Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1240 lines
44 KiB

/*++ BUILD Version: 0002 // Increment this if a change has global effects
Copyright (c) 1998-1999 Microsoft Corporation
Module Name:
PschdPrf.c
Abstract:
This file implements the Extensible Objects for the PSched Flow and
Pipe object types. In particular, it implements the three Open,
Collect, and Close functions called by PerfMon/SysMon.
Author:
Eliot Gillum (t-eliotg) June 14, 1998
Revision History
Rajesh Sundaram : Reworked the code to work with flows/instances coming up and down.
--*/
// Useful macro
#define WRITEBUF(_addr, _len) memcpy(pdwBuf,(_addr),(_len)); pdwBuf = (PULONG)((PUCHAR)pdwBuf + (_len));
#define MULTIPLE_OF_EIGHT(_x) (((_x)+7) & ~7)
#include <windows.h>
#include <winerror.h>
#include <string.h>
#include <wtypes.h>
#include <ntprfctr.h>
#include <malloc.h>
#include <ntddndis.h>
#include <qos.h>
#include <ntddpsch.h>
#include <objbase.h>
#include "PschdPrf.h"
#include "PerfUtil.h"
#include "PschdCnt.h"
#include <rtutils.h>
// Psched Performance Key
#define PSCHED_PERF_KEY TEXT("SYSTEM\\CurrentControlSet\\Services\\PSched\\Performance")
HINSTANCE ghInst; // module instance handle
DWORD dwOpenCount = 0; // count of "Open" threads
BOOL bInitOK = FALSE; // true = DLL initialized OK
HANDLE ghTciClient; // TCI client handle
HANDLE ghClRegCtx; // TCI Client Registration Context
PPIPE_INFO gpPI; // Pipe and flow information array
ULONG gTotalIfcNameSize; // Number of bytes of all the interface names (incl. NULL term. char)
ULONG gTotalFlowNameSize; // Number of bytes of all the flow names (incl. NULL term. char)
ULONG giIfcBufSize = 1024; // set the initial buffer size to 1kb
DWORD gPipeStatLen; // Length of the buffer used to define all the
// Pipe statistics that will be reported by the
// underlying components
DWORD gFlowStatLen; // Length of the buffer used to define all the
// Flow statistics that will be reported by the
// underlying components
CRITICAL_SECTION ghPipeFlowCriticalSection;
#if DBG
//
// For tracing support.
//
#define DBG_INFO (0x00010000 | TRACE_USE_MASK)
#define DBG_ERROR (0x00020000 | TRACE_USE_MASK)
DWORD gTraceID = INVALID_TRACEID;
#define Trace0(_mask, _str) TracePrintfEx(gTraceID, _mask, _str)
#define Trace1(_mask, _str, _a) TracePrintfEx(gTraceID, _mask, _str, _a)
#else
#define Trace0(_mask, _str)
#define Trace1(_mask, _str, _a)
#endif
// Function Prototypes
//
// these are used to ensure that the data collection functions
// accessed by Perflib will have the correct calling format.
PM_OPEN_PROC OpenPschedPerformanceData;
PM_COLLECT_PROC CollectPschedPerformanceData;
PM_CLOSE_PROC ClosePschedPerformanceData;
// Declared in PschdDat.c
extern PERF_OBJECT_TYPE PsPipeObjType;
extern PS_PIPE_PIPE_STAT_DEF PsPipePipeStatDef;
extern PS_PIPE_CONFORMER_STAT_DEF PsPipeConformerStatDef;
extern PS_PIPE_SHAPER_STAT_DEF PsPipeShaperStatDef;
extern PS_PIPE_SEQUENCER_STAT_DEF PsPipeSequencerStatDef;
extern PERF_OBJECT_TYPE PsFlowObjType;
extern PS_FLOW_FLOW_STAT_DEF PsFlowFlowStatDef;
extern PS_FLOW_CONFORMER_STAT_DEF PsFlowConformerStatDef;
extern PS_FLOW_SHAPER_STAT_DEF PsFlowShaperStatDef;
extern PS_FLOW_SEQUENCER_STAT_DEF PsFlowSequencerStatDef;
void closePipeFlowInfo(PPIPE_INFO *ppPI);
BOOL
getFlowInfo(IN PPIPE_INFO pPI, IN ULONG flowCount)
{
HANDLE hEnum;
ULONG size;
PVOID pFlowBuf;
static ULONG FlowBufSize=1024;
ULONG j;
ULONG BytesWritten;
ULONG status;
ULONG nameSize;
// initialize the enumeration handle
hEnum = NULL;
for(j=0; j<pPI->numFlows; j++)
{
size = ((wcslen(pPI->pFlowInfo[j].FriendlyName) + 1) * sizeof(WCHAR));
gTotalFlowNameSize -= MULTIPLE_OF_EIGHT(size);
}
PsFlowObjType.NumInstances -= pPI->numFlows;
PsFlowObjType.NumInstances += flowCount;
pPI->numFlows = flowCount;
if(pPI->pFlowInfo)
free(pPI->pFlowInfo);
if(flowCount)
{
pPI->pFlowInfo = (PFLOW_INFO) malloc(flowCount * sizeof(FLOW_INFO));
//
// We cannot allocate memory for the flow names. There is nothing much we can do here.
// let's pretend as though there are no flows.
//
if(!pPI->pFlowInfo)
{
Trace0(DBG_ERROR, L"[getFlowInfo]: malloc failed \n");
PsFlowObjType.NumInstances -= flowCount;
pPI->numFlows = 0;
return FALSE;
}
else
{
memset(pPI->pFlowInfo, 0, sizeof(FLOW_INFO) * flowCount);
}
// allocate the flow enumeration buffer
pFlowBuf = malloc(FlowBufSize);
if(!pFlowBuf)
{
Trace0(DBG_ERROR, L"[getFlowInfo]: malloc failed \n");
free(pPI->pFlowInfo);
pPI->pFlowInfo = NULL;
PsFlowObjType.NumInstances -= flowCount;
pPI->numFlows = 0;
return FALSE;
}
// initialize the enumeration handle
hEnum = NULL;
// enumerate each flow and remember its name
for (j=0; j<pPI->numFlows; j++)
{
PENUMERATION_BUFFER pEnum;
LPQOS_FRIENDLY_NAME pFriendly;
ULONG TcObjectLength, FriendlyNameFound;
// If this is not the first time but the enumeration handle is NULL, bail with whatever we have so far
if( (j > 0) && (!hEnum))
{
free(pFlowBuf);
PsFlowObjType.NumInstances -= flowCount;
pPI->numFlows = j;
return TRUE;
}
// get the next flow
BytesWritten = FlowBufSize;
flowCount = 1;
status = TcEnumerateFlows(pPI->hIfc, &hEnum, &flowCount, &BytesWritten, pFlowBuf);
while (ERROR_INSUFFICIENT_BUFFER == status)
{
free(pFlowBuf);
FlowBufSize *= 2;
BytesWritten = FlowBufSize;
pFlowBuf = malloc(BytesWritten);
if(!pFlowBuf)
{
Trace0(DBG_ERROR, L"[getFlowInfo]: malloc failed \n");
free(pPI->pFlowInfo);
pPI->pFlowInfo = NULL;
PsFlowObjType.NumInstances -= flowCount;
pPI->numFlows = 0;
return FALSE;
}
status = TcEnumerateFlows(pPI->hIfc, &hEnum, &flowCount, &BytesWritten, pFlowBuf);
}
if ( (NO_ERROR != status)
|| (BytesWritten == 0) )
{
if ( status )
Trace1(DBG_ERROR, L"[getFlowInfo]: TcEnumerateFlows failed with 0x%x \n", status);
else if ( BytesWritten == 0 )
Trace0(DBG_ERROR, L"[getFlowInfo]: TcEnumerateFlows returned 0 bytes \n");
free(pFlowBuf);
free(pPI->pFlowInfo);
pPI->pFlowInfo = NULL;
PsFlowObjType.NumInstances -= flowCount;
pPI->numFlows = 0;
return FALSE;
}
// save the flow's name
pEnum = (PENUMERATION_BUFFER)pFlowBuf;
FriendlyNameFound = 0;
pFriendly = (LPQOS_FRIENDLY_NAME)pEnum->pFlow->TcObjects;
TcObjectLength = pEnum->pFlow->TcObjectsLength;
while(0)
{
if(pFriendly->ObjectHdr.ObjectType == QOS_OBJECT_FRIENDLY_NAME)
{
// We found a friendly name. Lets use it.
memcpy(
pPI->pFlowInfo[j].FriendlyName,
pFriendly->FriendlyName,
PS_FRIENDLY_NAME_LENGTH *sizeof(WCHAR) );
pPI->pFlowInfo[j].FriendlyName[PS_FRIENDLY_NAME_LENGTH] = L'\0';
nameSize = (wcslen(pPI->pFlowInfo[j].FriendlyName) + 1) * sizeof(WCHAR);
gTotalFlowNameSize += MULTIPLE_OF_EIGHT(nameSize);
FriendlyNameFound = 1;
break;
}
else {
// Move on to the next QoS object.
TcObjectLength -= pFriendly->ObjectHdr.ObjectLength;
pFriendly = (LPQOS_FRIENDLY_NAME)((PCHAR) pFriendly + pFriendly->ObjectHdr.ObjectLength);
}
}
if(!FriendlyNameFound)
{
//
// If there is no friendly name, the Instance name becomes the friendly name.
//
memcpy(pPI->pFlowInfo[j].FriendlyName,
((PENUMERATION_BUFFER)pFlowBuf)->FlowName,
PS_FRIENDLY_NAME_LENGTH * sizeof(WCHAR) );
pPI->pFlowInfo[j].FriendlyName[PS_FRIENDLY_NAME_LENGTH] = L'\0';
nameSize = (wcslen(pPI->pFlowInfo[j].FriendlyName) + 1) * sizeof(WCHAR);
gTotalFlowNameSize += MULTIPLE_OF_EIGHT(nameSize);
}
//
// We have to always store the instance name since we call TcQueryFlow with this name.
//
nameSize = (wcslen(((PENUMERATION_BUFFER)pFlowBuf)->FlowName) + 1) * sizeof(WCHAR);
memcpy(pPI->pFlowInfo[j].InstanceName, ((PENUMERATION_BUFFER)pFlowBuf)->FlowName, nameSize);
}
free(pFlowBuf);
}
else
{
pPI->pFlowInfo = NULL;
Trace0(DBG_INFO, L"[getFlowInfo]: No flows to enumerate \n");
}
return TRUE;
}
// getPipeFlowInfo() initializes an array of PIPE_INFO structs to contain
// up-to-date information about the pipes available and the flows installed on them
//
// Parameters: ppPI - pointer to a pointer to an array of PIPE_INFO structs
// Return value: TRUE if all info in *ppPI is valid, FALSE otherwise
BOOL getPipeFlowInfo(OUT PPIPE_INFO *ppPI)
{
ULONG status;
ULONG BytesWritten;
ULONG i,j,k;
PVOID pIfcDescBuf = NULL;
PTC_IFC_DESCRIPTOR currentIfc;
PPIPE_INFO pPI = NULL;
HANDLE hEnum;
PVOID pFlowBuf;
static ULONG FlowBufSize=1024;
ULONG flowCount;
ULONG nameSize;
ULONG size;
PPERF_COUNTER_DEFINITION pCntDef;
PsPipeObjType.NumInstances=0;
PsFlowObjType.NumInstances = 0;
pIfcDescBuf = (PVOID)malloc(giIfcBufSize);
if (NULL == pIfcDescBuf)
{
Trace0(DBG_ERROR, L"[getPipeFlowInfo]: Malloc failed \n");
return FALSE;
}
BytesWritten = giIfcBufSize;
status = TcEnumerateInterfaces(ghTciClient, &BytesWritten, pIfcDescBuf);
while (ERROR_INSUFFICIENT_BUFFER==status)
{
free(pIfcDescBuf);
giIfcBufSize *= 2;
pIfcDescBuf = (PTC_IFC_DESCRIPTOR)malloc(giIfcBufSize);
if (NULL == pIfcDescBuf)
{
Trace0(DBG_ERROR, L"[getPipeFlowInfo]: Malloc failed \n");
return FALSE;
}
BytesWritten = giIfcBufSize;
status = TcEnumerateInterfaces(ghTciClient, &BytesWritten, pIfcDescBuf);
}
if (NO_ERROR!=status)
{
// If we're not going to be able to enumerate the interfaces, we have no alternatives
Trace1(DBG_ERROR, L"[getPipeFlowInfo]: TcEnumerateInterfaces failed with 0x%x\n", status);
free(pIfcDescBuf);
return FALSE;
}
// Figure out the number of interfaces
for (i=0; i<BytesWritten; i+=((PTC_IFC_DESCRIPTOR)((BYTE *)pIfcDescBuf+i))->Length)
{
PsPipeObjType.NumInstances++;
}
// Open each interface and remember the handle to it
if (0 != PsPipeObjType.NumInstances) {
// Allocate space for our structs
*ppPI=(PPIPE_INFO)malloc(PsPipeObjType.NumInstances * sizeof(PIPE_INFO) );
if (NULL == *ppPI)
{
Trace0(DBG_ERROR, L"[getPipeFlowInfo]: Malloc failed \n");
free(pIfcDescBuf);
return FALSE;
}
else
{
memset(*ppPI, 0, sizeof(PIPE_INFO) * PsPipeObjType.NumInstances);
}
pPI = *ppPI; // less typing, cleaner source code
gTotalIfcNameSize = 0;
gTotalFlowNameSize = 0;
currentIfc = pIfcDescBuf;
// Initialize struct information for each interface
for (i=0; i<(unsigned)PsPipeObjType.NumInstances; i++)
{
// remember the inteface's name
nameSize = (wcslen(currentIfc->pInterfaceName) + 1) * sizeof(WCHAR);
pPI[i].IfcName = malloc(nameSize);
if (NULL == pPI[i].IfcName)
{
Trace0(DBG_ERROR, L"[getPipeFlowInfo]: Malloc failed \n");
goto Error;
}
wcscpy(pPI[i].IfcName, currentIfc->pInterfaceName);
//
// add this name size to gTotalIfcNameSize.
//
gTotalIfcNameSize += MULTIPLE_OF_EIGHT(nameSize);
//
// open the interface
//
status = TcOpenInterface(
pPI[i].IfcName,
ghTciClient,
&pPI[i],
&pPI[i].hIfc);
if (status != NO_ERROR)
{
Trace1(DBG_ERROR, L"[getPipeFlowInfo]: TcOpenInterface failed with 0x%x\n", status);
goto Error;
}
//
// Enumerate the flows on the interface
// find out how many flows to expect
//
pPI[i].numFlows = 0;
pPI[i].pFlowInfo = 0;
status = TcQueryInterface(pPI[i].hIfc,
(LPGUID)&GUID_QOS_FLOW_COUNT,
TRUE,
&BytesWritten,
&flowCount);
if (NO_ERROR != status)
{
Trace1( DBG_ERROR,
L"[getPipeFlowInfo]: TcQueryInterface failed with 0x%x, ignoring this error\n",
status);
}
else
{
getFlowInfo(&pPI[i], flowCount);
}
// move to the next interface
currentIfc = (PTC_IFC_DESCRIPTOR)((PBYTE)currentIfc + currentIfc->Length);
}
}
// determine what components will be contributing stats, if there any stats to get
if (PsPipeObjType.NumInstances > 0) {
//
// compute the counter definition lengths. Each set of counters is preceeded by a PERF_OBJECT_TYPE, followed
// by 'n' PERF_COUNTER_DEFINITIONS. All these are aligned on 8 byte boundaries, so we don't have to do any
// fancy aligining.
//
PsPipeObjType.DefinitionLength = sizeof(PERF_OBJECT_TYPE) +
sizeof(PsPipePipeStatDef) +
sizeof(PsPipeConformerStatDef) +
sizeof(PsPipeShaperStatDef) +
sizeof(PsPipeSequencerStatDef);
PsFlowObjType.DefinitionLength = sizeof(PERF_OBJECT_TYPE) +
sizeof(PsFlowFlowStatDef) +
sizeof(PsFlowConformerStatDef) +
sizeof(PsFlowShaperStatDef) +
sizeof(PsFlowSequencerStatDef);
// compute the sizes of the stats buffers.
gPipeStatLen = FIELD_OFFSET(PS_COMPONENT_STATS, Stats) + // initial offset
sizeof(PS_ADAPTER_STATS) + // every interface has adapter stats
FIELD_OFFSET(PS_COMPONENT_STATS, Stats) +
sizeof(PS_CONFORMER_STATS) +
FIELD_OFFSET(PS_COMPONENT_STATS, Stats) +
sizeof(PS_SHAPER_STATS) +
FIELD_OFFSET(PS_COMPONENT_STATS, Stats) +
sizeof(PS_DRRSEQ_STATS);
gFlowStatLen = FIELD_OFFSET(PS_COMPONENT_STATS, Stats) + // initial offset
sizeof(PS_FLOW_STATS) + // the flow's stats
FIELD_OFFSET(PS_COMPONENT_STATS, Stats) +
sizeof(PS_CONFORMER_STATS) +
FIELD_OFFSET(PS_COMPONENT_STATS, Stats) +
sizeof(PS_SHAPER_STATS) +
FIELD_OFFSET(PS_COMPONENT_STATS, Stats) +
sizeof(PS_DRRSEQ_STATS);
// Align these to 8 byte boundaries.
gPipeStatLen = MULTIPLE_OF_EIGHT(gPipeStatLen);
gFlowStatLen = MULTIPLE_OF_EIGHT(gFlowStatLen);
// update the number of counters to be reported for each object type
PsPipeObjType.NumCounters = PIPE_PIPE_NUM_STATS + PIPE_CONFORMER_NUM_STATS +
PIPE_SHAPER_NUM_STATS + PIPE_SEQUENCER_NUM_STATS;
PsFlowObjType.NumCounters = FLOW_FLOW_NUM_STATS + FLOW_CONFORMER_NUM_STATS +
FLOW_SHAPER_NUM_STATS + FLOW_SEQUENCER_NUM_STATS;
}
// free up resources
free(pIfcDescBuf);
// Everything worked so return that we're happy
return TRUE;
Error:
closePipeFlowInfo(ppPI);
return FALSE;
}
// closePipeFlowInfo() is the counterpart to getPipeFlowInfo()
// It closes all open interfaces and flows, as well as freeing memory
//
// Parameters: ppPI - pointer to a pointer to an array of valid PIPE_INFO structs
// Return value: None
void closePipeFlowInfo(PPIPE_INFO *ppPI)
{
ULONG i;
PPIPE_INFO pPI=*ppPI; // makes for less typing and cleaner code
ULONG BytesWritten, flowCount;
// If the PipeInfo is null, don't free it.
if( !pPI )
return;
BytesWritten = sizeof(flowCount);
// free up resources associated with each interface, then close the interface
for (i=0; i<(unsigned)PsPipeObjType.NumInstances; i++)
{
if(pPI[i].IfcName)
{
free(pPI[i].IfcName);
}
if(pPI[i].pFlowInfo)
{
free(pPI[i].pFlowInfo);
}
// Deregister for flow count notifications.
TcQueryInterface(pPI[i].hIfc,
(LPGUID)&GUID_QOS_FLOW_COUNT,
FALSE,
&BytesWritten,
&flowCount);
TcCloseInterface(pPI[i].hIfc);
}
// now free up the whole buffer
free(*ppPI);
// If it is freed, set it to null
*ppPI = NULL;
}
// This func recieves notifcations from traffic.dll and makes the appropriate
// updates to internal structures
void tciNotifyHandler(IN HANDLE ClRegCtx,
IN HANDLE ClIfcCtx,
IN ULONG Event,
IN HANDLE SubCode,
IN ULONG BufSize,
IN PVOID Buffer)
{
switch (Event)
{
case TC_NOTIFY_IFC_UP:
case TC_NOTIFY_IFC_CLOSE:
case TC_NOTIFY_IFC_CHANGE:
// we'll need sync'ed access
EnterCriticalSection(&ghPipeFlowCriticalSection);
if (dwOpenCount) {
// now reinit the data struct
closePipeFlowInfo(&gpPI);
getPipeFlowInfo(&gpPI);
}
LeaveCriticalSection(&ghPipeFlowCriticalSection);
break;
case TC_NOTIFY_PARAM_CHANGED:
// A flow has been closed by the TC interface
// for example: after a remote call close, or the whole interface
// is going down
//
// we'll need sync'ed access
EnterCriticalSection(&ghPipeFlowCriticalSection);
if (dwOpenCount) {
if(!memcmp((LPGUID) SubCode, &GUID_QOS_FLOW_COUNT, sizeof(GUID))) {
PULONG FlowCount = (PULONG) Buffer;
getFlowInfo(ClIfcCtx, *FlowCount);
}
}
LeaveCriticalSection(&ghPipeFlowCriticalSection);
break;
default:
break;
}
}
DWORD APIENTRY OpenPschedPerformanceData(LPWSTR lpDeviceNames)
/*++
Routine Description:
This routine will open and map the memory used by the PSched driver to
pass performance data in. This routine also initializes the data
structures used to pass data back to the registry
Arguments:
Pointer to object ID of each device to be opened (PSched)
Return Value:
None.
--*/
{
LONG status;
HKEY hPerfKey;
DWORD size;
DWORD type;
DWORD dwFirstCounter;
DWORD dwFirstHelp;
TCI_CLIENT_FUNC_LIST tciCallbFuncList = {tciNotifyHandler, NULL, NULL, NULL};
// Since SCREG is multi-threaded and will call this routine in
// order to service remote performance queries, this library
// must keep track of how many times it has been opened (i.e.
// how many threads have accessed it). the registry routines will
// limit access to the initialization routine to only one thread
// at a time so synchronization (i.e. reentrancy) should not be
// a problem
if (InterlockedIncrement(&dwOpenCount) == 1)
{
#if DBG
gTraceID = TraceRegister(L"PschdPrf");
#endif
// get counter and help index base values
// update static data structures by adding base to
// offset value in structure.
status = RegOpenKeyEx ( HKEY_LOCAL_MACHINE,
PSCHED_PERF_KEY,
0L,
KEY_READ,
&hPerfKey);
if (status != ERROR_SUCCESS) {
// this is fatal, if we can't get the base values of the
// counter or help names, then the names won't be available
// to the requesting application, so there's not much
// point in continuing.
goto OpenExitPoint;
}
size = sizeof (DWORD);
status = RegQueryValueEx( hPerfKey,
TEXT("First Counter"),
0L,
&type,
(LPBYTE)&dwFirstCounter,
&size);
if (status != ERROR_SUCCESS) {
// this is fatal, if we can't get the base values of the
// counter or help names, then the names won't be available
// to the requesting application, so there's not much
// point in continuing.
RegCloseKey(hPerfKey);
goto OpenExitPoint;
}
size = sizeof (DWORD);
status = RegQueryValueEx( hPerfKey,
TEXT("First Help"),
0L,
&type,
(LPBYTE)&dwFirstHelp,
&size);
RegCloseKey(hPerfKey);
if (status != ERROR_SUCCESS) {
// this is fatal, if we can't get the base values of the
// counter or help names, then the names won't be available
// to the requesting application, so there's not much
// point in continuing.
goto OpenExitPoint;
}
// Convert Pipe object and counters from offset to absolute index
PsPipeObjType.ObjectNameTitleIndex += dwFirstCounter;
PsPipeObjType.ObjectHelpTitleIndex += dwFirstHelp;
convertIndices((BYTE *)&PsPipePipeStatDef,
sizeof PsPipePipeStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
convertIndices((BYTE *)&PsPipeConformerStatDef,
sizeof PsPipeConformerStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
convertIndices((BYTE *)&PsPipeShaperStatDef,
sizeof PsPipeShaperStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
convertIndices((BYTE *)&PsPipeSequencerStatDef,
sizeof PsPipeSequencerStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
// Convert Flow object and counters from offset to absolute index
PsFlowObjType.ObjectNameTitleIndex += dwFirstCounter;
PsFlowObjType.ObjectHelpTitleIndex += dwFirstHelp;
convertIndices((BYTE *)&PsFlowFlowStatDef,
sizeof PsFlowFlowStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
convertIndices((BYTE *)&PsFlowConformerStatDef,
sizeof PsFlowConformerStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
convertIndices((BYTE *)&PsFlowShaperStatDef,
sizeof PsFlowShaperStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
convertIndices((BYTE *)&PsFlowSequencerStatDef,
sizeof PsFlowSequencerStatDef/sizeof(PERF_COUNTER_DEFINITION),
dwFirstCounter,
dwFirstHelp);
// initialize with traffic.dll
if (TcRegisterClient(CURRENT_TCI_VERSION, ghClRegCtx, &tciCallbFuncList, &ghTciClient)!=NO_ERROR)
{
// if we can't connect with traffic.dll we are a non admin thread in OpenPschedPerformanceData.
// We cannot fail because of this, because an admin thread might call us at our collect routine.
// We'll try to register as the Traffic Control client in the Collect Thread.
//
ghTciClient = 0;
}
else
{
// we'll need sync'ed access
EnterCriticalSection(&ghPipeFlowCriticalSection);
// get all necessary info about pipes and flows currently installed
if (getPipeFlowInfo(&gpPI)!=TRUE) {
// we didn't get all the info we wanted, so we're
// going to have to try again, including re-registering
LeaveCriticalSection(&ghPipeFlowCriticalSection);
TcDeregisterClient(ghTciClient);
goto OpenExitPoint;
}
LeaveCriticalSection(&ghPipeFlowCriticalSection);
}
// if we got to here, then we're all ready
bInitOK = TRUE;
}
Trace0(DBG_INFO, L"[OpenPschedPerformanceData]: success \n");
status = ERROR_SUCCESS; // for successful exit
return status;
OpenExitPoint:
Trace1(DBG_ERROR, L"[OpenPschedPerformanceData]: Failed with 0x%x \n", status);
return status;
}
DWORD APIENTRY CollectPschedPerformanceData(
IN LPWSTR lpValueName,
IN OUT LPVOID *lppData,
IN OUT LPDWORD lpcbTotalBytes,
IN OUT LPDWORD lpNumObjectTypes
)
/*++
Routine Description:
This routine will return the data for the PSched counters.
The data is returned in the foll. format. The steps below are carried out for Pipe/Flows.
1. First, we write the PERF_OBJECT_TYPE for the Pipe (and/or) the Flow Counters.
2. for(i=0; i<NumCounters; i++)
Write PERF_COUNTER_DEFINITION for counter i;
3. for(i=0; i<NumInstances; i++)
Write PERF_INSTANCE_DEFINITION for instance i;
Write Instance Name
Write PERF_COUNTER_BLOCK
Write the Stats;
Arguments:
IN LPWSTR lpValueName
pointer to a wide character string passed by registry.
IN OUT LPVOID *lppData
IN: pointer to the address of the buffer to receive the completed
PerfDataBlock and subordinate structures. This routine will
append its data to the buffer starting at the point referenced
by *lppData.
OUT: points to the first byte after the data structure added by this
routine. This routine updated the value at lppdata after appending
its data.
IN OUT LPDWORD lpcbTotalBytes
IN: the address of the DWORD that tells the size in bytes of the
buffer referenced by the lppData argument
OUT: the number of bytes added by this routine is written to the
DWORD pointed to by this argument
IN OUT LPDWORD NumObjectTypes
IN: the address of the DWORD to receive the number of objects added
by this routine
OUT: the number of objects added by this routine is written to the
DWORD pointed to by this argument
Return Value:
ERROR_MORE_DATA if buffer passed is too small to hold data
any error conditions encountered could be reported to the event log if
event logging support were added.
ERROR_SUCCESS if success or any other error. Errors, however could
also reported to the event log.
--*/
{
ULONG i,j;
ULONG SpaceNeeded;
PDWORD pdwBuf;
DWORD dwQueryType;
DWORD status;
DWORD bufSize;
PS_PERF_COUNTER_BLOCK pcb;
PERF_INSTANCE_DEFINITION pid={0, 0, 0, PERF_NO_UNIQUE_ID, sizeof(pid), 0};
ULONG size;
PVOID pStatsBuf;
// save the size of the buffer
bufSize = *lpcbTotalBytes;
// default to returning nothing
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
// Before doing anything else, see if Open went OK
if (!bInitOK)
{
// unable to continue because open failed.
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: open failed \n");
return ERROR_SUCCESS; // yes, this is a successful exit
}
// See if this is a foreign (i.e. non-NT) computer data request
dwQueryType = GetQueryType (lpValueName);
if (dwQueryType == QUERY_FOREIGN)
{
// this routine does not service requests for data from
// Non-NT computers
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: received QUERY_FOREIGN \n");
return ERROR_SUCCESS;
}
// Is PerfMon requesting PSched items?
if (dwQueryType == QUERY_ITEMS)
{
if ( !(IsNumberInUnicodeList(PsPipeObjType.ObjectNameTitleIndex,
lpValueName))
&& !(IsNumberInUnicodeList(PsFlowObjType.ObjectNameTitleIndex,
lpValueName)) ) {
// request received for data object not provided by this routine
Trace0(DBG_INFO, L"[CollectPschedPerformanceData]: Not for psched \n");
return ERROR_SUCCESS;
}
}
// from this point on, we need sync'ed access
EnterCriticalSection(&ghPipeFlowCriticalSection);
// we might need to rereigster as a Traffic control client.
if(ghTciClient == NULL)
{
TCI_CLIENT_FUNC_LIST tciCallbFuncList = {tciNotifyHandler, NULL, NULL, NULL};
status = TcRegisterClient(CURRENT_TCI_VERSION, ghClRegCtx, &tciCallbFuncList, &ghTciClient);
if(status != NO_ERROR)
{
Trace1(DBG_ERROR, L"[CollectPschedPerformanceData]: Could not register as Traffic Client. Error 0x%x \n",
status);
LeaveCriticalSection(&ghPipeFlowCriticalSection);
return ERROR_SUCCESS;
}
// get all necessary info about pipes and flows currently installed
if (getPipeFlowInfo(&gpPI)!=TRUE) {
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: getPipeFlowInfo failed \n");
return ERROR_SUCCESS;
}
}
//
// We have to write the PERF_OBJECT_TYPE unconditionally even if there are no instances. So, we proceed
// to compute the space needed even when there are no flows.
//
// Calculate the space needed for the pipe stats.
SpaceNeeded = PsPipeObjType.DefinitionLength + gTotalIfcNameSize + (PsPipeObjType.NumInstances *
(sizeof pid + sizeof pcb + gPipeStatLen) );
SpaceNeeded += PsFlowObjType.DefinitionLength + gTotalFlowNameSize + (PsFlowObjType.NumInstances *
(sizeof pid + sizeof pcb + gFlowStatLen) );
if (bufSize < SpaceNeeded)
{
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: Need More data\n");
return ERROR_MORE_DATA;
}
pdwBuf = (PDWORD)*lppData;
// Record the total length of the pipe stats
PsPipeObjType.TotalByteLength =
PsPipeObjType.DefinitionLength + gTotalIfcNameSize + (PsPipeObjType.NumInstances *
(sizeof pid + sizeof pcb + gPipeStatLen) );
// copy object and counter definitions, increment count of object types
WRITEBUF(&PsPipeObjType,sizeof PsPipeObjType);
WRITEBUF(&PsPipePipeStatDef, sizeof PsPipePipeStatDef);
WRITEBUF(&PsPipeConformerStatDef, sizeof PsPipeConformerStatDef);
WRITEBUF(&PsPipeShaperStatDef, sizeof PsPipeShaperStatDef);
WRITEBUF(&PsPipeSequencerStatDef, sizeof PsPipeSequencerStatDef);
(*lpNumObjectTypes)++;
//
// for each pipe, write out its instance definition, counter block, and actual stats
//
if(ghTciClient)
{
for (i=0; i<(unsigned)PsPipeObjType.NumInstances; i++) {
PWCHAR InstanceName;
//
// Write out the PERF_INSTANCE_DEFINITION, which identifies an interface and gives it a name.
//
pid.NameLength = (wcslen(gpPI[i].IfcName)+1) * sizeof(WCHAR);
pid.ByteLength = sizeof pid + MULTIPLE_OF_EIGHT(pid.NameLength);
WRITEBUF(&pid, sizeof pid);
InstanceName = (PWCHAR) pdwBuf;
memcpy(pdwBuf, gpPI[i].IfcName, pid.NameLength);
pdwBuf = (PULONG)((PUCHAR)pdwBuf + MULTIPLE_OF_EIGHT(pid.NameLength));
CorrectInstanceName(InstanceName);
//
// get pipe stats and copy them to the buffer
//
size = gPipeStatLen;
pStatsBuf = malloc(size);
if (NULL == pStatsBuf)
{
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: Insufficient memory\n");
return ERROR_SUCCESS;
}
status = TcQueryInterface(gpPI[i].hIfc,
(LPGUID)&GUID_QOS_STATISTICS_BUFFER,
FALSE,
&size,
pStatsBuf);
if (ERROR_INSUFFICIENT_BUFFER==status)
{
free(pStatsBuf);
size = gPipeStatLen = MULTIPLE_OF_EIGHT(size);
pStatsBuf = (PPS_COMPONENT_STATS)malloc(gPipeStatLen);
if (NULL == pStatsBuf)
{
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: Insufficient memory\n");
return ERROR_SUCCESS;
}
status = TcQueryInterface(gpPI[i].hIfc,
(LPGUID)&GUID_QOS_STATISTICS_BUFFER,
FALSE,
&size,
pStatsBuf);
}
if (NO_ERROR != status) {
Trace1(DBG_ERROR, L"[CollectPschedPerformanceData]: TcQueryInterface failed with 0x%x \n", status);
memset ( pStatsBuf, 0, gPipeStatLen );
}
//
// Now, write the PERF_COUNTER_BLOCK
//
pcb.pcb.ByteLength = gPipeStatLen + sizeof(pcb);
WRITEBUF(&pcb,sizeof pcb);
//
// Write out all the counters.
//
WRITEBUF(pStatsBuf,gPipeStatLen);
free(pStatsBuf);
}
}
// set the pointer to where the pipe object type said the next object would start
pdwBuf = (PDWORD)( ((BYTE *)*lppData) + PsPipeObjType.TotalByteLength );
// first copy flow data def (object_type struct).
// Record the total length of the flow stats
PsFlowObjType.TotalByteLength =
PsFlowObjType.DefinitionLength + gTotalFlowNameSize + (PsFlowObjType.NumInstances *
(sizeof pid + sizeof pcb + gFlowStatLen) );
// copy object and counter definitions, increment count of object types
WRITEBUF(&PsFlowObjType,sizeof PsFlowObjType);
WRITEBUF(&PsFlowFlowStatDef, sizeof PsFlowFlowStatDef);
WRITEBUF(&PsFlowConformerStatDef, sizeof PsFlowConformerStatDef);
WRITEBUF(&PsFlowShaperStatDef, sizeof PsFlowShaperStatDef);
WRITEBUF(&PsFlowSequencerStatDef, sizeof PsFlowSequencerStatDef);
(*lpNumObjectTypes)++;
// if there are any flows, process them
if (PsFlowObjType.NumInstances && ghTciClient) {
// initialize parent structure
pid.ParentObjectTitleIndex = PsPipeObjType.ObjectNameTitleIndex;
// loop over each interface checking for flow installed on them
for (i=0; i<(unsigned)PsPipeObjType.NumInstances; i++) {
// keep parent instance up to date
pid.ParentObjectInstance = i;
for (j=0; j<gpPI[i].numFlows; j++) {
PWCHAR InstanceName;
// copy flow instance definition and name
pid.NameLength = (wcslen(gpPI[i].pFlowInfo[j].FriendlyName)+1) * sizeof(WCHAR);
pid.ByteLength = sizeof(pid) + MULTIPLE_OF_EIGHT(pid.NameLength);
WRITEBUF(&pid,sizeof pid);
InstanceName = (PWCHAR) pdwBuf;
memcpy(pdwBuf, gpPI[i].pFlowInfo[j].FriendlyName, pid.NameLength);
pdwBuf = (PULONG)((PUCHAR)pdwBuf + MULTIPLE_OF_EIGHT(pid.NameLength));
CorrectInstanceName(InstanceName);
// get flow stats and copy them to the buffer
size = gFlowStatLen;
pStatsBuf = malloc(size);
if (NULL == pStatsBuf) {
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: Insufficient memory\n");
return ERROR_SUCCESS;
}
status = TcQueryFlow(gpPI[i].pFlowInfo[j].InstanceName, (LPGUID)&GUID_QOS_STATISTICS_BUFFER,
&size, pStatsBuf);
if (ERROR_INSUFFICIENT_BUFFER==status) {
free(pStatsBuf);
size = gFlowStatLen = MULTIPLE_OF_EIGHT(size);
pStatsBuf = (PPS_COMPONENT_STATS)malloc(gFlowStatLen);
if (NULL == pStatsBuf)
{
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_ERROR, L"[CollectPschedPerformanceData]: Insufficient memory\n");
return ERROR_SUCCESS;
}
status = TcQueryFlow(gpPI[i].pFlowInfo[j].InstanceName, (LPGUID)&GUID_QOS_STATISTICS_BUFFER,
&size, pStatsBuf);
}
if (NO_ERROR != status) {
free(pStatsBuf);
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace1(DBG_ERROR,
L"[CollectPschedPerformanceData]: TcQueryFlow failed with status 0x%x \n", status);
return ERROR_SUCCESS;
}
// copy flow instance counter_block
pcb.pcb.ByteLength = gFlowStatLen + sizeof(pcb);
WRITEBUF(&pcb,sizeof pcb);
WRITEBUF(pStatsBuf, gFlowStatLen);
free(pStatsBuf);
}
}
}
// update the data pointer
*lpcbTotalBytes = PsPipeObjType.TotalByteLength + PsFlowObjType.TotalByteLength;
*lppData = ((PBYTE)*lppData) + *lpcbTotalBytes;
// free up the sync lock
LeaveCriticalSection(&ghPipeFlowCriticalSection);
Trace0(DBG_INFO, L"[CollectPschedPerformanceData]: Succcess \n");
return ERROR_SUCCESS;
}
/*
Routine Description:
This routine closes the open handles to PSched device performance counters
Arguments:
None.
Return Value:
ERROR_SUCCESS
*/
DWORD APIENTRY ClosePschedPerformanceData()
{
EnterCriticalSection(&ghPipeFlowCriticalSection);
if(InterlockedDecrement(&dwOpenCount) == 0)
{
LeaveCriticalSection(&ghPipeFlowCriticalSection);
// Clean up with traffic.dll and free up resources
closePipeFlowInfo(&gpPI);
// then deregister
if(ghTciClient)
TcDeregisterClient(ghTciClient);
// get rid of the mutex
#if DBG
TraceDeregister(gTraceID);
#endif
} else {
LeaveCriticalSection(&ghPipeFlowCriticalSection);
}
return ERROR_SUCCESS;
}
//////////////////////////////////////////////////////////////////////
//
// PERF UTILITY STUFF BELOW!
//
//////////////////////////////////////////////////////////////////////
BOOL WINAPI DllEntryPoint(
HANDLE hDLL,
DWORD dwReason,
LPVOID lpReserved)
{
switch (dwReason)
{
case DLL_PROCESS_ATTACH:
ghInst = hDLL;
// initialize the mutex
__try {
InitializeCriticalSection(&ghPipeFlowCriticalSection);
} __except (EXCEPTION_EXECUTE_HANDLER) {
return FALSE;
}
break;
case DLL_PROCESS_DETACH:
DeleteCriticalSection(&ghPipeFlowCriticalSection);
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
} // switch
return TRUE;
}