You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
397 lines
12 KiB
397 lines
12 KiB
/******************************Module*Header*******************************\
|
|
*
|
|
* *******************
|
|
* * GDI SAMPLE CODE *
|
|
* *******************
|
|
*
|
|
* Module Name: Brush.c
|
|
*
|
|
* Handles all brush/pattern initialization and realization.
|
|
*
|
|
* Copyright (c) 1992-1998 Microsoft Corporation
|
|
*
|
|
\**************************************************************************/
|
|
|
|
#include "precomp.h"
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vRealizeDitherPattern
|
|
*
|
|
* Generates an 8x8 dither pattern, in our internal realization format, for
|
|
* the colour ulRGBToDither. Note that the high byte of ulRGBToDither does
|
|
* not need to be set to zero, because EngDitherColor ignores it.
|
|
\**************************************************************************/
|
|
|
|
VOID vRealizeDitherPattern(
|
|
HDEV hdev,
|
|
RBRUSH* prb,
|
|
ULONG ulRGBToDither)
|
|
{
|
|
// Do the actual dithering:
|
|
|
|
EngDitherColor(hdev, DM_DEFAULT, ulRGBToDither, &prb->aulPattern[0]);
|
|
|
|
// Initialize the fields we need:
|
|
|
|
prb->ptlBrushOrg.x = LONG_MIN;
|
|
prb->fl = 0;
|
|
prb->pbe = NULL;
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL DrvRealizeBrush
|
|
*
|
|
* This function allows us to convert GDI brushes into an internal form
|
|
* we can use. It may be called directly by GDI at SelectObject time, or
|
|
* it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush
|
|
* to create a realized brush in a function like DrvBitBlt.
|
|
*
|
|
* Note that we have no way of determining what the current Rop or brush
|
|
* alignment are at this point.
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL DrvRealizeBrush(
|
|
BRUSHOBJ* pbo,
|
|
SURFOBJ* psoDst,
|
|
SURFOBJ* psoPattern,
|
|
SURFOBJ* psoMask,
|
|
XLATEOBJ* pxlo,
|
|
ULONG iHatch)
|
|
{
|
|
PDEV* ppdev;
|
|
ULONG iPatternFormat;
|
|
BYTE* pjSrc;
|
|
BYTE* pjDst;
|
|
LONG lSrcDelta;
|
|
LONG cj;
|
|
LONG i;
|
|
LONG j;
|
|
RBRUSH* prb;
|
|
ULONG* pulXlate;
|
|
SURFOBJ* psoPunt;
|
|
RECTL rclDst;
|
|
BOOL b;
|
|
|
|
ppdev = (PDEV*) psoDst->dhpdev;
|
|
|
|
// We only handle brushes if we have an off-screen brush cache
|
|
// available. If there isn't one, we can simply fail the realization,
|
|
// and eventually GDI will do the drawing for us (although a lot
|
|
// slower than we could have done it):
|
|
|
|
if (!(ppdev->flStatus & STAT_BRUSH_CACHE))
|
|
goto ReturnFalse;
|
|
|
|
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
|
|
|
|
if (iHatch & RB_DITHERCOLOR)
|
|
{
|
|
// Implementing DITHERONREALIZE increased our score on a certain
|
|
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
|
|
// this didn't work in the first version of NT.
|
|
|
|
prb = BRUSHOBJ_pvAllocRbrush(pbo,
|
|
sizeof(RBRUSH) + CONVERT_TO_BYTES(TOTAL_BRUSH_SIZE, ppdev));
|
|
if (prb == NULL)
|
|
goto ReturnFalse;
|
|
|
|
vRealizeDitherPattern(psoDst->hdev, prb, iHatch);
|
|
goto ReturnTrue;
|
|
}
|
|
|
|
// We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
|
|
// support patterns of any other size, it's a safe bet that 99.9%
|
|
// of the patterns we'll ever get will be 8x8:
|
|
|
|
if ((psoPattern->sizlBitmap.cx != 8) ||
|
|
(psoPattern->sizlBitmap.cy != 8))
|
|
goto ReturnFalse;
|
|
|
|
iPatternFormat = psoPattern->iBitmapFormat;
|
|
|
|
prb = BRUSHOBJ_pvAllocRbrush(pbo,
|
|
sizeof(RBRUSH) + CONVERT_TO_BYTES(TOTAL_BRUSH_SIZE, ppdev));
|
|
if (prb == NULL)
|
|
goto ReturnFalse;
|
|
|
|
// Initialize the fields we need:
|
|
|
|
prb->ptlBrushOrg.x = LONG_MIN;
|
|
prb->fl = 0;
|
|
prb->pbe = NULL;
|
|
|
|
lSrcDelta = psoPattern->lDelta;
|
|
pjSrc = (BYTE*) psoPattern->pvScan0;
|
|
pjDst = (BYTE*) &prb->aulPattern[0];
|
|
|
|
if ((ppdev->iBitmapFormat == iPatternFormat) &&
|
|
((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)))
|
|
{
|
|
DISPDBG((1, "Realizing un-translated brush"));
|
|
|
|
// The pattern is the same colour depth as the screen, and
|
|
// there's no translation to be done:
|
|
|
|
cj = CONVERT_TO_BYTES(8, ppdev); // Every pattern is 8 pels wide
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
RtlCopyMemory(pjDst, pjSrc, cj);
|
|
|
|
pjSrc += lSrcDelta;
|
|
pjDst += cj;
|
|
}
|
|
}
|
|
// Don't do monochrome expansion on 24 bpp due to s3 968 feature.
|
|
else if ((iPatternFormat == BMF_1BPP) && (ppdev->iBitmapFormat != BMF_24BPP))
|
|
{
|
|
DISPDBG((1, "Realizing 1bpp brush"));
|
|
|
|
// We word align the monochrome bitmap so that every row starts
|
|
// on a new word (so that we can do word writes later to transfer
|
|
// the bitmap):
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
*pjDst = *pjSrc;
|
|
pjDst += sizeof(WORD);
|
|
pjSrc += lSrcDelta;
|
|
}
|
|
|
|
pulXlate = pxlo->pulXlate;
|
|
prb->fl |= RBRUSH_2COLOR;
|
|
prb->ulForeColor = pulXlate[1];
|
|
prb->ulBackColor = pulXlate[0];
|
|
}
|
|
else if ((iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP))
|
|
{
|
|
DISPDBG((1, "Realizing 4bpp brush"));
|
|
|
|
// The screen is 8bpp and the pattern is 4bpp:
|
|
|
|
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) &&
|
|
(iPatternFormat == BMF_4BPP),
|
|
"Messed up brush logic");
|
|
|
|
pulXlate = pxlo->pulXlate;
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
// Inner loop is repeated only 4 times because each loop
|
|
// handles 2 pixels:
|
|
|
|
for (j = 4; j != 0; j--)
|
|
{
|
|
*pjDst++ = (BYTE) pulXlate[*pjSrc >> 4];
|
|
*pjDst++ = (BYTE) pulXlate[*pjSrc & 15];
|
|
pjSrc++;
|
|
}
|
|
|
|
pjSrc += lSrcDelta - 4;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We've got a brush whose format we haven't special cased. No
|
|
// problem, we can have GDI convert it to our device's format.
|
|
// We simply use a temporary surface object that was created with
|
|
// the same format as the display, and point it to our brush
|
|
// realization:
|
|
|
|
DISPDBG((5, "Realizing funky brush"));
|
|
|
|
psoPunt = ppdev->psoBank;
|
|
psoPunt->pvScan0 = pjDst;
|
|
psoPunt->lDelta = CONVERT_TO_BYTES(8, ppdev);
|
|
|
|
rclDst.left = 0;
|
|
rclDst.top = 0;
|
|
rclDst.right = 8;
|
|
rclDst.bottom = 8;
|
|
|
|
b = EngCopyBits(psoPunt, psoPattern, NULL, pxlo,
|
|
&rclDst, (POINTL*) &rclDst);
|
|
|
|
if (!b)
|
|
{
|
|
goto ReturnFalse;
|
|
}
|
|
}
|
|
|
|
ReturnTrue:
|
|
|
|
if (!(ppdev->flCaps & CAPS_HW_PATTERNS))
|
|
{
|
|
// The last time I checked, GDI took some 500 odd instructions to
|
|
// get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'.
|
|
// We can at least use this time to get some overlap between the
|
|
// CPU and the display hardware: we'll initialize the 72x72 off-
|
|
// screen cache entry now, which will keep the accelerator busy for
|
|
// a while.
|
|
//
|
|
// We don't do this if we have hardware patterns because:
|
|
//
|
|
// a) S3 hardware patterns require that the off-screen cached
|
|
// brush be correctly aligned, and at this point we don't have
|
|
// access to the 'pptlBrush' brush origin (although we could
|
|
// have copied it into the PDEV before calling
|
|
// BRUSHOBJ_pvGetRbrush).
|
|
//
|
|
// b) S3 hardware patterns require only an 8x8 copy of the
|
|
// pattern; it is not expanded to 72x72, so there isn't even
|
|
// any opportunity for CPU/accelerator processing overlap.
|
|
|
|
vIoSlowPatRealize(ppdev, prb, FALSE);
|
|
}
|
|
|
|
return(TRUE);
|
|
|
|
ReturnFalse:
|
|
|
|
if (psoPattern != NULL)
|
|
{
|
|
DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li",
|
|
psoPattern->iType, psoPattern->iBitmapFormat,
|
|
psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy));
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bEnableBrushCache
|
|
*
|
|
* Allocates off-screen memory for storing the brush cache.
|
|
\**************************************************************************/
|
|
|
|
BOOL bEnableBrushCache(
|
|
PDEV* ppdev)
|
|
{
|
|
DSURF* pdsurf;
|
|
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
|
|
LONG i;
|
|
LONG j;
|
|
LONG x;
|
|
LONG y;
|
|
|
|
// Since the DirectDraw heap isn't enabled yet, we allocate memory
|
|
// simply by chopping a row off the bottom of memory.
|
|
|
|
pbe = &ppdev->abe[0]; // Points to where we'll put the first brush
|
|
// cache entry
|
|
|
|
if (ppdev->flCaps & CAPS_HW_PATTERNS)
|
|
{
|
|
if (ppdev->cyScreen > ppdev->cyHeap - FAST_BRUSH_ALLOCATION)
|
|
goto ReturnTrue;
|
|
|
|
ppdev->cyHeap -= FAST_BRUSH_ALLOCATION;
|
|
|
|
x = 0;
|
|
y = ppdev->cyHeap;
|
|
|
|
ppdev->cBrushCache = FAST_BRUSH_COUNT;
|
|
|
|
// Hardware brushes require that the x-coordinate start on an 8
|
|
// pixel boundary. The heap manager doesn't guarantee us any such
|
|
// alignment, so we allocate a bit of extra room so that we can
|
|
// do the alignment ourselves:
|
|
|
|
for (i = FAST_BRUSH_COUNT; i != 0; i--)
|
|
{
|
|
// If we hadn't allocated 'ppdev' so that it was zero initialized,
|
|
// we would have to initialize pbe->prbVerify too...
|
|
|
|
pbe->x = x;
|
|
pbe->y = y;
|
|
|
|
x += FAST_BRUSH_ALLOCATION;
|
|
pbe++;
|
|
}
|
|
|
|
// Remember the location of our 1x8 work area, which will be at
|
|
// the right end of our brush array:
|
|
|
|
ppdev->ptlReRealize.x = x;
|
|
ppdev->ptlReRealize.y = y;
|
|
}
|
|
else
|
|
{
|
|
ppdev->pfnFillPat = vIoFillPatSlow; // Override FillPatFast
|
|
|
|
if (ppdev->cyScreen > ppdev->cyHeap - SLOW_BRUSH_CACHE_DIM
|
|
* SLOW_BRUSH_ALLOCATION)
|
|
goto ReturnTrue;
|
|
|
|
ppdev->cyHeap -= SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION;
|
|
|
|
x = 0;
|
|
y = ppdev->cyHeap;
|
|
|
|
ppdev->cBrushCache = SLOW_BRUSH_COUNT;
|
|
|
|
for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++)
|
|
{
|
|
for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++)
|
|
{
|
|
pbe->x = x + (i * SLOW_BRUSH_ALLOCATION);
|
|
pbe->y = y + (j * SLOW_BRUSH_ALLOCATION);
|
|
pbe++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We successfully allocated the brush cache, so let's turn
|
|
// on the switch showing that we can use it:
|
|
|
|
ppdev->flStatus |= STAT_BRUSH_CACHE;
|
|
|
|
ReturnTrue:
|
|
|
|
// If we couldn't allocate a brush cache, it's not a catastrophic
|
|
// failure; patterns will still work, although they'll be a bit
|
|
// slower since they'll go through GDI. As a result we don't
|
|
// actually have to fail this call:
|
|
|
|
DISPDBG((5, "Passed bEnableBrushCache"));
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vDisableBrushCache
|
|
*
|
|
* Cleans up anything done in bEnableBrushCache.
|
|
\**************************************************************************/
|
|
|
|
VOID vDisableBrushCache(PDEV* ppdev)
|
|
{
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vAssertModeBrushCache
|
|
*
|
|
* Resets the brush cache when we exit out of full-screen.
|
|
\**************************************************************************/
|
|
|
|
VOID vAssertModeBrushCache(
|
|
PDEV* ppdev,
|
|
BOOL bEnable)
|
|
{
|
|
BRUSHENTRY* pbe;
|
|
LONG i;
|
|
|
|
if (bEnable)
|
|
{
|
|
// Invalidate the brush cache:
|
|
|
|
pbe = &ppdev->abe[0];
|
|
|
|
for (i = ppdev->cBrushCache; i != 0; i--)
|
|
{
|
|
pbe->prbVerify = NULL;
|
|
pbe++;
|
|
}
|
|
}
|
|
}
|