Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

813 lines
25 KiB

// $Header: G:/SwDev/WDM/Video/bt848/rcs/Riscprog.cpp 1.14 1998/05/04 17:53:37 tomz Exp $
#include "riscprog.h"
#include "physaddr.h"
#define ClearMem( a ) memset( &##a, '\0', sizeof( a ) )
DWORD RISCProgram::GetDataBuffer( )
{
return dwLinBufAddr_;
}
void RISCProgram::SetDataBuffer( DWORD addr )
{
dwLinBufAddr_ = addr;
}
void RISCProgram::Dump( )
{
if( bAlreadyDumped_ ) {
return;
}
DebugOut((0, "; RiscProgram(%x) ProgAddr(%x) PhysProgAddr(%x)\n",
this,
GetProgAddress( ),
GetPhysProgAddr( )));
DebugOut((0, " RiscProgram(%x) dwBufAddr_(%x) dwLinBufAddr_(%x)\n",
this,
dwBufAddr_,
dwLinBufAddr_));
return;
dwSize_ = 0;
DWORD* pProgLoc = (DWORD*) GetProgAddress( );
while( *pProgLoc++ != PROGRAM_TERMINATOR ) {
dwSize_++;
if( dwSize_ > 1024 ) {
dwSize_ = 0;
break;
}
}
DWORD dwTmpSize_ = dwSize_;
DebugOut((0, "; size = %d\n", dwSize_));
if( dwSize_ ) {
DebugOut((0, "%x ", GetPhysProgAddr( )));
}
PULONG pulProg = (PULONG) (ProgramSpace_->getLinearBase());
while( dwTmpSize_ >= 4 ) {
DebugOut((0, " %08x %08x %08x %08x\n",
pulProg[0],
pulProg[1],
pulProg[2],
pulProg[3]));
pulProg += 4;
dwTmpSize_ -= 4;
}
switch( dwTmpSize_ ) {
case 3:
DebugOut((0, " %08x %08x %08x\n",
pulProg[0],
pulProg[1],
pulProg[2]
));
break;
case 2:
DebugOut((0, " %08x %08x\n",
pulProg[0],
pulProg[1]
));
break;
case 1:
DebugOut((0, " %08x\n",
pulProg[0]
));
break;
}
bAlreadyDumped_ = TRUE;
#if 0
if( pChild_ != NULL ) {
// *** warning - recursion ***
pChild_->Dump();
}
#endif
bAlreadyDumped_ = FALSE;
}
/*
{
// Input
// DWORD : RiscProg ndx
// CreatedProgs : 12 elements ndx 0..11
// ActiveProgs : 12 elements ndx 12..23
// Skippers : 8 elements ndx 24..31
// Output
// Buffer filled with riscprog
int i = 0;
if ( !pDIOCParams->dioc_cbOutBuf || (pDIOCParams->dioc_cbInBuf != 4))
return -1; // invalid parameters
// pause
// CaptureContrll_->Pause() ;
// dump a prog
DWORD WhichProg = *((PDWORD) pDIOCParams->dioc_InBuf);
RiscPrgHandle hProg ;
if (WhichProg < 12) // CreatedProgs
{
hProg = CaptureContrll_->CreatedProgs_[WhichProg] ;
}
else if (WhichProg < 24) // Active
{
hProg = CaptureContrll_->ActiveProgs_[WhichProg % 12] ;
}
else // Skippers
{
hProg = CaptureContrll_->Skippers_[WhichProg % 12] ;
}
if(hProg)
{
char * pRetAddr = (char *)pDIOCParams->dioc_OutBuf;
DWORD physAddr = hProg->GetPhysProgAddr() ;
DWORD progSize = hProg->GetProgramSize();
char * linBuf = (char *) MapPhysToLinear((void *)physAddr, progSize, 0) ;
*((DWORD *) pRetAddr) = physAddr ;
pRetAddr+=4 ;
for (i = 0 ; i < progSize && i < pDIOCParams->dioc_cbOutBuf ; i++)
{
*pRetAddr++ = linBuf[i] ;
}
}
if ( pDIOCParams->dioc_bytesret )
*pDIOCParams->dioc_bytesret = i;
// and resume
// CaptureContrll_->Continue() ;
}
*/
/* Method: RISCProgram::ChangeAddress
* Purpose: Modifies existing program to use new destination address
* Input: dwNewAddr: DWORD - new buffer address
* Output: None
*/
void RISCProgram::ChangeAddress( DataBuf &buf )
{
Trace t("RISCProgram::ChangeAddress()");
//DebugOut((1, "RISCProgram::ChangeAddress(): this(%x), buf.pData_(%x)\n", this, buf.pData_));
Create( Interrupting_, buf, dwPlanarAdjust_, GenerateResync_, false );
}
/* Function: CreatePrologEpilog
* Purpose: Called from Create function to put proper sync codes at the beginning
* and at the end of a RISC program
* Input: pProgLoc: PDWORD - pointer to the instruction memory
* SyncBits: SyncCode
* CurCommand: Command & - reference to a command object
* Output: PDWORD - address of the next instruction
*/
inline PDWORD RISCProgram::CreatePrologEpilog( PDWORD pProgLoc, SyncCode SyncBits,
Command &CurCommand, bool Resync )
{
Trace t("RISCProgram::CreatePrologEpilog()");
CurCommand.Create( pProgLoc, SYNC, NULL, NULL, false );//, false, false );
CurCommand.SetSync( pProgLoc, SyncBits, Resync );
// advance to the next command's position
return pProgLoc + CurCommand.GetInstrSize();
}
inline bool IsWithin( int coord, int top, int bot )
{
Trace t("IsWithin()");
return bool( coord >= top && coord < bot );
}
inline PDWORD FinishWithSkip( int pixels, int bpp, PDWORD pProgLoc, Command &com )
{
Trace t("FinishWithSkip()");
WORD awByteCounts [1];
awByteCounts [0] = WORD( pixels * bpp );
return (LPDWORD)com.Create( pProgLoc, SKIP, awByteCounts, NULL,
true, false, true, false ); // safety, SOL, EOL, Intr
}
ErrorCode RISCProgram::GetDataBufPhys( DataBuf &buf )
{
Trace t("RISCProgram::GetDataBufPhys()");
dwBufAddr_ = GetPhysAddr( buf );
if ( dwBufAddr_ == (DWORD)-1 ) {
return Fail;
}
return Success;
}
/* Method: RISCProgram::AllocateStorage
* Purpose: Allocates a number of pages ( locked and physically contiguous ) to
* hold the new program
* Input: None
* Output: ErrorCode
*/
ErrorCode RISCProgram::AllocateStorage( bool extra, int )
{
Trace t("RISCProgram::AllocateStorage()");
if ( ProgramSpace_ )
return Success;
// figure out size of the memory to hold the program
// at least as many DWORDs as lines
DWORD dwProgramSize = ImageSize_.cy * sizeof( DWORD );
// scale up according to the data format
switch ( BufFormat_.GetColorFormat() ) {
case CF_RGB32:
case CF_RGB24:
case CF_RGB16:
case CF_RGB15:
case CF_Y8:
case CF_YUY2:
case CF_UYVY:
case CF_BTYUV:
case CF_RGB8:
case CF_RAW:
case CF_VBI:
dwProgramSize *= 2; // size of 'Write' command is 2 DWORDs
if ( extra == true ) // doing clipping
dwProgramSize *= 3;
break;
case CF_PL_422:
case CF_PL_411:
case CF_YUV9:
case CF_YUV12:
case CF_I420:
dwProgramSize *= 5; // Planar WRITE is 5 DWORDs
}
// add extra for page crossings
dwProgramSize += ImageSize_.cx * ImageSize_.cy * BufFormat_.GetBitCount() / 8
/ PAGE_SIZE * sizeof( DWORD ) * 5;
ProgramSpace_ = new PsPageBlock( dwProgramSize );
if ( ProgramSpace_ && ProgramSpace_->getLinearBase() != 0 )
return Success;
return Fail;
}
/* Function: GetAlternateSwitch
* Purpose: Chooses alternative instruction frequency
* Input: AlternateSwitch: int
* col: ColFmt, color format
* Output: None
*/
inline void GetAlternateSwitch( int &AlternateSwitch, ColFmt col )
{
Trace t("GetAlternateSwitch()");
AlternateSwitch = col == CF_YUV9 ? 4 :
col == CF_YUV12 ? 2 : 1;
}
/* Function: GetSplitAddr
* Purpose: Calculates page-aligned address
* Input: dwLinBufAddr: DWORD - linear address
* Output: DWORD
*/
inline DWORD GetSplitAddr( DWORD dwLinBufAddr )
{
Trace t("GetSplitAddr()");
return ( dwLinBufAddr + PAGE_SIZE ) & ~( PAGE_SIZE - 1 );//0xFFFFF000L;
// return ( dwLinBufAddr + 0x1000 ) & 0xFFFFF000L;
}
/* Function: GetSplitByteCount
* Purpose: Calculates number of bytes before the page boundary
* Input: dwLinBufAddr: DWORD, address
* Output: WORD, byte count
*/
inline WORD GetSplitByteCount( DWORD dwLinBufAddr )
{
Trace t("GetSplitByteCount()");
return WORD( PAGE_SIZE - BYTE_OFFSET( dwLinBufAddr ) );
// return WORD( 0x1000 - ( dwLinBufAddr & 0xFFF ) );
}
/* Function: GetSplitNumbers
* Purpose: Calculates addresses and byte counts when scan line crosses a page boundary
* Input: dwLinAddr: DWORD, starting linear address
* wByteCount: WORD &, number of bytes to move before page crossing
* wByteCSplit: WORD &, number of bytes to move after page crossing
* SecondAddr: DWORD &, reference to the DWORD contatining address of the starting
* address for the second 'write' instruction
* FirstAddr: DWORD &,
*/
void GetSplitNumbers( DataBuf buf, WORD &wFirstByteCount, WORD &wSecondByteCount,
DWORD &SecondAddr, DWORD &FirstAddr )
{
Trace t("GetSplitNumbers()");
// maybe can have some optimization here: if within the same page as previous
// call ( no split ), don't call out for the physical address - just
// increment the old physical address by difference in virtual addresses
FirstAddr = GetPhysAddr( buf );
if ( Need2Split( buf, wFirstByteCount ) ) {
wSecondByteCount = wFirstByteCount;
// lin address of the second write command ( page aligned )
SecondAddr = GetSplitAddr( DWORD( buf.pData_ ) );
// byte count of first write command
wFirstByteCount = GetSplitByteCount( DWORD( buf.pData_ ) );
wSecondByteCount -= wFirstByteCount;
// get the physical addresses
buf.pData_ = PBYTE( SecondAddr );
SecondAddr = GetPhysAddr( buf );
} else {
wSecondByteCount = 0;
SecondAddr = 0;
}
}
/* Function: AdjustByteCounts
* Purpose: This function is used to calculate 2 byte counts based on the given ratio
* Purpose:
*/
void AdjustByteCounts( WORD &smaller, WORD &larger, WORD total, WORD ratio )
{
Trace t("AdjustByteCounts()");
if ( ratio <= 1 ) {
smaller = WORD( total >> 1 );
} else
smaller = WORD( total / ratio );
smaller += (WORD)3;
smaller &= ~3;
larger = WORD( total - smaller );
}
/* Method: RISCProgram::Create
* Purpose: Creates a RISC program
* Input: NeedInterrupt: bool - flag
* Output: None
* Note: It is likely this function is used to simply change dst addresses of
* an already existing program. It does not seem to make much sense to write
* basically the same function ( or the one that has to parse existing program)
* to change addresses
*/
ErrorCode RISCProgram::Create( bool NeedInterrupt, DataBuf buf, DWORD dwPlanrAdjust,
bool rsync, bool LoopOnItself )
{
Trace t("RISCProgram::Create(2)");
dwPlanarAdjust_ = dwPlanrAdjust;
Interrupting_ = NeedInterrupt;
GenerateResync_ = rsync;
// allocate memory for the program first
if ( AllocateStorage() != Success )
return Fail;
// store the buffer address in case somebody will want to change clipping
if ( buf.pData_ && GetDataBufPhys( buf ) != Success )
return Fail;
// keep the linear address around
dwLinBufAddr_ = DWORD( buf.pData_ );
pSrb_ = buf.pSrb_;
DebugOut((1, "dwLinBufAddr_ = %x\n", dwLinBufAddr_));
// bad naming ?
DWORD dwLinBufAddr = dwLinBufAddr_;
// probably should create a class to handle these arrays
WORD awByteCounts [3];
DWORD adwAddresses [3];
Instruction MainInstrToUse, AltInstrToUse;
int AlternateSwitch = 1;
// used to increment planes' addresses
LONG PlanePitch1 = dwBufPitch_, ChromaPitch = dwBufPitch_;
// get size in bytes
DWORD dwYPlaneSize = ImageSize_.cy * dwBufPitch_;
// DebugOut((1, "buf addr = %x\n", dwLinBufAddr ) );
// this is a physical address
DWORD Plane1 = dwLinBufAddr_ + dwYPlaneSize, Plane2;
// initialize byte count for all planar modes
awByteCounts [0] = (WORD)ImageSize_.cx;
if ( !dwLinBufAddr_ ) { // hack to handle special case of creating a skipper for VBI streams
MainInstrToUse = SKIP123;
AltInstrToUse = SKIP123;
} else {
MainInstrToUse = WRITE1S23;
AltInstrToUse = WRITE123;
}
// handle all planar modes here
SyncCode SyncBits = SC_FM3;
// these guys used for the calculation of addresses
// for different planar mode combinations ( pitch > witdh, interleaving )
DWORD dwEqualPitchDivider = 1;
DWORD dwByteCountDivider = 1;
bool flip = false;
// prepare all the ugly things
switch ( BufFormat_.GetColorFormat() ) {
case CF_RGB32:
case CF_RGB24:
case CF_RGB16:
case CF_RGB15:
case CF_BTYUV:
case CF_RGB8:
flip = Interrupting_;
case CF_Y8:
case CF_YUY2:
case CF_UYVY:
case CF_RAW:
case CF_VBI:
if ( !dwLinBufAddr_ ) { // hack to handle special case of creating a skipper for VBI streams
MainInstrToUse = SKIP;
AltInstrToUse = SKIP;
} else {
MainInstrToUse = WRIT;
AltInstrToUse = WRIT;
}
awByteCounts [0] = (WORD)(ImageSize_.cx * BufFormat_.GetBitCount() / 8 );
// packed data to follow
SyncBits = SC_FM1;
break;
case CF_PL_422:
dwEqualPitchDivider = 2;
dwByteCountDivider = 2;
break;
case CF_PL_411:
dwEqualPitchDivider = 4;
dwByteCountDivider = 4;
break;
case CF_YUV9:
AlternateSwitch = 4;
dwEqualPitchDivider = 16;
dwByteCountDivider = 4;
break;
case CF_I420:
case CF_YUV12:
AlternateSwitch = 2;
dwEqualPitchDivider = 4;
dwByteCountDivider = 2;
} /*endswitch*/
awByteCounts [1] = awByteCounts [2] =
WORD( awByteCounts [0] / dwByteCountDivider );
Plane2 = Plane1 + dwYPlaneSize / dwEqualPitchDivider;
ChromaPitch /= dwByteCountDivider;
// need to adjust if doing a full-size planar capture.
Plane2 -= dwPlanarAdjust_;
Plane1 -= dwPlanarAdjust_;
Plane2 += dwPlanarAdjust_ / dwByteCountDivider;
Plane1 += dwPlanarAdjust_ / dwByteCountDivider;
// U goes first for this color format
if ( BufFormat_.GetColorFormat() == CF_I420 ) {
DWORD dwTmp = Plane1;
Plane1 = Plane2;
Plane2 = dwTmp;
}
// that's were the instructions are going
LPDWORD pProgLoc = (LPDWORD)(DWORD)ProgramSpace_->getLinearBase();
LPDWORD pProgStart = pProgLoc;
Command CurCommand; // this will create every command we need - yahoo !
// put one of the FM codes here if this program is for image data only
pProgLoc = CreatePrologEpilog( pProgLoc, SyncBits, CurCommand );
// init the destination address
if ( flip ) {
dwLinBufAddr += dwYPlaneSize;
PlanePitch1 = -PlanePitch1;
} else {
dwLinBufAddr -= PlanePitch1;
;
}
// initial adjustment of chroma pointers
Plane1 -= ChromaPitch;
Plane2 -= ChromaPitch;
// now go into a loop (up to the hight of the image) and create
// a command for every line. Commands depend on the data format
unsigned int i = 0;
while ( i < (unsigned)ImageSize_.cy ) {
Instruction CurInstr;
// now take care of vertically sub-sampled planar modes
if ( i % AlternateSwitch != 0 ) {
CurInstr = AltInstrToUse;
} else {
CurInstr = MainInstrToUse;
Plane2 += ChromaPitch;
Plane1 += ChromaPitch;
}
// advance the linear address to the next scan line
dwLinBufAddr += PlanePitch1;
// these arrays contain values for the second instruction
DWORD adwSecondAddr [3];
WORD FirstByteCount [3];
WORD SecondByteCount [3];
adwSecondAddr [0] = adwSecondAddr [1] = adwSecondAddr [2] =
SecondByteCount [0] = SecondByteCount [1] = SecondByteCount [2] = 0;
// initialize byte counts
memmove( FirstByteCount, awByteCounts, sizeof( FirstByteCount ) );
buf.pData_ = PBYTE( dwLinBufAddr );
if ( dwLinBufAddr_ ) // don't bother with the addresses, if we are SKIPping them !
GetSplitNumbers( buf, FirstByteCount [0], SecondByteCount [0],
adwSecondAddr [0], adwAddresses [0] );
PVOID pEOLLoc; // this is needed to set EOL bit in split instructions
if ( AlternateSwitch > 1 && dwLinBufAddr_ ) {
int split = 1;
// Y plane is already done
// now check if we better split instructions
// just make width half of original and create 2 instructions
if ( ImageSize_.cx > 320 && SecondByteCount [0 ] )
split = 2;
// temps for the loop
DWORD dwYPlane = dwLinBufAddr;
DWORD dwVPlane = Plane2;
DWORD dwUPlane = Plane1;
for ( int k = 0; k < split; k++ ) {
// initialize byte counts
memmove( FirstByteCount, awByteCounts, sizeof( FirstByteCount ) );
// and split them in half
for ( int l = 0; l < sizeof FirstByteCount / sizeof FirstByteCount [0]; l++ )
FirstByteCount [l] = WORD (FirstByteCount [l] / split); //create 2 instructions with half the pixels
// see if any of the planes crosses a page boundary
// very ugly... must use the bad structure
buf.pData_ = PBYTE( dwYPlane );
GetSplitNumbers( buf, FirstByteCount [0], SecondByteCount [0],
adwSecondAddr [0], adwAddresses [0] );
// V plane
buf.pData_ = PBYTE( dwVPlane );
GetSplitNumbers( buf, FirstByteCount [1], SecondByteCount [1],
adwSecondAddr [1], adwAddresses [1] );
// U plane
buf.pData_ = PBYTE( dwUPlane );
GetSplitNumbers( buf, FirstByteCount [2], SecondByteCount [2],
adwSecondAddr [2], adwAddresses [2] );
// can not have zero Y byte count
if ( !SecondByteCount [0] && ( SecondByteCount [1] || SecondByteCount [2] ) ) {
FirstByteCount [0] -= max( SecondByteCount [1], SecondByteCount [2] );
FirstByteCount [0] &= ~3; // need to align for the second address
SecondByteCount [0] = WORD( awByteCounts [0] / split - FirstByteCount [0] );
// second addr starts where first ends; no page crossing
adwSecondAddr [0] = adwAddresses [0] + FirstByteCount [0];
}
// now make sure that there are no zero chroma byte counts
// adjust chroma byte counts in proportion to luma byte counts split
if ( SecondByteCount [0] ) {
if ( !SecondByteCount [1] ) {
if ( SecondByteCount [0] > FirstByteCount [0] )
AdjustByteCounts( FirstByteCount [1], SecondByteCount [1], FirstByteCount [1],
WORD( SecondByteCount [0] / FirstByteCount [0] ) );
else
AdjustByteCounts( SecondByteCount [1], FirstByteCount [1], FirstByteCount [1],
WORD( FirstByteCount [0] / SecondByteCount [0] ) );
adwSecondAddr [1] = adwAddresses [1] + FirstByteCount [1];
}
if ( !SecondByteCount [2] ) {
if ( SecondByteCount [0] > FirstByteCount [0] )
AdjustByteCounts( FirstByteCount [2], SecondByteCount [2], FirstByteCount [2],
WORD( SecondByteCount [0] / FirstByteCount [0] ) );
else
AdjustByteCounts( SecondByteCount [2], FirstByteCount [2], FirstByteCount [2],
WORD( FirstByteCount [0] / SecondByteCount [0] ) );
adwSecondAddr [2] = adwAddresses [2] + FirstByteCount [2];
}
}
// now write out the instructions
// first command. SOL==true, EOL==false
pProgLoc = (LPDWORD)CurCommand.Create( pProgLoc, CurInstr,
FirstByteCount, adwAddresses, LoopOnItself, k == 0, false );
pEOLLoc = CurCommand.GetInstrAddr();
if ( SecondByteCount [0] || SecondByteCount [1] || SecondByteCount [2] ) {
// second command
pProgLoc = (LPDWORD)CurCommand.Create( pProgLoc, CurInstr,
SecondByteCount, adwSecondAddr, LoopOnItself, false, false );
pEOLLoc = CurCommand.GetInstrAddr();
}
// adjust starting addresses
dwYPlane += awByteCounts [0] / 2;
dwVPlane += awByteCounts [1] / 2;
dwUPlane += awByteCounts [2] / 2;
} /* endfor */
// do not forget the EOL bit !
CurCommand.SetEOL( pEOLLoc );
} else {
// first command. SOL==true, EOL==false
pProgLoc = (LPDWORD)CurCommand.Create( pProgLoc, CurInstr,
FirstByteCount, adwAddresses, LoopOnItself, true, false );
pEOLLoc = CurCommand.GetInstrAddr();
if ( SecondByteCount [0] || SecondByteCount [1] || SecondByteCount [2] ) {
// second command
pProgLoc = (LPDWORD)CurCommand.Create( pProgLoc, CurInstr,
SecondByteCount, adwSecondAddr, LoopOnItself, false );
} else
CurCommand.SetEOL( pEOLLoc );
} /* endif */
i++;
} /* endwhile */
pChainAddress_ = pProgLoc;
pIRQAddress_ = pProgLoc;
PutInChain();
Skipped_ = false;
dwSize_ = (DWORD)pProgLoc - (DWORD)pProgStart;
return Success;
}
/* Method: RISCProgram::PutInChain
* Purpose: Restores the chain of programs this program was in.
* Input: None
* Output: None
* Note: The chain is destroyed when clipping is set or buffer address is changed
*/
void RISCProgram::PutInChain()
{
Trace t("RISCProgram::PutInChain()");
if ( pChild_ )
SetChain( pChild_ );
if ( pParent_ )
pParent_->SetChain( this );
}
/* Method: RISCProgram::SetChain
* Purpose: Chains this program to another one
* Input: dwProgAddr: DWORD - address of a first instruction in the next program
* Output: None
*/
void RISCProgram::SetChain( RISCProgram *ChainTo )
{
Trace t("RISCProgram::SetChain()");
if ( !ChainTo )
return;
// now we know where we are chaining to
pChild_ = ChainTo;
// now child knows who chains to it.Does it really want to know its parent?<g>
pChild_->SetParent( this );
SetJump( (PDWORD)pChild_->GetPhysProgAddr() );
}
/* Method: RISCProgram::Skip
* Purpose: Changes first instruction so program jumps over itself and to the child
* Input: None
* Output: None
* Note: This functionality is useful when there are not enough data buffers
* to supply for this program
*/
void RISCProgram::Skip()
{
Trace t("RISCProgram::Skip()");
// change first SYNC into JUMP
PDWORD pTmpAddr = pChainAddress_;
pChainAddress_ = (PDWORD)GetProgAddress();
ULONG len;
DWORD PhysAddr = StreamClassGetPhysicalAddress( gpHwDeviceExtension, NULL,
pTmpAddr, DmaBuffer, &len ).LowPart;
SetJump( (PDWORD)PhysAddr );
pChainAddress_ = pTmpAddr;
Skipped_ = true;
}
/* Method: RISCProgram::SetJump
* Purpose: Creates a JUMP instruction to chain some place
* Input: JumpAddr: PDWORD - target address
* Output: None
*/
void RISCProgram::SetJump( PDWORD JumpAddr )
{
Trace t("RISCProgram::SetJump()");
Command JumpCommand;
DWORD adwAddresses [1];
adwAddresses [0] = (DWORD)JumpAddr;
JumpCommand.Create( pChainAddress_, JUMP, NULL, adwAddresses, false );
// make the last JUMP interrupt
if ( Interrupting_ ) {
JumpCommand.SetIRQ( pIRQAddress_ );
if ( Counting_ )
SetToCount();
else
ResetStatus();
}
}
/* Method: RISCProgram::CreateLoop
* Purpose: Creates a closed loop at the end of a RISC program
* Input: resync: bool - value of the resync bit
* Output: None
*/
void RISCProgram::CreateLoop( bool resync )
{
Trace t("RISCProgram::CreateLoop()");
Command SyncCommand( SYNC );
SyncCommand.SetResync( pChainAddress_, resync );
if ( resync == true ) {
DWORD adwAddresses [1];
ULONG len;
DWORD PhysAddr = StreamClassGetPhysicalAddress( gpHwDeviceExtension, NULL,
pChainAddress_, DmaBuffer, &len ).LowPart;
adwAddresses [0] = PhysAddr;
SyncCommand.Create( pChainAddress_, JUMP, NULL, adwAddresses );
}
}
/* Method: RISCProgram::Create
* Purpose: Creates a simple SYNC and JUMP program
* Input: SyncBits: SyncCode - defines what code to do resync with
* Output: None
*/
ErrorCode RISCProgram::Create( SyncCode SyncBits, bool resync )
{
Trace t("RISCProgram::Create(3)");
// allocate memory for the program first
if ( AllocateStorage() != Success )
return Fail;
Command CurCommand; // this will create every command we need - yahoo !
// that's were the instructions are going
LPDWORD pProgLoc = (LPDWORD)ProgramSpace_->getLinearBase();
LPDWORD pProgStart = pProgLoc;
// put one of the FM or VRx codes here
pProgLoc = CreatePrologEpilog( pProgLoc, SyncBits, CurCommand, resync );
pChainAddress_ = pProgLoc;
CreateLoop( true );
dwSize_ = (DWORD)pProgLoc - (DWORD)pProgStart;
return Success;
}
RISCProgram::~RISCProgram()
{
Trace t("RISCProgram::~RISCProgram(3)");
delete ProgramSpace_;
ProgramSpace_ = NULL;
if ( pParent_ )
pParent_->SetChild( NULL );
}