadList(&_eRecoverPacketQueue);
KeReleaseSpinLock(&_spinLock, irql);
p = CONTAINING_RECORD(l, TRANSFER_PACKET, QueueEntry);
p->CompletionRoutine(p);
return;
}
class FTP_SWP_STATE_WORK_ITEM : public WORK_QUEUE_ITEM {
public:
FT_COMPLETION_ROUTINE CompletionRoutine;
PVOID Context;
PSTRIPE_WP StripeWp;
};
typedef FTP_SWP_STATE_WORK_ITEM* PFTP_SWP_STATE_WORK_ITEM;
VOID
StripeWpPropogateStateChangesWorker(
IN PVOID Context
)
/*++
Routine Description:
This routine is a worker thread routine for propogating state changes.
Arguments:
Context - Supplies the context of the worker item
Return Value:
None.
--*/
{
PFTP_SWP_STATE_WORK_ITEM context = (PFTP_SWP_STATE_WORK_ITEM) Context;
PSTRIPE_WP t = context->StripeWp;
KIRQL irql;
FT_MIRROR_AND_SWP_STATE_INFORMATION state;
NTSTATUS status;
FtpAcquire(t->_rootExtension);
KeAcquireSpinLock(&t->_spinLock, &irql);
RtlCopyMemory(&state, &t->_state, sizeof(state));
KeReleaseSpinLock(&t->_spinLock, irql);
status = t->_diskInfoSet->WriteStateInformation(t->QueryLogicalDiskId(),
&state, sizeof(state));
FtpRelease(t->_rootExtension);
if (context->CompletionRoutine) {
context->CompletionRoutine(context->Context, status);
}
}
VOID
STRIPE_WP::PropogateStateChanges(
IN FT_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context
)
/*++
Routine Description:
This routine propogates the changes in the local memory state to
the on disk state.
Arguments:
CompletionRoutine - Supplies the completion routine.
Context - Supplies the completion routine context.
Return Value:
None.
--*/
{
PFTP_SWP_STATE_WORK_ITEM workItem;
workItem = (PFTP_SWP_STATE_WORK_ITEM)
ExAllocatePool(NonPagedPool,
sizeof(FTP_SWP_STATE_WORK_ITEM));
if (!workItem) {
return;
}
ExInitializeWorkItem(workItem, StripeWpPropogateStateChangesWorker,
workItem);
workItem->CompletionRoutine = CompletionRoutine;
workItem->Context = Context;
workItem->StripeWp = this;
FtpQueueWorkItem(_rootExtension, workItem);
}
VOID
StripeWpCompleteWritePhase4(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for a careful update of the parity block.
Arguments:
TransferPacket - Supplies the parity packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSWP_WRITE_TP masterPacket = (PSWP_WRITE_TP) transferPacket->MasterPacket;
NTSTATUS status = transferPacket->IoStatus.Status;
PSTRIPE_WP t = masterPacket->StripeWithParity;
KIRQL irql;
BOOLEAN b;
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus = transferPacket->IoStatus;
}
} else if (status == STATUS_VERIFY_REQUIRED) {
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
} else if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(masterPacket->ParityMember, FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 9);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
} else {
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
}
masterPacket->CompletionRoutine(masterPacket);
}
VOID
StripeWpCompleteWritePhase3(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for a recover of the parity block.
Arguments:
TransferPacket - Supplies the recover packet.
Return Value:
None.
--*/
{
PSWP_TP recoverPacket = (PSWP_TP) TransferPacket;
PSWP_WRITE_TP masterPacket = (PSWP_WRITE_TP) recoverPacket->MasterPacket;
NTSTATUS status = recoverPacket->IoStatus.Status;
PSTRIPE_WP t = masterPacket->StripeWithParity;
KIRQL irql;
BOOLEAN b;
if (status == STATUS_VERIFY_REQUIRED) {
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
masterPacket->CompletionRoutine(masterPacket);
return;
}
if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&t->_spinLock, &irql);
b = t->SetMemberState(recoverPacket->WhichMember, FtMemberOrphaned);
KeReleaseSpinLock(&t->_spinLock, irql);
if (b) {
t->PropogateStateChanges(NULL, NULL);
t->Notify();
FtpLogError(t->_rootExtension, t->QueryLogicalDiskId(),
FT_ORPHANING, STATUS_SUCCESS, 10);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
masterPacket->CompletionRoutine(masterPacket);
return;
}
recoverPacket->CompletionRoutine = StripeWpCompleteWritePhase4;
t->CarefulUpdate(recoverPacket);
}
VOID
StripeWpCompleteWritePhase2(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for the careful write.
Arguments:
TransferPacket - Supplies the write packet.
Return Value:
None.
--*/
{
PSWP_TP writePacket = (PSWP_TP) TransferPacket;
PSWP_WRITE_TP masterPacket = (PSWP_WRITE_TP) writePacket->MasterPacket;
NTSTATUS status = writePacket->IoStatus.Status;
PPARITY_TP parityPacket = &masterPacket->ParityPacket;
PSTRIPE_WP t = masterPacket->StripeWithParity;
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(masterPacket->IoStatus.Status)) {
masterPacket->IoStatus = writePacket->IoStatus;
}
} else {
if (FtpIsWorseStatus(status, masterPacket->IoStatus.Status)) {
masterPacket->IoStatus.Status = status;
masterPacket->IoStatus.Information = 0;
}
}
if (!NT_SUCCESS(parityPacket->IoStatus.Status)) {
writePacket->Mdl = parityPacket->Mdl;
writePacket->CompletionRoutine = StripeWpCompleteWritePhase3;
writePacket->TargetVolume = parityPacket->TargetVolume;
writePacket->ReadPacket = TRUE;
writePacket->WhichMember = masterPacket->ParityMember;
t->Recover(writePacket, FALSE);
return;
}
masterPacket->CompletionRoutine(masterPacket);
}
VOID
StripeWpCompleteWritePhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the first phase after a bad sector error during the write
or update parity phase of a SWP write operation.
Arguments:
TransferPacket - Supplies the main write packet.
Return Value:
None.
--*/
{
PSWP_WRITE_TP transferPacket = (PSWP_WRITE_TP) TransferPacket;
PSWP_TP writePacket = &transferPacket->ReadWritePacket;
PPARITY_TP parityPacket = &transferPacket->ParityPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
if (!NT_SUCCESS(writePacket->IoStatus.Status)) {
writePacket->CompletionRoutine = StripeWpCompleteWritePhase2;
t->CarefulWrite(writePacket);
return;
}
ASSERT(!NT_SUCCESS(parityPacket->IoStatus.Status));
writePacket->Mdl = parityPacket->Mdl;
writePacket->CompletionRoutine = StripeWpCompleteWritePhase3;
writePacket->TargetVolume = parityPacket->TargetVolume;
writePacket->ReadPacket = TRUE;
writePacket->WhichMember = transferPacket->ParityMember;
t->Recover(writePacket, FALSE);
}
VOID
STRIPE_WP::CompleteWrite(
IN OUT PSWP_WRITE_TP TransferPacket
)
/*++
Routine Description:
This routine completes the given write master packets after verifying
the status of the block write and the parity update.
Arguments:
TransferPacket - Supplies a write master packet.
Return Value:
None.
--*/
{
PSWP_TP writePacket = &TransferPacket->ReadWritePacket;
PPARITY_TP parityPacket = &TransferPacket->ParityPacket;
BOOLEAN doCarefulWrite = FALSE;
BOOLEAN doRecover = FALSE;
NTSTATUS status;
KIRQL irql;
BOOLEAN b;
// Check on the write status.
status = writePacket->IoStatus.Status;
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(TransferPacket->IoStatus.Status)) {
TransferPacket->IoStatus = writePacket->IoStatus;
}
} else if (status == STATUS_VERIFY_REQUIRED) {
if (FtpIsWorseStatus(status, TransferPacket->IoStatus.Status)) {
TransferPacket->IoStatus.Status = status;
TransferPacket->IoStatus.Information = 0;
}
} else if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&_spinLock, &irql);
b = SetMemberState(writePacket->WhichMember, FtMemberOrphaned);
KeReleaseSpinLock(&_spinLock, irql);
if (b) {
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(), FT_ORPHANING,
STATUS_SUCCESS, 11);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
} else {
doCarefulWrite = TRUE;
}
// Check on the update parity status.
status = parityPacket->IoStatus.Status;
if (NT_SUCCESS(status)) {
if (NT_SUCCESS(TransferPacket->IoStatus.Status)) {
TransferPacket->IoStatus = parityPacket->IoStatus;
}
} else if (status == STATUS_VERIFY_REQUIRED) {
if (FtpIsWorseStatus(status, TransferPacket->IoStatus.Status)) {
TransferPacket->IoStatus.Status = status;
TransferPacket->IoStatus.Information = 0;
}
} else if (FsRtlIsTotalDeviceFailure(status)) {
KeAcquireSpinLock(&_spinLock, &irql);
b = SetMemberState(TransferPacket->ParityMember, FtMemberOrphaned);
KeReleaseSpinLock(&_spinLock, irql);
if (b) {
PropogateStateChanges(NULL, NULL);
Notify();
FtpLogError(_rootExtension, QueryLogicalDiskId(), FT_ORPHANING,
STATUS_SUCCESS, 12);
IoRaiseInformationalHardError(STATUS_FT_ORPHANING, NULL, NULL);
}
} else {
// Bad sector case.
if (parityPacket->ReadPacket) { // Bad sector on read?
doRecover = TRUE;
} else {
if (FtpIsWorseStatus(status, TransferPacket->IoStatus.Status)) {
TransferPacket->IoStatus.Status = status;
TransferPacket->IoStatus.Information = 0;
}
}
}
// Complete the request if no bad sector handling is required.
if (!doCarefulWrite && !doRecover) {
TransferPacket->CompletionRoutine(TransferPacket);
return;
}
// Handling for bad sectors is required.
if (!doCarefulWrite) {
writePacket->IoStatus.Status = STATUS_SUCCESS;
}
if (!doRecover) {
parityPacket->IoStatus.Status = STATUS_SUCCESS;
}
TransferPacket->SavedCompletionRoutine = TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = StripeWpCompleteWritePhase1;
_overlappedIoManager.PromoteToAllMembers(TransferPacket);
}
VOID
StripeWpCarefulWritePhase2(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a sector replacement
for a careful write operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
subPacket->CompletionRoutine = StripeWpCarefulWritePhase1;
TRANSFER(subPacket);
}
VOID
StripeWpCarefulWritePhase1(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a first attempt of a single sector write
for a careful write operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket = (PSWP_RECOVER_TP) TransferPacket;
NTSTATUS status = subPacket->IoStatus.Status;
PSWP_TP masterPacket = (PSWP_TP) subPacket->MasterPacket;
PSTRIPE_WP t = subPacket->StripeWithParity;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->IoStatus = subPacket->IoStatus;
masterPacket->CompletionRoutine(masterPacket);
t->RecycleRecoverTp(subPacket);
return;
}
if (!NT_SUCCESS(status)) {
if (!subPacket->OneReadFailed) {
subPacket->CompletionRoutine = StripeWpCarefulWritePhase2;
subPacket->OneReadFailed = TRUE;
subPacket->TargetVolume->ReplaceBadSector(subPacket);
return;
}
masterPacket->IoStatus = subPacket->IoStatus;
}
if (masterPacket->Offset + masterPacket->Length ==
subPacket->Offset + subPacket->Length) {
masterPacket->CompletionRoutine(masterPacket);
t->RecycleRecoverTp(subPacket);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
subPacket->OneReadFailed = FALSE;
TRANSFER(subPacket);
}
VOID
StripeWpCarefulWriteEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a careful write operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP transferPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = transferPacket->StripeWithParity;
PSWP_RECOVER_TP subPacket = t->_eRecoverPacket;
transferPacket->CompletionRoutine = transferPacket->SavedCompletionRoutine;
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(transferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(transferPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = transferPacket->Offset;
subPacket->CompletionRoutine = StripeWpCarefulWritePhase1;
subPacket->TargetVolume = transferPacket->TargetVolume;
subPacket->Thread = transferPacket->Thread;
subPacket->IrpFlags = transferPacket->IrpFlags;
subPacket->ReadPacket = FALSE;
subPacket->MasterPacket = transferPacket;
subPacket->StripeWithParity = t;
subPacket->WhichMember = transferPacket->WhichMember;
subPacket->OneReadFailed = FALSE;
TRANSFER(subPacket);
}
VOID
STRIPE_WP::CarefulWrite(
IN OUT PSWP_TP TransferPacket
)
/*++
Routine Description:
This routine writes the given transfer packet one sector at a time.
Arguments:
TransferPacket - Supplies a write packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP subPacket;
KIRQL irql;
ASSERT(!TransferPacket->ReadPacket);
TransferPacket->IoStatus.Status = STATUS_SUCCESS;
TransferPacket->IoStatus.Information = TransferPacket->Length;
subPacket = new SWP_RECOVER_TP;
if (subPacket && !subPacket->AllocateMdls(QuerySectorSize())) {
delete subPacket;
subPacket = NULL;
}
if (!subPacket) {
KeAcquireSpinLock(&_spinLock, &irql);
if (_eRecoverPacketInUse) {
TransferPacket->SavedCompletionRoutine =
TransferPacket->CompletionRoutine;
TransferPacket->CompletionRoutine = StripeWpCarefulWriteEmergencyCompletion;
InsertTailList(&_eRecoverPacketQueue, &TransferPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
subPacket = _eRecoverPacket;
}
subPacket->Mdl = subPacket->PartialMdl;
IoBuildPartialMdl(TransferPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(TransferPacket->Mdl),
QuerySectorSize());
subPacket->Length = QuerySectorSize();
subPacket->Offset = TransferPacket->Offset;
subPacket->CompletionRoutine = StripeWpCarefulWritePhase1;
subPacket->TargetVolume = TransferPacket->TargetVolume;
subPacket->Thread = TransferPacket->Thread;
subPacket->IrpFlags = TransferPacket->IrpFlags;
subPacket->ReadPacket = FALSE;
subPacket->MasterPacket = TransferPacket;
subPacket->StripeWithParity = this;
subPacket->WhichMember = TransferPacket->WhichMember;
subPacket->OneReadFailed = FALSE;
TRANSFER(subPacket);
}
VOID
StripeWpCarefulUpdateCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This is the completion routine a single sector update parity
for a careful update operation.
Arguments:
TransferPacket - Supplies the subordinate transfer packet.
Return Value:
None.
--*/
{
PPARITY_TP subPacket = (PPARITY_TP) TransferPacket;
NTSTATUS status = subPacket->IoStatus.Status;
PSWP_RECOVER_TP rPacket;
PSWP_TP masterPacket;
PSTRIPE_WP t;
rPacket = CONTAINING_RECORD(subPacket, SWP_RECOVER_TP, ParityPacket);
masterPacket = (PSWP_TP) rPacket->MasterPacket;
t = masterPacket->StripeWithParity;
if (FsRtlIsTotalDeviceFailure(status)) {
masterPacket->IoStatus = subPacket->IoStatus;
masterPacket->CompletionRoutine(masterPacket);
t->RecycleRecoverTp(rPacket);
return;
}
if (!NT_SUCCESS(status)) {
masterPacket->IoStatus = subPacket->IoStatus;
}
if (masterPacket->Offset + masterPacket->Length ==
subPacket->Offset + subPacket->Length) {
masterPacket->CompletionRoutine(masterPacket);
t->RecycleRecoverTp(rPacket);
return;
}
subPacket->Offset += subPacket->Length;
MmPrepareMdlForReuse(subPacket->Mdl);
IoBuildPartialMdl(masterPacket->Mdl, subPacket->Mdl,
(PCHAR) MmGetMdlVirtualAddress(masterPacket->Mdl) +
(ULONG) (subPacket->Offset - masterPacket->Offset),
subPacket->Length);
t->_parityIoManager.UpdateParity(subPacket);
}
VOID
StripeWpCarefulUpdateEmergencyCompletion(
IN OUT PTRANSFER_PACKET TransferPacket
)
/*++
Routine Description:
This routine is the completion for use of the emergency recover packet
in a careful udpate operation.
Arguments:
TransferPacket - Supplies the transfer packet.
Return Value:
None.
--*/
{
PSWP_TP parityPacket = (PSWP_TP) TransferPacket;
PSTRIPE_WP t = parityPacket->StripeWithParity;
PSWP_RECOVER_TP rPacket = t->_eRecoverPacket;
PPARITY_TP subPacket = &rPacket->ParityPacket;
parityPacket->CompletionRoutine = parityPacket->SavedCompletionRoutine;
rPacket->MasterPacket = parityPacket;
rPacket->StripeWithParity = t;
rPacket->WhichMember = parityPacket->WhichMember;
subPacket = &rPacket->ParityPacket;
subPacket->Mdl = rPacket->PartialMdl;
IoBuildPartialMdl(parityPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(parityPacket->Mdl),
t->QuerySectorSize());
subPacket->Length = t->QuerySectorSize();
subPacket->Offset = parityPacket->Offset;
subPacket->CompletionRoutine = StripeWpCarefulUpdateCompletion;
subPacket->TargetVolume = parityPacket->TargetVolume;
subPacket->Thread = parityPacket->Thread;
subPacket->IrpFlags = parityPacket->IrpFlags;
subPacket->ReadPacket = FALSE;
t->_parityIoManager.UpdateParity(subPacket);
}
VOID
STRIPE_WP::CarefulUpdate(
IN OUT PSWP_TP ParityPacket
)
/*++
Routine Description:
This routine updates the given parity block one sector at a time.
Arguments:
ParityPacket - Supplies an update parity packet.
Return Value:
None.
--*/
{
PSWP_RECOVER_TP rPacket;
KIRQL irql;
PPARITY_TP subPacket;
ParityPacket->IoStatus.Status = STATUS_SUCCESS;
ParityPacket->IoStatus.Information = ParityPacket->Length;
rPacket = new SWP_RECOVER_TP;
if (rPacket && !rPacket->AllocateMdls(QuerySectorSize())) {
delete rPacket;
rPacket = NULL;
}
if (!rPacket) {
KeAcquireSpinLock(&_spinLock, &irql);
if (_eRecoverPacketInUse) {
ParityPacket->SavedCompletionRoutine =
ParityPacket->CompletionRoutine;
ParityPacket->CompletionRoutine =
StripeWpCarefulUpdateEmergencyCompletion;
InsertTailList(&_eRecoverPacketQueue, &ParityPacket->QueueEntry);
KeReleaseSpinLock(&_spinLock, irql);
return;
}
_eRecoverPacketInUse = TRUE;
KeReleaseSpinLock(&_spinLock, irql);
rPacket = _eRecoverPacket;
}
rPacket->MasterPacket = ParityPacket;
rPacket->StripeWithParity = this;
rPacket->WhichMember = ParityPacket->WhichMember;
subPacket = &rPacket->ParityPacket;
subPacket->Mdl = rPacket->PartialMdl;
IoBuildPartialMdl(ParityPacket->Mdl, subPacket->Mdl,
MmGetMdlVirtualAddress(ParityPacket->Mdl),
QuerySectorSize());
subPacket->Length = QuerySectorSize();
subPacket->Offset = ParityPacket->Offset;
subPacket->CompletionRoutine = StripeWpCarefulUpdateCompletion;
subPacket->TargetVolume = ParityPacket->TargetVolume;
subPacket->Thread = ParityPacket->Thread;
subPacket->IrpFlags = ParityPacket->IrpFlags;
subPacket->ReadPacket = FALSE;
_parityIoManager.UpdateParity(subPacket);
}
VOID
STRIPE_WP::ModifyStateForUser(
IN OUT PVOID State
)
/*++
Routine Description:
This routine modifies the state for the user to see, possibly adding
non-persistant state different than what is stored on disk.
Arguments:
State - Supplies and returns the state for the logical disk.
Return Value:
None.
--*/
{
KIRQL irql;
BOOLEAN isDirty;
PFT_MIRROR_AND_SWP_STATE_INFORMATION state;
KeAcquireSpinLock(&_spinLock, &irql);
if (_syncOk && !_stopSyncs) {
isDirty = FALSE;
} else {
isDirty = TRUE;
}
KeReleaseSpinLock(&_spinLock, irql);
if (!isDirty) {
return;
}
state = (PFT_MIRROR_AND_SWP_STATE_INFORMATION) State;
if (state->UnhealthyMemberState == FtMemberHealthy) {
state->IsInitializing = TRUE;
}
}