Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1642 lines
55 KiB

/* File: sv_h261_compress.c */
/*****************************************************************************
** Copyright (c) Digital Equipment Corporation, 1995, 1997 **
** **
** All Rights Reserved. Unpublished rights reserved under the copyright **
** laws of the United States. **
** **
** The software contained on this media is proprietary to and embodies **
** the confidential technology of Digital Equipment Corporation. **
** Possession, use, duplication or dissemination of the software and **
** media is authorized only pursuant to a valid written license from **
** Digital Equipment Corporation. **
** **
** RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S. **
** Government is subject to restrictions as set forth in Subparagraph **
** (c)(1)(ii) of DFARS 252.227-7013, or in FAR 52.227-19, as applicable. **
******************************************************************************/
/*
#define VIC 1
#define USE_C
#define _SLIBDEBUG_
*/
#include <math.h>
#include "sv_intrn.h"
#include "SC.h"
#include "SC_conv.h"
#include "SC_err.h"
#include "sv_h261.h"
#include "proto.h"
#include "sv_proto.h"
#ifdef WIN32
#include <mmsystem.h>
#endif
#ifdef _SLIBDEBUG_
#include <stdio.h>
#include <stdlib.h>
#define _DEBUG_ 0 /* detailed debuging statements */
#define _VERBOSE_ 0 /* show progress */
#define _VERIFY_ 1 /* verify correct operation */
#define _WARN_ 0 /* warnings about strange behavior */
#endif
#define Limit_Alpha(x) ( (x>20.0) ? 20.0 : ((x<0.5) ? 0.5 : x) )
#define Limit_Bits(x) ( (x>250.0) ? 250.0 : ((x<5.0) ? 5.0 : x) )
#define Bpos_Y(h261, g, m) (h261->ImageType==IT_QCIF ? (g * 33) + (m % 33) \
: (g/2)*66 + (m % 11) + (g&1)*11 + (m/11) * 22)
static void ExecuteQuantization_GOB();
void CopySubClip_C();
void CopyRev_C();
#define SKIP_THRESH 0.51
#define SKIP_THRESH_INT 2
#define QUANT_CHANGE_THRESH 100.0
#define Intra_Start 1
#define FC 6.6e-9
#define TotalCodedMB_Threshold 2
/* MC Threshold for coding blocks through filter*/
#define D_FILTERTHRESHOLD 1
/* Intra forced every so many blocks */
#define SEQUENCE_INTRA_THRESHOLD 131
extern int bit_set_mask[];
int QuantMType[] = {0,1,0,1,0,0,1,0,0,1}; /* Quantization used */
int CBPMType[] = {0,0,1,1,0,1,1,0,1,1}; /* CBP used in coding */
int IntraMType[] = {1,1,0,0,0,0,0,0,0,0}; /* Intra coded macroblock */
int MFMType[] = {0,0,0,0,1,1,1,1,1,1}; /* Motion forward vector used */
int FilterMType[] = {0,0,0,0,0,0,0,1,1,1}; /* Filter flags */
int TCoeffMType[] = {1,1,1,1,0,1,1,0,1,1}; /* Transform coeff. coded */
struct CodeBook {
float AcEnergy;
float BitsMB;
float QuantClass;
} CBook[100] = {
(float)3.057549, (float)13.650990, (float)16.000000,
(float)2.736564, (float)15.620879, (float)10.000000,
(float)3.032565, (float)13.728155, (float)14.000000,
(float)2.945122, (float)14.390745, (float)17.000000,
(float)4.236328, (float)25.890757, (float)17.000000,
(float)2.935733, (float)14.596116, (float)18.000000,
(float)2.994938, (float)14.515091, (float)19.000000,
(float)3.440835, (float)15.698944, (float)21.000000,
(float)3.235103, (float)13.875000, (float)22.000000,
(float)3.362380, (float)11.448718, (float)23.000000,
(float)4.262544, (float)17.246819, (float)23.000000,
(float)3.933512, (float)15.207619, (float)25.000000,
(float)3.825050, (float)14.351406, (float)26.000000,
(float)3.840182, (float)14.048289, (float)27.000000,
(float)3.717020, (float)14.076046, (float)28.000000,
(float)3.942766, (float)14.216071, (float)29.000000,
(float)3.934838, (float)13.509554, (float)30.000000,
(float)3.899720, (float)14.233502, (float)31.000000,
(float)2.737911, (float)16.522635, (float)5.000000,
(float)2.607979, (float)15.374468, (float)6.000000,
(float)2.864391, (float)15.432000, (float)7.000000,
(float)2.752342, (float)15.809941, (float)8.000000,
(float)2.682438, (float)16.186302, (float)9.000000,
(float)3.581855, (float)34.849625, (float)10.000000,
(float)2.853593, (float)14.700565, (float)11.000000,
(float)2.908124, (float)14.091216, (float)12.000000,
(float)3.099578, (float)15.157043, (float)15.000000,
(float)3.916690, (float)23.636772, (float)16.000000,
(float)5.574149, (float)251.866074, (float) 5.000000,
(float)3.964282, (float)25.137724, (float)18.000000,
(float)4.080521, (float)24.059999, (float)19.000000,
(float)5.759516, (float)37.446808, (float)19.000000,
(float)7.210877, (float)58.061539, (float)19.000000,
(float)2.878292, (float)13.737089, (float)20.000000,
(float)4.076149, (float)22.525490, (float)20.000000,
(float)5.269855, (float)24.170732, (float)22.000000,
(float)7.206488, (float)30.965218, (float)23.000000,
(float)8.118586, (float)40.752293, (float)22.000000,
(float)3.133760, (float)12.679641, (float)24.000000,
(float)4.624318, (float)18.820961, (float)24.000000,
(float)7.050338, (float)30.319149, (float)24.000000,
(float)6.955218, (float)28.934525, (float)25.000000,
(float)6.830490, (float)24.564627, (float)26.000000,
(float)6.244225, (float)22.895706, (float)27.000000,
(float)8.060182, (float)32.934959, (float)26.000000,
(float)6.349021, (float)23.500000, (float)28.000000,
(float)6.514215, (float)23.680555, (float)29.000000,
(float)8.116955, (float)36.047619, (float)28.000000,
(float)6.143418, (float)19.691589, (float)30.000000,
(float)6.238575, (float)20.666666, (float)31.000000,
(float)8.063477, (float)28.651785, (float)31.000000,
(float)10.753970, (float)45.786884, (float)30.000000,
(float)2.728013, (float)14.628572, (float)3.000000,
(float)2.851330, (float)14.559524, (float)4.000000,
(float)2.524028, (float)28.197674, (float)3.000000,
(float)2.218242, (float)38.810001, (float)5.000000,
(float)2.457342, (float)53.670456, (float)5.000000,
(float)2.437406, (float)33.156628, (float)6.000000,
(float)2.861240, (float)33.810810, (float)7.000000,
(float)2.996593, (float)46.674419, (float)7.000000,
(float)3.321854, (float)60.000000, (float)6.000000,
(float)3.035449, (float)35.875000, (float)8.000000,
(float)3.199618 , (float)33.715328, (float)9.000000,
(float)3.625941, (float)50.168674, (float)9.000000,
(float)3.577415, (float)60.454544, (float)8.000000,
(float)4.022958, (float)50.719299, (float)10.000000,
(float)4.749763, (float)69.863640, (float)10.000000,
(float)3.209624, (float)24.840708, (float)11.000000,
(float)3.293082, (float)22.490385, (float)12.000000,
(float)3.845358, (float)34.169117, (float)12.000000,
(float)4.811161, (float)38.609524, (float)13.000000,
(float)4.716694, (float)49.273685, (float)11.000000,
(float)5.540541, (float)68.905403, (float)11.000000,
(float)2.989831, (float)13.654839, (float)13.000000,
(float)3.670721, (float)23.812500, (float)13.000000,
(float)3.589297, (float)21.033333, (float)14.000000,
(float)4.645432, (float)30.153847, (float)14.000000,
(float)4.498426, (float)30.930555, (float)15.000000,
(float)4.926270, (float)35.812500, (float)16.000000,
(float)5.255817, (float)43.228260, (float)14.000000,
(float)6.547225, (float)57.948719, (float)14.000000,
(float)6.379679, (float)71.934067, (float) 12.000000,
(float)7.022222, (float)76.955559, (float)14.000000,
(float)6.077474, (float)46.511112, (float)16.000000,
(float)7.406376, (float)79.258064, (float)16.000000,
(float)2.280469, (float)64.266670, (float)3.000000,
(float)2.396216, (float)75.647057, (float)4.000000,
(float)3.033032, (float)74.105263, (float)6.000000,
(float)3.093046, (float)90.606560, (float)5.000000,
(float)3.843145, (float)79.211266, (float)7.000000,
(float)4.781610, (float)87.513161, (float)9.000000,
(float)3.846819, (float)101.846939, (float)7.000000,
(float)4.856852, (float)114.625000, (float)8.000000,
(float)5.609015, (float)90.250000, (float)10.000000,
(float)7.049340, (float)97.333336, (float)12.000000,
(float)6.508484, (float)113.569893, (float) 10.000000,
(float)7.099700, (float)136.116272, (float)10.000000,
(float)8.087169, (float)100.054344, (float)13.000000,
(float)9.193896, (float)135.032974, (float)12.000000,
(float)11.427065, (float)162.600006, (float)14.000000
};
#define Abs(value) ( (value < 0) ? (-value) : value)
#define BufferContents() (ScBSBitPosition(bs) + H261->BufferOffset -\
(((H261->CurrentGOB*H261->NumberMDU)+H261->CurrentMDU) \
*H261->bit_rate*H261->FrameSkip\
/(H261->NumberGOB*H261->NumberMDU*H261->FrameRate_Fix)))
#define BufferSize() (H261->bit_rate/1) /*In bits */
/******** For sending RTP info. ************/
static SvStatus_t sv_H261WriteExtBitstream(SvH261Info_t *H261, ScBitstream_t *bs);
extern ScStatus_t ScConvert422ToYUV_char (u_char *RawImage,
u_char *Y, u_char *U, u_char *V,
int Width, int Height);
/***** forward declarations ******/
static SvStatus_t p64EncodeFrame(SvCodecInfo_t *Info, u_char *InputImage,
u_char *CompData);
static SvStatus_t p64EncodeGOB(SvH261Info_t *H261, ScBitstream_t *bs);
static SvStatus_t p64EncodeMDU (SvH261Info_t *H261, ScBitstream_t *bs);
static SvStatus_t p64CompressMDU(SvH261Info_t *H261, ScBitstream_t *bs);
static void ExecuteQuantization_GOB(SvH261Info_t *H261);
static int findcode(SvH261Info_t *H261, struct CodeBook *lcb);
static SvStatus_t ntsc_grab (u_char *RawImage,
u_char *Comp1, u_char *Comp2, u_char *Comp3,
int Width, int Height);
static void VertSubSampleK (unsigned char *Incomp, unsigned char *workloc,
int Width, int Height);
#if 0
SvStatus_t SvSetFrameSkip (SvHandle_t Svh, int FrameSkip)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
H261->FrameSkip = FrameSkip;
return (NoErrors);
}
SvStatus_t SvSetFrameCount (SvHandle_t Svh, int FrameCount)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
H261->LastFrame = FrameCount;
return (NoErrors);
}
SvStatus_t SvSetSearchLimit (SvHandle_t Svh, int SearchLimit)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
if ((SearchLimit <= 0) || (SearchLimit > 20))
return (SvErrorBadArgument);
H261->search_limit = SearchLimit;
return (NoErrors);
}
SvStatus_t SvSetMotionEstimationType (SvHandle_t Svh, int MotionEstType)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
if (MotionEstType < 0)
return (SvErrorBadArgument);
H261->ME_method = MotionEstType;
return (NoErrors);
}
SvStatus_t SvSetMotionThreshold (SvHandle_t Svh, int Threshold)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
if (Threshold < 0)
return (SvErrorBadArgument);
H261->ME_threshold = Threshold;
return (NoErrors);
}
SvStatus_t SvSetImageType (SvHandle_t Svh, int ImageType)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
int i;
if (!Info)
return (SvErrorCodecHandle);
H261->ImageType = ImageType;
switch(H261->ImageType)
{
case IT_NTSC:
H261->NumberGOB = 10; /* Parameters for NTSC design */
H261->NumberMDU = 33;
H261->YWidth = 352;
H261->YHeight = 240;
H261->CWidth = H261->YWidth/2;
H261->CHeight = H261->YHeight/2;
break;
case IT_CIF:
H261->NumberGOB = 12; /* Parameters for CIF design */
H261->NumberMDU = 33;
H261->YWidth = 352;
H261->YHeight = 288;
H261->CWidth = H261->YWidth/2;
H261->CHeight = H261->YHeight/2;
break;
case IT_QCIF:
H261->NumberGOB = 3; /* Parameters for QCIF design */
H261->NumberMDU = 33;
H261->YWidth = 176;
H261->YHeight = 144;
H261->CWidth = H261->YWidth/2;
H261->CHeight = H261->YHeight/2;
break;
default:
/*WHEREAMI();*/
_SlibDebug(_VERIFY_,
printf("Unknown ImageType: %d\n",H261->ImageType) );
return (SvErrorUnrecognizedFormat);
}
H261->YW4 = H261->YWidth/4;
H261->CW4 = H261->CWidth/4;
H261->LastIntra = (unsigned char **)
ScCalloc(H261->NumberGOB*sizeof(unsigned char *));
for(i=0;i<H261->NumberGOB;i++)
{
H261->LastIntra[i] = (unsigned char *)
ScCalloc(H261->NumberMDU*sizeof(unsigned char));
memset(H261->LastIntra[i],0,H261->NumberMDU);
}
_SlibDebug(_VERBOSE_, printf("H261->NumberGOB=%d\n",H261->NumberGOB) );
switch(H261->ImageType)
{
case IT_NTSC:
H261->PType=0x04;
H261->PSpareEnable=1;
H261->PSpare=0x8c;
break;
case IT_CIF:
H261->PType=0x04;
break;
case IT_QCIF:
H261->PType=0x00;
break;
default:
/*WHEREAMI();*/
_SlibDebug(_VERIFY_,
printf("Image Type not supported: %d\n", H261->ImageType) );
return (SvErrorUnrecognizedFormat);
}
return (NoErrors);
}
#endif
SvStatus_t svH261CompressFree(SvHandle_t Svh)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
SvH261Info_t *H261 = (SvH261Info_t *) Info->h261;
if (!H261->inited)
return(NoErrors);
if (H261->CurrentFrame > H261->LastFrame+1)
H261->CurrentFrame = H261->LastFrame+1;
H261->TemporalReference = H261->CurrentFrame % 32;
H261->ByteOffset = 0;
WritePictureHeader(H261, Info->BSOut);
sv_H261HuffFree(Info->h261);
if (Info->h261->LastIntra)
{
int i;
for(i=0; i<Info->h261->NumberGOB; i++)
ScFree(Info->h261->LastIntra[i]);
ScFree(Info->h261->LastIntra);
}
if (Info->h261->Y)
ScFree(Info->h261->Y);
if (Info->h261->U)
ScFree(Info->h261->U);
if (Info->h261->V)
ScFree(Info->h261->V);
if (Info->h261->YREF)
ScFree(Info->h261->YREF);
if (Info->h261->UREF)
ScFree(Info->h261->UREF);
if (Info->h261->VREF)
ScFree(Info->h261->VREF);
if (Info->h261->YRECON)
ScFree(Info->h261->YRECON);
if (Info->h261->URECON)
ScFree(Info->h261->URECON);
if (Info->h261->VRECON)
ScFree(Info->h261->VRECON);
if (Info->h261->YDEC)
ScFree(Info->h261->YDEC);
if (Info->h261->UDEC)
ScFree(Info->h261->UDEC);
if (Info->h261->VDEC)
ScFree(Info->h261->VDEC);
if (Info->h261->workloc)
ScFree(Info->h261->workloc);
if (Info->h261->RTPInfo)
ScFree(Info->h261->RTPInfo);
H261->inited=FALSE;
return (NoErrors);
}
SvStatus_t SvGetFrameNumber (SvHandle_t Svh, u_int *FrameNumber)
{
SvCodecInfo_t *Info = (SvCodecInfo_t *)Svh;
*FrameNumber = Info->h261->CurrentFrame;
return (NoErrors);
}
/*
** Purpose: Writes the RTP payload info out to the stream.
*/
static SvStatus_t sv_H261WriteExtBitstream(SvH261Info_t *H261, ScBitstream_t *bs)
{
ScBSPosition_t NumberBits, i;
/* use this macro to byte reverse words */
#define PutBits32(BS, a) ScBSPutBits(BS, (a) & 0xff, 8); \
ScBSPutBits(BS, (a>>8)&0xff, 8); \
ScBSPutBits(BS, (a>>16)&0xff, 8); \
ScBSPutBits(BS, (a>>24)&0xff, 8);
/* Need to bitstuff here to make sure that these structures are
DWORD aligned */
NumberBits=ScBSBitPosition(bs);
if ((NumberBits%32)!=0)
ScBSPutBits(bs, 0, 32-((unsigned int)NumberBits % 32)); /* align on a DWORD boundary */
for (i = 0; i < (int)H261->RTPInfo->trailer.dwNumberOfPackets; i++)
{
ScBSPutBits(bs,0,32) ; /* dwFlags */
PutBits32(bs,H261->RTPInfo->bsinfo[i].dwBitOffset);
ScBSPutBits(bs,H261->RTPInfo->bsinfo[i].MBAP,8);
ScBSPutBits(bs,H261->RTPInfo->bsinfo[i].Quant,8);
ScBSPutBits(bs,H261->RTPInfo->bsinfo[i].GOBN,8);
ScBSPutBits(bs,H261->RTPInfo->bsinfo[i].HMV,8);
ScBSPutBits(bs,H261->RTPInfo->bsinfo[i].VMV,8);
ScBSPutBits(bs,0,8); /* padding0 */
ScBSPutBits(bs,0,16); /* padding1 */
}
/* write RTP extension trailer */
PutBits32(bs, H261->RTPInfo->trailer.dwVersion);
PutBits32(bs, H261->RTPInfo->trailer.dwFlags);
PutBits32(bs, H261->RTPInfo->trailer.dwUniqueCode);
PutBits32(bs, (H261->RTPInfo->trailer.dwCompressedSize+7)/8); /*tfm - padded up to whole byte */
PutBits32(bs, H261->RTPInfo->trailer.dwNumberOfPackets);
ScBSPutBits(bs, H261->RTPInfo->trailer.SourceFormat, 8);
ScBSPutBits(bs, H261->RTPInfo->trailer.TR, 8);
ScBSPutBits(bs, H261->RTPInfo->trailer.TRB, 8);
ScBSPutBits(bs, H261->RTPInfo->trailer.DBQ, 8);
return (NoErrors);
}
/*
** Function: svH261Compress()
** Purpose: Encodes a single H261 image frame.
*/
SvStatus_t svH261Compress(SvCodecInfo_t *Info, u_char *InputImage)
{
SvH261Info_t *H261=Info->h261;
ScBitstream_t *bs=Info->BSOut;
SvStatus_t status;
int i1, i2, tBuff;
int iGOB, iMDU, iMBpos, MiniFlag;
unsigned char *dummy_y, *dummy_u, *dummy_v;
double xValue,yValue;
_SlibDebug(_DEBUG_,
printf("p64EncodeFrame(Info=%p, H261=%p)\n",Info, H261) );
if (H261->CurrentFrame == 0)
H261->GQuant=H261->MQuant=H261->InitialQuant;
H261->ByteOffset = 0;
if((H261->CurrentFrame != H261->StartFrame) && H261->NoSkippedFrame)
{
dummy_y = H261->YRECON;
dummy_u = H261->URECON;
dummy_v = H261->VRECON;
H261->YRECON = H261->YDEC;
H261->URECON = H261->UDEC;
H261->VRECON = H261->VDEC;
H261->YDEC = dummy_y;
H261->UDEC = dummy_u;
H261->VDEC = dummy_v;
/* memset(H261->YDEC, 0,( H261->PICSIZE ) );
memset(H261->UDEC, 0,( H261->PICSIZEBY4) );
memset(H261->VDEC, 0,( H261->PICSIZEBY4 ) );
*/
/*
dummy_y = H261->YREF;
dummy_u = H261->UREF;
dummy_v = H261->VREF;
H261->YREF = H261->Y;
H261->UREF = H261->U;
H261->VREF = H261->V;
H261->Y = dummy_y;
H261->U = dummy_u;
H261->V = dummy_v;
*/
_SlibDebug(_DEBUG_, printf("LastBits=%d NBitsPerFrame=%d\n",
H261->LastBits, H261->NBitsPerFrame) );
if (H261->NBitsPerFrame)
{
H261->OverFlow = (int)((double) H261->LastBits/
(double) H261->NBitsPerFrame + 0.5);
H261->OverFlow -= 1;
if(H261->OverFlow >0)
{
H261->alpha1 += 2.2* H261->OverFlow;
H261->alpha2 -= 3.2* H261->OverFlow;
H261->MIN_MQUANT += 1;
H261->alpha1 = Limit_Alpha(H261->alpha1);
H261->alpha2 = Limit_Alpha(H261->alpha2);
}
if(H261->OverFlow<0) H261->OverFlow=0;
if(H261->OverFlow>2) H261->OverFlow=2;
}
else
H261->OverFlow=0;
H261->C_U_Frames += H261->OverFlow;
H261->CurrentFrame += H261->OverFlow*H261->FrameSkip;
}
_SlibDebug(_VERBOSE_,
printf("Currently Encoding Frame No. %d\n", H261->CurrentFrame) );
if (IsYUV422Packed(Info->InputFormat.biCompression))
{
/* Input is in NTSC format, convert */
if ((Info->InputFormat.biWidth == NTSC_WIDTH) &&
(Info->InputFormat.biHeight == NTSC_HEIGHT))
status = ntsc_grab ((unsigned char *)InputImage,
(unsigned char *)(H261->Y),
(unsigned char *)(H261->U),
(unsigned char *)(H261->V),
(int) Info->Width,(int )Info->Height);
else if (((Info->InputFormat.biWidth == CIF_WIDTH) &&
(Info->InputFormat.biHeight == CIF_HEIGHT)) ||
((Info->InputFormat.biWidth == QCIF_WIDTH) &&
(Info->InputFormat.biHeight == QCIF_HEIGHT)))
status = ScConvert422ToYUV_char(InputImage,
(unsigned char *)(H261->Y),
(unsigned char *)(H261->U),
(unsigned char *)(H261->V),
Info->Width,Info->Height);
if (status != NoErrors)
return (status);
}
else if (IsYUV411Sep(Info->InputFormat.biCompression))
{
/*
* If YUV 12 SEP, Not converting, so just copy data to the luminance
* and chrominance appropriatelyi
*/
memcpy (H261->Y, InputImage, H261->PICSIZE );
memcpy (H261->U, InputImage+( H261->PICSIZE),
H261->PICSIZE/4 );
memcpy (H261->V, InputImage+(H261->PICSIZE + (H261->PICSIZEBY4)),
H261->PICSIZE/4);
}
else if (IsYUV422Sep(Info->InputFormat.biCompression))
{
_SlibDebug(_DEBUG_, printf("ScConvert422PlanarTo411()\n") );
ScConvert422PlanarTo411(InputImage,
H261->Y, H261->U, H261->V,
Info->Width,Info->Height);
}
else
{
_SlibDebug(_WARN_, printf("Unsupported Video format\n") );
return(SvErrorUnrecognizedFormat);
}
H261->Global_Avg = 0.0;
if ((H261->CodedFrames >= Intra_Start) && !H261->makekey )
{
if (H261->ME_method==ME_BRUTE)
BruteMotionEstimation(H261, H261->YREF, H261->YRECON, H261->Y);
else
Logsearch(H261, H261->YREF, H261->YRECON, H261->Y);
/*
CrawlMotionEstimation(H261, H261->YREF, H261->YRECON, H261->Y);
*/
memset(H261->CodedMB, 1, 512);
H261->TotalCodedMB_Intra = 0;
H261->TotalCodedMB_Inter = 0;
H261->ChChange = 0;
for(iGOB=0; iGOB < H261->NumberGOB; iGOB++)
{
_SlibDebug(_DEBUG_, printf("ByteOffset = %d\n",H261->ByteOffset) );
for (iMDU=0; iMDU<H261->NumberMDU; iMDU++)
{
iMBpos = Bpos_Y(H261, iGOB, iMDU);
if(H261->MeOVal[iMBpos] < SKIP_THRESH_INT)
{
H261->CodedMB[iMBpos] = 0;
MiniFlag = 0;
}
else if (H261->MeOVal[iMBpos] <= H261->MeVal[iMBpos])
{
if ((H261->PreviousMeOVal[iMBpos]-H261->ActThr2<H261->MeOVal[iMBpos])
&& (H261->MeOVal[iMBpos] < (H261->PreviousMeOVal[iMBpos]+
H261->ActThr2)))
{
if (((H261->PreviousMeOVal[iMBpos]-H261->ActThr) <
H261->MeOVal[iMBpos])
&& (H261->MeOVal[iMBpos] < (H261->PreviousMeOVal[iMBpos] +
H261->ActThr)))
{
MiniFlag = 0;
H261->CodedMB[iMBpos] = 0;
}
else
{
H261->ChChange++;
MiniFlag = 1;
}
}
else
MiniFlag = 1;
}
else
MiniFlag = 1;
if (MiniFlag)
{
xValue = (double) H261->MeOVal[iMBpos];
yValue = (double) H261->MeVal[iMBpos];
xValue = xValue/256;
yValue = yValue/256;
H261->VARF = 3*H261->MeVAR[iMBpos]/(512.);
H261->VARORF = 3*H261->MeVAROR[iMBpos]/(512.);
H261->VARSQ = H261->VARF*H261->VARF;
H261->VARORSQ = H261->VARORF*H261->VARORF;
H261->MWOR = H261->MeMWOR[iMBpos];
if ((H261->VARSQ < H261->ZBDecide) || (H261->VARORSQ > H261->VARSQ))
{
/* (MC+Inter)mode */
if ( !H261->MeX[iMBpos] && !H261->MeY[iMBpos] &&
(xValue < 0.75 || (xValue < 2.8 && yValue > (xValue*0.5)) ||
yValue > (xValue/1.1)) )
{
H261->All_MType[iMBpos] = 2; /* Inter mode */
H261->TotalCodedMB_Inter++;
H261->Global_Avg += H261->VARF;
}
else if (H261->VARF < (double) D_FILTERTHRESHOLD) /* MC mode */
{
H261->All_MType[iMBpos] = 5; /* No Filter MC */
H261->TotalCodedMB_Inter++;
H261->Global_Avg += H261->VARF;
}
else
{
H261->All_MType[iMBpos] = 8; /* Filter MC */
H261->TotalCodedMB_Inter++;
H261->Global_Avg += H261->VARF;
}
}
else
{
H261->All_MType[iMBpos] = 0; /*Intramode */
H261->TotalCodedMB_Intra++;
H261->Global_Avg += H261->VARORF;
}
}
if (H261->LastIntra[iGOB][iMDU]>SEQUENCE_INTRA_THRESHOLD)
{
H261->All_MType[iMBpos]=0; /* Code intra every 132 blocks */
H261->TotalCodedMB_Intra++;
H261->Global_Avg += H261->VARF;
}
}
}
}
else
{
memset(H261->CodedMB, 0, 512);
H261->TotalCodedMB_Intra = 0;
H261->TotalCodedMB_Inter = 0;
if(H261->CodedFrames==0)
i1 = 0;
else
i1 = (H261->NumberGOB/Intra_Start)*H261->CodedFrames;
i2 = (H261->NumberGOB/Intra_Start)*(H261->CodedFrames+1);
if(H261->makekey){
i1 = 0;
i2 = H261->NumberGOB;
}
for(iGOB=i1; iGOB<i2; iGOB++)
{
_SlibDebug(_DEBUG_, printf("ByteOffset = %d\n", H261->ByteOffset) );
for(iMDU=0; iMDU<H261->NumberMDU; iMDU++)
{
iMBpos = Bpos_Y(H261, iGOB, iMDU);
H261->All_MType[iMBpos] = 0;
H261->CodedMB[iMBpos] = 1;
H261->TotalCodedMB_Intra++;
H261->Global_Avg += H261->VARF;
}
}
}
H261->TotalCodedMB = H261->TotalCodedMB_Intra + H261->TotalCodedMB_Inter/2;
H261->TT_MB = H261->TotalCodedMB_Intra +
H261->TotalCodedMB_Inter - H261->ChChange;
if (H261->TT_MB) /* watch out for divide by 0 */
H261->Global_Avg = H261->Global_Avg/H261->TT_MB;
_SlibDebug(_DEBUG_,
printf("TT_MB = %d Global_Avg=%d\n", H261->TT_MB, H261->Global_Avg) );
H261->Current_CodedMB[0] = 0;
H261->Current_CodedMB[1] = 0;
if(H261->C_U_Frames==0) H261->BitsLeft = 0;
H261->BitsLeft = H261->BitsLeft - H261->Buffer_NowPic;
tBuff = H261->PBUFF - (H261->C_U_Frames%H261->PBUFF);
if(tBuff >= H261->Pictures_in_Buff)
{
H261->Pictures_in_Buff = tBuff;
if (H261->BitsLeft < - H261->Buffer_All/3)
H261->BitsLeft = H261->Buffer_All;
else if (H261->BitsLeft > 2*H261->Buffer_All)
H261->BitsLeft = H261->Buffer_All;
else
H261->BitsLeft = H261->BitsLeft + H261->Buffer_All;
H261->NBitsCurrentFrame = H261->BitsLeft/H261->Pictures_in_Buff;
}
H261->Pictures_in_Buff = tBuff;
if(H261->BitsLeft > 2*H261->Buffer_All)
{
_SlibDebug(_DEBUG_, printf("\n Bits Left is %f times more than Buffer_All",
(float)H261->BitsLeft/(float) H261->Buffer_All) );
H261->BitsLeft = H261->Buffer_All;
if(H261->MIN_MQUANT > 2)
H261->MIN_MQUANT -= 1;
}
H261->NBitsCurrentFrame = H261->BitsLeft/H261->Pictures_in_Buff;
H261->LowerQuant = 0;
H261->FineQuant = 0;
H261->ActThr = H261->ActThr5; H261->ActThr2 = H261->ActThr6;
if (H261->bit_rate < 128001)
if (H261->NBitsCurrentFrame > (5*H261->NBitsPerFrame/3))
H261->NBitsCurrentFrame = 5*H261->NBitsPerFrame/4;
else if (H261->NBitsCurrentFrame > 5*H261->NBitsPerFrame/4)
{
if((H261->frame_rate<=15) && (H261->bit_rate > 255000))
{
H261->NBitsCurrentFrame = 5*H261->NBitsPerFrame/4;
H261->FineQuant = 3;
H261->ActThr = H261->ActThr3;
H261->ActThr2 = H261->ActThr4;
}
else if (H261->frame_rate==30)
{
H261->FineQuant = 0;
H261->ActThr = H261->ActThr4;
H261->ActThr2 = H261->ActThr4;
H261->NBitsCurrentFrame = 5*H261->NBitsPerFrame/4;
}
}
H261->Buffer_NowPic = 0;
H261->MQuant = H261->GQuant;
_SlibDebug(_DEBUG_, printf("GQuant for this picture is %d\n", H261->GQuant) );
H261->TemporalReference = H261->CurrentFrame % 32;
if(H261->TotalCodedMB > TotalCodedMB_Threshold)
{
/* TRAILER information */
if (H261->extbitstream)
{
/* H261->RTPInfo->trailer.dwSrcVersion = 0; */
H261->RTPInfo->trailer.dwVersion = 0;
if(H261->CurrentFrame == H261->StartFrame)
H261->RTPInfo->trailer.dwFlags = RTP_H261_INTRA_CODED;
else
H261->RTPInfo->trailer.dwFlags = 0;
H261->RTPInfo->trailer.dwUniqueCode = BI_DECH261DIB;
H261->RTPInfo->trailer.dwNumberOfPackets = 0;
if(H261->ImageType == IT_QCIF)
H261->RTPInfo->trailer.SourceFormat = 2;
else
H261->RTPInfo->trailer.SourceFormat = 3;
H261->RTPInfo->trailer.TR = (unsigned char)H261->TemporalReference;
H261->RTPInfo->trailer.TRB = 0;
H261->RTPInfo->trailer.DBQ = 0;
H261->RTPInfo->pre_MB_position=H261->RTPInfo->last_packet_position=ScBSBitPosition(bs);
H261->RTPInfo->pre_MB_GOB = 0;
H261->RTPInfo->pre_MBAP = 0;
/* store the picture start pos in dwCompressSize,
we'll subtract from this later */
H261->RTPInfo->trailer.dwCompressedSize = (unsigned dword)ScBSBitPosition(bs);
}
H261->CodedFrames++;
H261->C_U_Frames++;
WritePictureHeader(H261, bs);
H261->Buffer_NowPic += 32;
for (H261->CurrentGOB=0; H261->CurrentGOB<H261->NumberGOB; H261->CurrentGOB++)
{
H261->CurrentMDU=0;
_SlibDebug(_DEBUG_,
printf("p64EncodeGOB() ByteOffset = %d\n", H261->ByteOffset) );
status = p64EncodeGOB(H261, bs);
if (status != NoErrors)
return (status);
}
{
ScBSPosition_t x = ScBSBitPosition(bs); /* mwtellb(H261); */
H261->LastBits = x - H261->TotalBits;
H261->TotalBits = x;
if (H261->extbitstream)
H261->RTPInfo->trailer.dwCompressedSize
= (unsigned dword)(x-H261->RTPInfo->trailer.dwCompressedSize);
}
_SlibDebug(_DEBUG_, printf("after mwtellb() LastBits=%d TotalBits=%d\n",
H261->LastBits, H261->TotalBits) );
if (H261->bit_rate)
{
if (H261->CurrentFrame==H261->StartFrame)
{
/* Begin Buffer at 0.5 size */
H261->FirstFrameBits = H261->TotalBits;
H261->BufferOffset = (BufferSize()/2) - BufferContents();
_SlibDebug(_DEBUG_,
printf("First Frame Reset Buffer by delta bits: %d\n",
H261->BufferOffset) );
}
/* Take off standard deduction afterwards. */
H261->BufferOffset -= (H261->bit_rate*H261->FrameSkip/H261->FrameRate_Fix);
}
else if (H261->CurrentFrame==H261->StartFrame)
H261->FirstFrameBits = H261->TotalBits;
H261->CurrentGOB=0;H261->TransmittedFrames++;
H261->NoSkippedFrame = 1;
H261->CurrentFrame+=H261->FrameSkip;/* Change GOB & Frame at same time */
/* write RTP info. */
if (H261->extbitstream)
{
SvStatus_t status;
status = sv_H261WriteExtBitstream(H261, bs);
if (status!=SvErrorNone) return(status);
}
}
else
{
H261->NoSkippedFrame = 0;
H261->CurrentFrame+=H261->FrameSkip;
H261->C_U_Frames++;
H261->alpha1 -= 1.50;
H261->alpha2 += 1.50;
H261->MIN_MQUANT -= 1;
H261->alpha1 = Limit_Alpha(H261->alpha1);
H261->alpha2 = Limit_Alpha(H261->alpha2);
}
if(H261->makekey) H261->makekey = 0; /* disable key-frame trigger */
return (NoErrors);
} /**** End of Encode Frame ****/
/*
** Function: p64EncodeGOB()
** Pupose: Encodes a group of blocks within a frame.
*/
static SvStatus_t p64EncodeGOB(SvH261Info_t *H261, ScBitstream_t *bs)
{
const int CurrentGOB=H261->CurrentGOB;
const int YWidth=H261->YWidth, CWidth=H261->CWidth;
int CurrentMDU, h, VIndex, HIndex;
double error, stepsize;
SvStatus_t status;
if (H261->extbitstream)
{
ScBSPosition_t cur_position;
cur_position = ScBSBitPosition(bs);
/* start a new packet */
if (H261->RTPInfo->trailer.dwNumberOfPackets==0 ||
(cur_position-H261->RTPInfo->last_packet_position)
>= (unsigned)H261->packetsize-128)
{
SvH261BSInfo_t *bsinfo=&H261->RTPInfo->bsinfo[H261->RTPInfo->trailer.dwNumberOfPackets];
/* breaking packet before GOB boundaries */
H261->RTPInfo->last_packet_position = H261->RTPInfo->pre_MB_position;
H261->RTPInfo->trailer.dwNumberOfPackets++;
bsinfo->dwBitOffset = (unsigned dword)H261->RTPInfo->pre_MB_position;
bsinfo->MBAP = (unsigned char)H261->RTPInfo->pre_MBAP;
bsinfo->Quant = (unsigned char)H261->UseQuant;
bsinfo->GOBN = (unsigned char)H261->RTPInfo->pre_MB_GOB;
bsinfo->HMV = 0;
bsinfo->VMV = 0;
bsinfo->padding0 = 0;
bsinfo->padding1 = 0;
}
H261->RTPInfo->pre_MB_position = cur_position;
H261->RTPInfo->pre_MB_GOB = CurrentGOB;
H261->RTPInfo->pre_MBAP=0;
}
if(H261->bit_rate) {
if(CurrentGOB==0){
H261->GQuant =8;
H261->MQuant = 8;
}
else
ExecuteQuantization_GOB(H261);
}
else{ /* for VBR */
if (H261->CurrentFrame==H261->StartFrame)
H261->GQuant = H261->MQuant = H261->QPI;
else
H261->GQuant = H261->MQuant = H261->QP;
}
switch (H261->ImageType)
{
case IT_NTSC:
case IT_CIF:
H261->GRead=CurrentGOB;
break;
case IT_QCIF:
H261->GRead=CurrentGOB<<1;
break;
default:
_SlibDebug(_VERIFY_,
printf("Unknown Image Type: %d\n", H261->ImageType) );
return (SvErrorUnrecognizedFormat);
}
WriteGOBHeader(H261, bs);
H261->Buffer_NowPic += 26;
H261->LastMBA = -1; H261->MType=0;
/*
* MAIN LOOP
*/
for (CurrentMDU=0; CurrentMDU<H261->NumberMDU; CurrentMDU++)
{
H261->CurrentMDU=CurrentMDU;
H261->MBpos = Bpos_Y(H261, CurrentGOB, CurrentMDU);
H261->LastMType=H261->MType;
H261->MType = H261->All_MType[H261->MBpos];
if((H261->MType>1) && !H261->CodedMB[H261->MBpos])
{
H261->SkipMB++;
if (H261->ImageType==IT_QCIF)
{
HIndex = (CurrentMDU % 11) * 16;
VIndex = (CurrentGOB*48) + ((CurrentMDU/11) * 16);
}
else /* IT_CIF or NTSC */
{
HIndex = ((((CurrentGOB & 1)*11)+(CurrentMDU%11))*16);
VIndex = ((CurrentGOB/2)*48) + ((CurrentMDU/11) * 16);
}
_SlibDebug(_DEBUG_,
printf ("Skipping MB... MType=%d\n", H261->MType) );
h = VIndex*YWidth;
H261->VYWH = h + HIndex;
H261->VYWH2 = (((h/2) + HIndex) /2);
ScCopyMB16(&H261->YRECON[H261->VYWH], &H261->YDEC[H261->VYWH],
YWidth, YWidth);
ScCopyMB8 (&H261->URECON[H261->VYWH2], &H261->UDEC[H261->VYWH2],
CWidth, CWidth);
ScCopyMB8 (&H261->VRECON[H261->VYWH2], &H261->VDEC[H261->VYWH2],
CWidth, CWidth);
}
else
{
/*
* Encode a MDU - was a call to p64EncodeMDU()
*/
H261->Current_MBBits=0;
status = p64CompressMDU(H261, bs);
if (status != NoErrors)
return (status);
if (H261->extbitstream)
{
ScBSPosition_t cur_position;
cur_position = ScBSBitPosition(bs);
/* start a new packet */
if ((cur_position-H261->RTPInfo->last_packet_position) >= (unsigned)H261->packetsize-128)
{
SvH261BSInfo_t *bsinfo=&H261->RTPInfo->bsinfo[H261->RTPInfo->trailer.dwNumberOfPackets];
H261->RTPInfo->last_packet_position = H261->RTPInfo->pre_MB_position;
H261->RTPInfo->trailer.dwNumberOfPackets++;
bsinfo->dwBitOffset = (unsigned dword)H261->RTPInfo->pre_MB_position;
bsinfo->MBAP = (unsigned char)H261->RTPInfo->pre_MBAP;
bsinfo->Quant = (unsigned char)H261->UseQuant;
bsinfo->GOBN = (unsigned char)H261->RTPInfo->pre_MB_GOB;
bsinfo->HMV = 0;
bsinfo->VMV = 0;
bsinfo->padding0 = 0;
bsinfo->padding1 = 0;
}
H261->RTPInfo->pre_MB_position = cur_position;
H261->RTPInfo->pre_MB_GOB = H261->CurrentGOB;
H261->RTPInfo->pre_MBAP = H261->LastMBA;
}
H261->QUse++; /* Accumulate statistics */
H261->QSum+=H261->UseQuant;
if (H261->MType < 10)
H261->MacroTypeFrequency[H261->MType]++;
else
{
_SlibDebug(_VERIFY_, printf("Illegal MType: %d\n",H261->MType) );
return (SvErrorIllegalMType);
}
H261->Buffer_NowPic += H261->Current_MBBits;
/*
H261->MyCB[H261->CurrentCBNo].BitsMB += 0.02*(H261->Current_MBBits -
H261->MyCB[H261->CurrentCBNo].BitsMB);
*/
if (H261->MType > 1 && H261->bit_rate > 0)
{
error = (H261->Current_MBBits - CBook[H261->CurrentCBNo].BitsMB);
if (fabs(error) > (0.2*H261->Current_MBBits))
error = CBook[H261->CurrentCBNo].BitsMB * 0.2*error/fabs(error);
if (error > 0)
stepsize = 0.005/(H261->Current_MBBits*H261->bit_rate/112000.0);
if (error <= 0)
stepsize = 0.07/(H261->Current_MBBits*H261->bit_rate/112000.0);
CBook[H261->CurrentCBNo].BitsMB += (float)(stepsize*error);
}
}
}
return (NoErrors);
} /**** End of p64EncodeGOB ****/
#if 0
/* Now done inline */
/*
** Function: p64EncodeMDU()
** Purpose: Encodes the MDU by read/compressing the MDU, then
** writing it, then decoding it and accumulating statistics.
*/
static SvStatus_t p64EncodeMDU (SvH261Info_t *H261, ScBitstream_t *bs)
{
SvStatus_t status;
H261->Current_MBBits=0;
status = p64CompressMDU(H261, bs);
if (status != NoErrors)
return (status);
H261->QUse++; /* Accumulate statistics */
H261->QSum+=H261->UseQuant;
if (H261->MType < 10)
H261->MacroTypeFrequency[H261->MType]++;
else
{
_SlibDebug(_VERIFY_, printf("Illegal MType: %d\n",H261->MType) );
return (SvErrorIllegalMType);
}
return (NoErrors);
}
#endif
/* these temporary buffers are used by p64CompressMDU and
should be allocated elsewhere */
static float Idct[6][64];
static int Odct[6][64];
static float TempDct[64];
static int Dct[64];
/*
** Function: p64CompressMDU()
** Pupose: Reads in the MDU, and attempts to compress it.
** If the chosen MType is invalid, it finds the closest match.
*/
static SvStatus_t p64CompressMDU(SvH261Info_t *H261, ScBitstream_t *bs)
{
const int CurrentGOB=H261->CurrentGOB, CurrentMDU=H261->CurrentMDU;
const int YWidth=H261->YWidth, CWidth=H261->CWidth;
const int YW4=H261->YW4, CW4 = H261->CW4;
int j, x, tQuant, indQ, VIndex, HIndex, MType;
int accum, pmask, CBPFlag, *input;
SvStatus_t status;
int inputbuf[10][64];
unsigned int *y0ptr, *y1ptr, *y2ptr, *y3ptr;
unsigned int *uptr, *vptr;
unsigned int *y0ptr_dec, *y1ptr_dec, *y2ptr_dec,*y3ptr_dec;
unsigned int *uptr_dec, *vptr_dec;
if (H261->ImageType==IT_QCIF)
{
HIndex = (CurrentMDU % 11) * 16;
VIndex = (CurrentGOB*48) + ((CurrentMDU/11) * 16);
}
else /* IT_CIF or NTSC */
{
HIndex = ((((CurrentGOB & 1)*11)+(CurrentMDU%11))*16);
VIndex = ((CurrentGOB/2)*48) + ((CurrentMDU/11) * 16);
}
H261->MQFlag = 0;
if(H261->MType < 2)
H261->Avg_AC = H261->MeVAROR[H261->MBpos]/256.0;
else
H261->Avg_AC = H261->MeVAR[H261->MBpos]/256.0;
H261->MVDH = H261->MeX[H261->MBpos];
H261->MVDV = H261->MeY[H261->MBpos];
H261->VYWH = (VIndex*YWidth) + HIndex;
H261->VYWH2 = ((((VIndex*YWidth)/2) + HIndex) /2);
H261->VYWHMV = H261->VYWH + H261->MVDH + (H261->MVDV*YWidth);
H261->VYWHMV2 = H261->VYWH2 +
((H261->MVDV/2)*CWidth) + (H261->MVDH/2);
y0ptr = (unsigned int *) (H261->Y + H261->VYWH);
y1ptr = y0ptr + 2;
y2ptr = y0ptr + (YWidth<<1);
y3ptr = y2ptr + 2;
uptr = (unsigned int *) (H261->U + H261->VYWH2);
vptr = (unsigned int *) (H261->V + H261->VYWH2);
y0ptr_dec = (unsigned int *) (H261->YDEC + H261->VYWH);
y1ptr_dec = y0ptr_dec + 2;
y2ptr_dec = y0ptr_dec + (YWidth<<1);
y3ptr_dec = y2ptr_dec + 2;
uptr_dec = (unsigned int *) (H261->UDEC + H261->VYWH2);
vptr_dec = (unsigned int *) (H261->VDEC + H261->VYWH2);
tQuant = H261->MQuant;
if (CurrentMDU==0 || H261->LastMBA==-1)
H261->MQuant = H261->GQuant;
else
{
if(H261->bit_rate)
ExecuteQuantization_GOB(H261);
indQ = H261->GQuant-tQuant;
if (indQ < 0)
indQ = indQ*2;
if (Abs(indQ) < H261->MSmooth)
H261->MQuant = tQuant;
else
{
H261->MQuant = H261->GQuant;
H261->MQFlag = 1;
}
}
if (H261->MQFlag && H261->MType!=4 && H261->MType!=7)
{
H261->MType++;
_SlibDebug(_DEBUG_, printf("H261->MType++ == %d\n", H261->MType) );
}
else
_SlibDebug(_DEBUG_, printf("H261->MType == %d\n", H261->MType) );
MType=H261->MType;
H261->Current_MBBits = 0;
if (QuantMType[MType])
{
if(H261->bit_rate){ /* CBR */
H261->UseQuant = H261->MQuant;
H261->GQuant = H261->MQuant; /* Future MB Quant is now MQuant */
}
else { /* VBR */
if (H261->CurrentFrame==H261->StartFrame || IntraMType[MType])
H261->UseQuant = H261->GQuant = H261->MQuant = H261->QPI;
else
H261->UseQuant = H261->GQuant = H261->MQuant = H261->QP;
}
}
else
H261->UseQuant = H261->GQuant;
/*
* WRITE
*/
H261->MBA = CurrentMDU - H261->LastMBA;
if (TCoeffMType[MType])
{
if (!IntraMType[MType])
{
if (FilterMType[MType])
{
ScCopyMB16(&H261->YRECON[H261->VYWHMV], &H261->mbRecY[0], YWidth, 16);
ScCopyMB8 (&H261->URECON[H261->VYWHMV2],&H261->mbRecU[0], CWidth, 8);
ScCopyMB8 (&H261->VRECON[H261->VYWHMV2],&H261->mbRecV[0], CWidth, 8);
ScLoopFilter(&H261->mbRecY[0], H261->workloc, 16);
ScLoopFilter(&H261->mbRecY[8], H261->workloc, 16);
ScLoopFilter(&H261->mbRecY[128], H261->workloc, 16);
ScLoopFilter(&H261->mbRecY[136], H261->workloc, 16);
ScLoopFilter(&H261->mbRecU[0], H261->workloc, 8);
ScLoopFilter(&H261->mbRecV[0], H261->workloc, 8);
}
else if (MFMType[MType])
{
ScCopyMB16(&H261->YRECON[H261->VYWHMV], &H261->mbRecY[0], YWidth, 16);
ScCopyMB8 (&H261->URECON[H261->VYWHMV2],&H261->mbRecU[0], CWidth, 8);
ScCopyMB8 (&H261->VRECON[H261->VYWHMV2],&H261->mbRecV[0], CWidth, 8);
}
else
{
ScCopyMB16(&H261->YRECON[H261->VYWH], &H261->mbRecY[0], YWidth, 16);
ScCopyMB8 (&H261->URECON[H261->VYWH2],&H261->mbRecU[0], CWidth, 8);
ScCopyMB8 (&H261->VRECON[H261->VYWH2],&H261->mbRecV[0], CWidth, 8);
}
_SlibDebug(_DEBUG_, printf("Doing CopySub \n") );
ScCopySubClip(&H261->mbRecY[0], &Idct[0][0], y0ptr, 4, YW4);
ScCopySubClip(&H261->mbRecY[8], &Idct[1][0], y1ptr, 4, YW4);
ScCopySubClip(&H261->mbRecY[128], &Idct[2][0], y2ptr, 4, YW4);
ScCopySubClip(&H261->mbRecY[136], &Idct[3][0], y3ptr, 4, YW4);
ScCopySubClip(&H261->mbRecU[0], &Idct[4][0], uptr, 2, CW4);
ScCopySubClip(&H261->mbRecV[0], &Idct[5][0], vptr, 2, CW4);
}
else
{
_SlibDebug(_DEBUG_, printf("Doing CopyRev \n") );
ScCopyRev(y0ptr, &Idct[0][0], YW4 );
ScCopyRev(y1ptr, &Idct[1][0], YW4);
ScCopyRev(y2ptr, &Idct[2][0], YW4);
ScCopyRev(y3ptr, &Idct[3][0], YW4);
ScCopyRev(uptr, &Idct[4][0], CW4);
ScCopyRev(vptr, &Idct[5][0], CW4);
}
}
/*
* DCT, Quantize, and Zigzag.
* Dequantize and IDCT
*/
if (IntraMType[MType])
{
_SlibDebug(_DEBUG_, printf("Doing IntraQuant\n") );
for(j=0; j<6; j++)
{
/* ScaleDct(&Idct[j][0],TempDct);*/
ScFDCT8x8(&Idct[j][0],TempDct);
IntraQuant(TempDct, Dct, H261->UseQuant);
ZigzagMatrix(Dct, &inputbuf[j][0]);
Inv_Quant(Dct, H261->UseQuant, IntraMType[MType], TempDct);
ScScaleIDCT8x8(TempDct, &Odct[j][0]);
}
}
else
{
_SlibDebug(_DEBUG_, printf("Doing InterQuant\n") );
for(j=0; j<6; j++)
{
/* ScaleDct(&Idct[j][0],TempDct);*/
ScFDCT8x8(&Idct[j][0],TempDct);
InterQuant(TempDct, Dct, H261->UseQuant);
ZigzagMatrix(Dct, &inputbuf[j][0]);
Inv_Quant(Dct, H261->UseQuant, IntraMType[MType], TempDct);
ScScaleIDCT8x8(TempDct, &Odct[j][0]);
}
}
if (!CBPMType[MType])
{
CBPFlag=0;
H261->CBP = 0x3f;
}
else
{
for(pmask=0, H261->CBP=0, j=0; j<6; j++)
{
input = &inputbuf[j][0];
for(accum=0, x=0; x<64; x++)
accum += (int)Abs(input[x]);
if (accum && (pmask==0))
pmask|=bit_set_mask[5-j];
if (accum>H261->CBPThreshold)
H261->CBP |= bit_set_mask[5-j];
}
if (!H261->CBP)
{
if (pmask)
H261->CBP=pmask;
else if (!FilterMType[MType])
{
H261->MType=4;
MType=4;
}
else
{
H261->MType=7;
MType=7;
}
}
}
_SlibDebug(_DEBUG_,printf("CurrentGOB=%d CurrentMDU=%d LastIntra[%d]=%p\n",
CurrentGOB, CurrentMDU,CurrentGOB,
H261->LastIntra[CurrentGOB]) );
if (IntraMType[MType])
H261->LastIntra[CurrentGOB][CurrentMDU]=0;
else
H261->LastIntra[CurrentGOB][CurrentMDU]++;
/*
* Write out the MB
*/
status = WriteMBHeader(H261, bs);
if (status != NoErrors)
return (status);
H261->LastMBA = CurrentMDU;
H261->TotalMB[IntraMType[MType]]++;
H261->Current_CodedMB[IntraMType[MType]]++;
if (TCoeffMType[MType])
for(j=0; j<6; j++)
{
if (H261->CBP & bit_set_mask[5-j])
{
input = &inputbuf[j][0];
if (j>3)
H261->UVTypeFrequency[MType]++;
else
H261->YTypeFrequency[MType]++;
H261->CodedBlockBits=0;
if (CBPMType[MType])
status = CBPEncodeAC(H261, bs, 0, input);
else
{
EncodeDC(H261, bs, *input);
H261->Current_MBBits += 8;
status = EncodeAC(H261, bs, 1, input);
}
if (status != NoErrors)
return (status);
H261->Current_MBBits += H261->CurrentBlockBits;
H261->MBBits[IntraMType[MType]] += H261->CodedBlockBits;
if (j<4)
H261->YCoefBits+=H261->CodedBlockBits;
else if (j==5)
H261->UCoefBits+=H261->CodedBlockBits;
else
H261->VCoefBits+=H261->CodedBlockBits;
}
}
/*
* Now write it to Frame _dec !!
*/
if(!IntraMType[MType])
{
const unsigned char CBP = (unsigned char)H261->CBP;
if (CBP & 0x20)
{
ScCopyAddClip(&H261->mbRecY[0], &Odct[0][0], y0ptr_dec, 16, YW4);
H261->CBPFreq[0]++;
}
else
ScCopyMV8(&H261->mbRecY[0], y0ptr_dec, 16, YW4);
if (CBP & 0x10)
{
ScCopyAddClip(&H261->mbRecY[8], &Odct[1][0],y1ptr_dec, 16, YW4);
H261->CBPFreq[1]++;
}
else
ScCopyMV8(&H261->mbRecY[8], y1ptr_dec, 16, YW4);
if (CBP & 0x08)
{
ScCopyAddClip(&H261->mbRecY[128], &Odct[2][0], y2ptr_dec, 16, YW4);
H261->CBPFreq[2]++;
}
else
ScCopyMV8(&H261->mbRecY[128], y2ptr_dec, 16, YW4);
if (CBP & 0x04)
{
ScCopyAddClip(&H261->mbRecY[136], &Odct[3][0], y3ptr_dec, 16, YW4);
H261->CBPFreq[3]++;
}
else
ScCopyMV8(&H261->mbRecY[136], y3ptr_dec, 16, YW4);
if (CBP & 0x02)
{
ScCopyAddClip(&H261->mbRecU[0], &Odct[4][0], uptr_dec, 8, CW4);
H261->CBPFreq[4]++;
}
else
ScCopyMV8(&H261->mbRecU[0], uptr_dec, 8, CW4);
if (CBP & 0x01)
{
ScCopyAddClip(&H261->mbRecV[0], &Odct[5][0], vptr_dec, 8, CW4);
H261->CBPFreq[5]++;
}
else
ScCopyMV8(&H261->mbRecV[0], vptr_dec, 8, CW4);
}
else
{
ScCopyClip(&Odct[0][0], y0ptr_dec, YW4);
ScCopyClip(&Odct[1][0], y1ptr_dec, YW4);
ScCopyClip(&Odct[2][0], y2ptr_dec, YW4);
ScCopyClip(&Odct[3][0], y3ptr_dec, YW4);
ScCopyClip(&Odct[4][0], uptr_dec, CW4);
ScCopyClip(&Odct[5][0], vptr_dec, CW4);
}
return (NoErrors);
}
#ifndef Bpos_Y
/* Now a macro */
/*
** Function: Bpos_Y()
** Purpose: Returns the designated MDU number inside of the frame of the
** installed Iob given by the input gob, mdu, horizontal and
** vertical offset. It returns 0 on error.
*/
static int Bpos_Y(SvH261Info_t *H261, int g, int m)
{
int tg;
BEGIN("Bpos");
switch (H261->ImageType)
{
case IT_QCIF:
tg = (g * 33) + (m % 33);
/*
tg = (g/2) * 33 + (m%11) + (m/11)*11;
*/
return(tg);
break;
case IT_CIF:
case IT_NTSC:
tg = (g/2)*66 + (m % 11) + (g&1)*11 + (m/11) * 22;
return(tg);
break;
default:
/* WHEREAMI();*/
_SlibDebug(_VERIFY_,
printf("Unknown image type: %d.\n",H261->ImageType) );
/* return (SvErrorUnrecognizedFormat);*/
break;
}
return(0);
}
#endif
static void ExecuteQuantization_GOB(SvH261Info_t *H261)
{
double si1, si2;
if(H261->TotalCodedMB)
{
if(H261->bit_rate) { /* CBR */
si1 = (double) H261->CurrentGOB / (double) H261->NumberGOB;
si2 =(double) exp(-4.0*(si1-0.5)*(si1-0.5)) + 0.45;
if (H261->Avg_AC >= H261->Global_Avg)
H261->BitsAvailableMB =(float)(si2 *
H261->NBitsCurrentFrame/(1.0 *(float) H261->TT_MB) -
(H261->Global_Avg - H261->Avg_AC)*2.5) ;
else if (H261->Avg_AC < H261->Global_Avg)
H261->BitsAvailableMB = (float)( si2* H261->NBitsCurrentFrame/
(1.0*(float) H261->TT_MB) -
(H261->Global_Avg - H261->Avg_AC)*2.5 ) ;
if(H261->MType > 0)
H261->LowerQuant = H261->LowerQuant_FIX;
else
H261->LowerQuant = 0;
H261->BitsAvailableMB += H261->LowerQuant;
H261->BitsAvailableMB =(float)Limit_Bits(H261->BitsAvailableMB);
H261->ACE = (float) H261->Avg_AC;
H261->GQuant = findcode(H261, CBook);
if(H261->FineQuant) H261->GQuant -= H261->FineQuant;
if(H261->CurrentFrame == H261->StartFrame) H261->GQuant = 8;
if (H261->GQuant < 1) H261->GQuant = 1;
if(H261->GQuant > 28) H261->GQuant = 28;
}
else /* VBR */
H261->GQuant = H261->QP;
}
}
static int findcode(SvH261Info_t *H261, struct CodeBook *cb)
{
const codelength=H261->CodeLength;
const float ace=H261->ACE, bmb=H261->BitsAvailableMB;
int i, mincb=-1;
float distance, mindist, val1, val2;
struct CodeBook *lcb=cb;
H261->CurrentCBNo = 15;
if((ace <=0.0) || (bmb <=0.0))
return(25);
mindist = (float)1000000.0;
for(i=0; i<codelength; i++)
{
val1=lcb->AcEnergy - ace;
val2=lcb->BitsMB - bmb;
distance = (val1*val1) + (val2*val2);
if (distance < mindist)
{
mindist = distance;
mincb = i;
}
lcb++;
}
if (mincb>=0)
{
H261->CurrentCBNo = mincb;
return((int)cb[mincb].QuantClass);
}
else
return(25);
}
/*
** Function: ntsc_grab()
** Purpose: Grab a Q/CIF frame from a 4:2:2 NTSC input. We dup every 10th
** pixel horizontally and every 4th line vertically. We also
** discard the chroma on every other line, since CIF wants 4:1:1.
*/
static SvStatus_t ntsc_grab (u_char *RawImage,
u_char *Comp1, u_char *Comp2, u_char *Comp3,
int Width, int Height)
{
int h, w;
u_char *yp = Comp1, *up = Comp2, *vp = Comp3;
int NTSC_Height = 240;
int NTSC_Width = 320;
int stride = Width;
int vdup = 5;
for (h = 0; h < NTSC_Height; ++h)
{
int hdup = 10/2;
for (w = NTSC_Width; w > 0; w -= 2)
{
yp[0] = RawImage[0];
yp[1] = RawImage[2];
yp += 2;
if ((h & 1) == 0)
{
*up++ = RawImage[1];
*vp++ = RawImage[3];
}
RawImage += 4;
if (--hdup <= 0)
{
hdup = 10/2;
yp[0] = yp[-1];
yp += 1;
if ((h & 1) == 0)
{
if ((w & 2) == 0)
{
up[0] = up[-1];
++up;
vp[0] = vp[-1];
++vp;
}
}
}
}
if (--vdup <= 0)
{
vdup = 5;
/* copy previous line */
memcpy((char*)yp, (char*)yp - stride, stride);
yp += stride;
if ((h & 1) == 0)
{
int s = stride >> 1;
memcpy((char*)up, (char*)up - s, s);
memcpy((char*)vp, (char*)vp - s, s);
up += s;
vp += s;
}
}
}
return (NoErrors);
}
#ifdef USE_C
static void VertSubSampleK (unsigned char *Incomp, unsigned char *workloc,
int Width, int Height)
{
int j, i, temp;
int ByteWidth = Width * 4;
for(j=0; j<(Width ); j++) {
temp = Incomp[(j * 4)]*3;
temp += Incomp[(j * 4)+ByteWidth]*3;
temp += Incomp[(j * 4)+ByteWidth*2];
temp = temp/7;
workloc[j] = (unsigned char) temp;
}
for(i=2; i<(Height-2); i += 2) {
for(j=0; j<(Width ); j++) {
temp = Incomp[(i-1)*ByteWidth + (j * 4)];
temp += Incomp[i*ByteWidth + (j * 4)]*3;
temp += Incomp[(i+1)*ByteWidth + (j * 4)]*3;
temp += Incomp[(i+2)*ByteWidth + (j * 4)];
workloc[(i/2)*Width + j] = (unsigned char) (temp >> 3);
}
}
i = Width*(Height/2-1);
for(j=0; j<Width; j++) {
temp = Incomp[(j * 4) + (Height-3)*ByteWidth];
temp += Incomp[j + (Height-2)*ByteWidth]*3;
temp += Incomp[j + (Height-1)*ByteWidth]*3;
temp = temp/7;
workloc[i+j] = (unsigned char) temp;
}
}
#endif