Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3931 lines
133 KiB

//
// QTCP.C version 1.0.3
//
// This program tests the quality of a network connection in terms of
// variation in latency (jitter). It is based on TTCP, a public domain
// program, written for BSD. The version of TTCP upon which this was
// based has been contributed to by:
//
// T.C. Slattery, USNA (18 Dec 84)
// Mike Muuss and T. Slattery (16 Oct 85)
// Silicon Graphics, Inc. (1989)
//
// QTCP is written by Yoram Bernet ([email protected])
// further development work by John Holmes ([email protected])
//
// QTCP user level code may be used to provide rough jitter measurements,
// which indicate both operating system and network jitter. However, QTCP
// is intended to be used in conjunction with kernel timestamping for precise
// jitter measurements. The kernel component timestmp.sys should be installed
// when running on Win2000 (beta-3 or later).
//
// timestmp.sys is written by Shreedhar Madhavapeddi ([email protected])
//
//
// Distribution Status -
// Public Domain. Distribution Unlimited.
//
// Version History -
// 0.8:
// - adaptation of TTCP by Yoram Bernet -- core functionality
// 0.9: (6/15/99)
// - first version by John Holmes -- bug fixes and new features
// - fixed all compile warnings
// - added -v option to set up RSVP connection without sending data
// - added -y option to skip confirmation of continues
// - fixed line length error in log files
// - fixed service type string to display properly
// - added best effort and no service service types (BE & NS)
// - added version string print upon execution
// 0.9.1: (6/17/99)
// - check for hardware clock reset using correlation coefficient
// - fixed incorrect clock skew in .sta file
// - fixed -v option to keep socket open until user carriage returns
// - added local statistics to clock skew computation for better estimate
// - added -k option to prevent using local statistics for clock skew
// - fixed maximum latency computation
// 0.9.2: (6/23/99)
// - fixed peak rate in flowspec so no shaping happens in CL servicetype
// - added -e option to force shaping
// - fixed error in allocating size of log array with bufsize <= 1500 bytes
// - fixed not exiting on receiver
// - fixed access violation if no filename specified on receiver
// - changed dummy log entries to be off by default
// - added -F option to convert raw file to log file
// 0.9.3: (6/29/99)
// - improved low transmission speed at high packet/second rates by changing
// default # async buffers from 3 to 32
// - fixed user mode timestamps to use NtQueryPerformanceCounter()
// - added -u option to use usermode timestamps in log generation
// 0.9.4: (7/8/99)
// - cleaned up source (chopped up main into a bunch of functions to improve readability)
// - fixed default buffer size to be 1472 bytes, so whole packet is 1500 bytes.
// - rewrote i/o code to use callbacks for asynch i/o in order to improve throughput
// - doing the right thing if not getting kernel-mode timestamps
// - added ability to run for a specified amount of time with -n##s paramater
// - added dynamic resizing of log array on receiver to prevent access violations
// with mismatched parameters
// - fixed devious bug in the GrowLogArray routine
// - fixed total time reported for long runs (use UINT64 instead of DWORD)
// - fixed problem with -F option specified on empty but extant file
// - added RSVPMonitor Thread to watch for RSVP-err messages on receiver and
// early abort by sender
// - removed -a option as it is now obsolete
// - revised usage screen to make more clear what pertains to sender and what
// pertains to receiver
// - fixed crash if receiver terminates before transmitter finishes
// 0.9.5: (7/15/99)
// - re-added error checking on WriteFileEx and ReadFileEx routines
// 0.9.6: (7/20/99)
// - changed default filler data in buffer so that it is less compressible to
// better account for links that compress data before sending
// - added -i option to use more compressible data
// 0.9.7: (7/24/99)
// - put back a thread to watch for 'q' on receiver to quit properly before sender's done
// - added control channel to better handle RSVP timeouts, early aborts, etc.
// - if no calibrations are specified, we calibrate based on all buffers
// - gracefully exit if LogRecord runs out of memory, saving all logs we've got so far
// - changed default behavior so raw file is dumped with no normalization whatsoever.
// - improved the way anomalous points are caught in clock-skew calc
// 0.9.8: (7/28/99)
// - fixed field assignments & file opening problem on converting raw file to log.
// - changed latency to be written to file to signed and fixed normalization routine for
// cases when clocks are orders of magnitude different (underflow error)
// - added absolute deviation as goodness of fit measure
// - added routine to look for clock jumps and fix for them (with -k3 option)
// 0.9.9: (8/4/99)
// - changed format of .sta file to include more useful information and test params
// - changed Logging scheme so that we are limited by disk space instead of memory
// (now using a memory mapped file for the log, so the theoretical limit has gone from
// less than 2GB to 18EB, but we won't ever get that in practice on normal disks)
// - added -ni option to run indefinitely
// - added -R##B option to specify tokenrate in bytes
// - made default not to show dropped packets at console (it only causes more drops)
// - added -q## option to log only every nth packet
// 1.0.0: (8/6/99)
// - fixed bug where if a new qtcp receiver is started immediately after a previous
// instance, it will think "theend" packets are normal packets and AV
// - added check for the piix4 timer chip and an appropriate warning
// - using precise incorrect value in FixWackyTimestamps function
// - added -A option (aggregate data processing of all .sta files in a directory)
// 1.0.1: (8/6/99)
// - fixed incorrect calculation of send rate with dropped packets
// 1.0.2: (8/23/99)
// - improved clock skip detection algorithm
// - fixed a bug in control channel communication of TokenRate
// - fixed problem with forceshape option when rate is specified in bytes
// 1.0.3: (8/26/99)
// - fixed SENDERS NO_SENDERS bug
// - added summary over time to aggregate stats option
// - changed .sta file format to include number of drops
// - fixed shaping in best effort servicetype
// ToDo:
// - add histogram to output in .sta file and on console
// - add ability to run w/o control channel connection
// - mark control channel traffic as higher priority
// - add more aggregate stats (time varying statistics) -- maybe fourier xform
#ifndef lint
static char RCSid[] = "qtcp.c $Revision: 1.0.3 $";
#endif
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <io.h>
#include <signal.h>
#include <ctype.h>
#include <sys/types.h>
#include <winsock2.h>
#include <qossp.h>
#include <winbase.h>
#include <time.h>
#include <shlwapi.h>
#if defined(_AMD64_)
#include <math.h>
#endif
#include "ioctl.h"
#define CONTROL_PORT 7239
CHAR *VERSION_STRING = "1.0.3";
#define MAX_STRING 255
INT64 MAX_INT64=9223372036854775807;
HANDLE hRSVPMonitor;
DWORD idRSVPMonitor;
INT64 g_BadHalAdjustment = 46869688; // this is the value on a piix4 chip
SYSTEM_INFO g_si;
char g_szErr[255];
CRITICAL_SECTION g_csLogRecord;
EXCEPTION_RECORD g_erec;
BOOL g_fOtherSideFinished = FALSE;
BOOL g_fReadyForXmit = FALSE;
SOCKET fd;
SOCKET g_sockControl = INVALID_SOCKET;
struct sockaddr_in sinhim;
struct sockaddr_in sinme;
short port = 5003; // UDP port number
char *host; // ptr to name of host
char szHisAddr[MAX_STRING];
char szMyAddr[MAX_STRING];
int trans; // 0=receive, !0=transmit mode
int normalize = 0; // dump raw file after normalizing
char *Name = NULL; // Name of file for logs
HANDLE hRawFile = NULL;
HANDLE hLogFile = NULL;
HANDLE hStatFile = NULL;
HANDLE hDriver = NULL; // handle to the timestmp.sys driver
WSADATA WsaData;
WSAEVENT QoSEvents;
SYSTEMTIME systimeStart;
INT64 timeStart;
INT64 time0;
INT64 time1;
INT64 timeElapsed;
CHAR* TheEnd = "TheEnd";
CHAR* ControlledLoad = "CL";
CHAR* Guaranteed = "GR";
CHAR* BestEffort = "BE";
CHAR* NoTraffic = "NT";
LPCTSTR DriverName = TEXT("\\\\.\\Timestmp");
BOOL fWackySender = FALSE;
BOOL fWackyReceiver = FALSE;
typedef struct {
HANDLE hSocket;
INT TokenRate;
INT MaxSDUSize;
INT BucketSize;
INT MinPolicedSize;
SERVICETYPE dwServiceType;
CHAR *szServiceType;
INT buflen; // length of buffer
INT nbuf; // number of buffers to send
INT64 calibration;
BOOLEAN UserStamps; // By default, we use kernel mode timestamping, if available
BOOLEAN SkipConfirm; // By default, we wait for user confirmation at certain times
BOOLEAN RESVonly; // By default, we send data after getting the resv
int SkewFitMode; // by default, 0 = no fit, 1 = chisq, 2 = chisq w/outlier removal
// 3 = abs dev
BOOLEAN Wait; // By default, we wait for a QoS reservation
BOOLEAN Dummy; // insert dummy rows in log by default
BOOLEAN PrintDrops; // report dropped packets on console
BOOLEAN ForceShape; // by default, we do not force shaping on CL flows
BOOLEAN RateInBytes; // KB by default
BOOLEAN AggregateStats; // by default, we do not do this
BOOLEAN ConvertOnly; // by default, we act normally and do not go around converting files
BOOLEAN NoSenderTimestamps;
BOOLEAN NoReceiverTimestamps;
BOOLEAN TimedRun; // true if we're running for a specified amount of time
BOOLEAN RunForever; // run until the person pushes 'q'
BOOLEAN nBufUnspecified; // true if the user has not specified the -n parameter
BOOLEAN RandomFiller;// by default, we use random, incompressible filler data
int LoggingPeriod; // by default, 1 (log every packet)
} QTCPPARAMS, *PQTCPPARAMS;
QTCPPARAMS g_params;
typedef struct {
BOOL Done; // done if true
int nWritesInProgress; // number of writes outstanding
int nReadsInProgress; // number of reads outstanding
int nBuffersSent; // number of buffers sent to the device
int nBuffersReceived; // number of buffers received from network
int nBytesTransferred; // number of bytes written to device
} QTCPSTATE, *PQTCPSTATE;
QTCPSTATE g_state;
typedef struct {
OVERLAPPED Overlapped;
PVOID pBuffer;
DWORD BytesWritten;
} IOREQ, *PIOREQ;
#define MAX_PENDING_IO_REQS 64 // number of simultaneous async calls.
// This format is used for the buffer
// transmitted on the wire.
typedef struct _BUFFER_FORMAT{
INT64 TimeSentUser;
INT64 TimeReceivedUser;
INT64 TimeSent;
INT64 TimeReceived;
INT64 Latency;
INT BufferSize;
INT SequenceNumber;
} BUFFER_FORMAT, *PBUFFER_FORMAT;
// This format is used for the scheduling record
// written based on the received buffers.
typedef struct _LOG_RECORD{
INT64 TimeSentUser;
INT64 TimeReceivedUser;
INT64 TimeSent;
INT64 TimeReceived;
INT64 Latency;
INT BufferSize;
INT SequenceNumber;
} LOG_RECORD, *PLOG_RECORD;
// The LOG structure is a data abstraction for a log of LOG_RECORDS that uses memory
// mapped files to have a theoretical storage limit of 18EB. It uses two buffers in memory
// along with a watcher thread so that there is no delay when switching from one bit to
// the next.
typedef struct {
INT64 nBuffersLogged;
PBYTE pbMapView; // view of file in Get/SetLogElement functions
INT64 qwMapViewOffset; // offset of Get/Set view in file (rounded down to allocation)
char *szStorageFile; // the name of the mapped file on disk (so we can delete it)
HANDLE hStorageFile; // the memory mapped file on disk
HANDLE hFileMapping; // the file mapping object for our storage file
INT64 qwFileSize; // the size of the storage file in bytes
} LOG, *PLOG;
LOG g_log;
// The STATS structure keeps a record of overall statistics for the qtcp run
typedef struct {
char szStaFile[MAX_PATH];
char szSender[MAX_STRING];
char szReceiver[MAX_STRING];
int nBuffers;
int nTokenRate;
int nBytesPerBuffer;
double sendrate;
double recvrate;
double median;
double mean;
double var;
double kurt;
double skew;
double abdev;
FILETIME time;
int nDrops;
} STATS, *PSTATS;
INT64 totalBuffers;
INT anomalies = 0;
INT SequenceNumber = 0;
INT LastSequenceNumber = -1;
#define bcopy(s, d, c) memcpy((u_char *)(d), (u_char *)(s), (c))
#define bzero(d, l) memset((d), '\0', (l))
#define SENDER 1
#define RECEIVER 0
#define SECONDS_BETWEEN_HELLOS 120
// control messages
#define MSGCH_DELIMITER '!'
#define MSGST_RSVPERR "RSVPERR"
#define MSGST_ABORT "ABORT"
#define MSGST_ERROR "ERROR"
#define MSGST_DONE "DONE"
#define MSGST_HELLO "HELLO"
#define MSGST_RATE "RATE"
#define MSGST_SIZE "SIZE"
#define MSGST_NUM "NUM"
#define MSGST_READY "READY"
#define MSGST_VER "VER"
// -------------------
// Function prototypes
// -------------------
VOID
SetDefaults();
VOID
Usage();
BOOLEAN
GoodParams();
VOID
SetupLogs();
VOID
SetupSockets();
SOCKET
OpenQoSSocket();
INT
SetQoSSocket(
SOCKET fd,
BOOL Sending);
VOID
WaitForQoS(
BOOL Sender,
SOCKET fd);
ULONG
GetRsvpStatus(
DWORD dwTimeout,
SOCKET fd);
VOID
PrintRSVPStatus(
ULONG code);
VOID
DoTransmit();
VOID WINAPI
TransmitCompletionRoutine(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED pOverlapped);
VOID WINAPI
DelimiterSendCompletion(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED pOverlapped);
VOID
FillBuffer(
CHAR *Cp,
INT Cnt);
INT
TimeStamp(
CHAR *Cp,
INT Cnt);
VOID
DoReceive();
VOID WINAPI
RecvCompletionRoutine(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED pOverlapped);
VOID
LogRecord(CHAR * Buffer);
BOOL CreateLog(PLOG plog, INT64 c);
BOOL GetLogEntry(PLOG plog, PLOG_RECORD prec, INT64 i);
BOOL DestroyLog(PLOG plog);
BOOL SetLogEntry(PLOG plog, PLOG_RECORD prec, INT64 i);
BOOL AddLogEntry(PLOG plog, PLOG_RECORD prec);
UINT64
GetUserTime();
DWORD
MyCreateFile(
IN PCHAR Name,
IN PCHAR Extension,
OUT HANDLE *File);
void AggregateStats();
int IndexOfStatRecWith(int rate, int size, INT64 time, PSTATS pStats, int cStats);
BOOL GetStatsFromFile(PSTATS pstats);
VOID
DoStatsFromFile();
DWORD
OpenRawFile(
IN PCHAR Name,
OUT HANDLE *File);
INT64 ReadSchedulingRecords(HANDLE file);
VOID
DoStats();
VOID
WriteSchedulingRecords(
HANDLE File,
BOOLEAN InsertDummyRows);
void AdvancedStats();
VOID
GenericStats();
VOID
CheckForLostPackets();
VOID
WriteStats(
UCHAR * HoldingBuffer,
INT Count);
VOID
NormalizeTimeStamps();
VOID
ClockSkew(
DOUBLE * Slope,
DOUBLE * Offset);
BOOLEAN
AnomalousPoint(
DOUBLE x,
DOUBLE y);
VOID
AdjustForClockSkew(
DOUBLE Slope,
DOUBLE Offset);
BOOL FixWackyTimestamps();
// monitor threads
DWORD WINAPI RSVPMonitor (LPVOID lpvThreadParm);
DWORD WINAPI KeyboardMonitor (LPVOID lpvThreadParm);
DWORD WINAPI ControlSocketMonitor(LPVOID lpvThreadParm);
DWORD WINAPI LogWatcher(LPVOID lpvThreadParm);
// utilities
int SendControlMessage(SOCKET sock, char * szMsg);
void ErrorExit(char *msg, DWORD dwErrorNumber);
UINT64 GetBadHalAdjustment();
//int compare( const void *arg1, const void *arg2 );
int __cdecl compare(const void *elem1, const void *elem2 ) ;
void medfit(double x[], double y[], int N, double *a, double *b, double *abdev);
double mode(const double data[], const int N);
void RemoveDuplicates(int rg[], int * pN);
void RemoveDuplicatesI64(INT64 rg[], int * pN);
#define RoundUp(val, unit) (val + (val % unit))
#define InRange(val, low, high) ((val >= low) && (val < high)) ? TRUE:FALSE
void PrintFlowspec(LPFLOWSPEC lpfs);
VOID __cdecl
main(INT argc,CHAR **argv)
{
int error;
char *stopstring;
char szBuf[MAX_STRING];
BOOL b;
ULONG bytesreturned;
printf("qtcp version %s\n\n",VERSION_STRING);
if (GetBadHalAdjustment() == (UINT64)g_BadHalAdjustment) {
printf("WARNING: This machine has a timer whose frequency matches that of the piix4\n");
printf(" chip. There is a known bug in the HAL for this timer that causes the\n");
printf(" timer to jump forward about 4.7 seconds every once in a while.\n");
printf(" If you notice large jumps in the timestamps from this machine, try\n");
printf(" running with the -k3 option to attempt to correct for the timer bug.\n\n");
}
srand( (unsigned)time( NULL ) ); // seed the random number generator
timeStart = GetUserTime();
GetSystemInfo(&g_si);
error = WSAStartup( 0x0101, &WsaData );
if (error == SOCKET_ERROR) {
printf("qtcp: WSAStartup failed %ld:", WSAGetLastError());
}
if (argc < 2) Usage();
Name = malloc(MAX_STRING);
bzero(Name,MAX_STRING);
SetDefaults();
argv++; argc--;
while( argc>0 && argv[0][0] == '-' ) {
switch (argv[0][1]) {
case 'B':
g_params.BucketSize = atoi(&argv[0][2]);
break;
case 'm':
g_params.MinPolicedSize = atoi(&argv[0][2]);
break;
case 'M':
g_params.MaxSDUSize = atoi(&argv[0][2]);
break;
case 'R':
g_params.TokenRate = (int)strtod(&argv[0][2],&stopstring);
if (*stopstring == 0) { // normal run
g_params.RateInBytes = FALSE;
break;
}
if (*stopstring == 'B') { // rate is in bytes / sec, not kbytes/sec
g_params.RateInBytes = TRUE;
break;
}
else {
Usage();
break;
}
case 'S':
g_params.szServiceType = &argv[0][2];
if(!strncmp(g_params.szServiceType, ControlledLoad, 2)){
g_params.dwServiceType = SERVICETYPE_CONTROLLEDLOAD;
break;
}
if(!strncmp(g_params.szServiceType, Guaranteed, 2)){
g_params.dwServiceType = SERVICETYPE_GUARANTEED;
break;
}
if(!strncmp(g_params.szServiceType, BestEffort, 2)){
g_params.dwServiceType = SERVICETYPE_BESTEFFORT;
g_params.Wait = FALSE;
break;
}
if(!strncmp(g_params.szServiceType, NoTraffic, 2)){
g_params.dwServiceType = SERVICETYPE_NOTRAFFIC;
g_params.Wait = FALSE;
break;
}
fprintf(stderr, "Invalid service type (not CL or GR).\n");
fprintf(stderr, "Using GUARANTEED service.\n");
break;
case 'e':
g_params.ForceShape = TRUE;
break;
case 'W':
g_params.Wait = FALSE;
break;
case 't':
trans = 1;
break;
case 'f':
strcpy(Name,&argv[0][2]);
break;
case 'F':
strcpy(Name,&argv[0][2]);
g_params.ConvertOnly = TRUE;
break;
case 'A':
strcpy(Name,&argv[0][2]);
g_params.AggregateStats = TRUE;
break;
case 'r':
trans = 0;
break;
case 'n':
g_params.nbuf = (INT)strtod(&argv[0][2],&stopstring);
if (*stopstring == 0) { // normal run
g_params.nBufUnspecified = FALSE;
break;
}
if (*stopstring == 'i') { // run for an infinite time
g_params.RunForever = TRUE;
break;
}
if (*stopstring == 's') { // run for a specified time
g_params.TimedRun = TRUE;
printf("Running for %d seconds\n",g_params.nbuf);
break;
}
else {
Usage();
break;
}
case 'c':
g_params.calibration = atoi(&argv[0][2]);
break;
case 'k':
g_params.SkewFitMode = atoi(&argv[0][2]);
if (g_params.SkewFitMode < 0 || g_params.SkewFitMode > 3)
ErrorExit("Invalid Skew Fit Mode",g_params.SkewFitMode);
break;
case 'l':
g_params.buflen = atoi(&argv[0][2]);
break;
case 'p':
port = (short)atoi(&argv[0][2]);
break;
case 'd':
g_params.Dummy = TRUE;
break;
case 'N':
normalize = 1;
break;
case 'P':
g_params.PrintDrops = TRUE;
break;
case 'v':
g_params.RESVonly = TRUE;
break;
case 'y':
g_params.SkipConfirm = TRUE;
break;
case 'u':
g_params.UserStamps = TRUE;
break;
case 'i':
g_params.RandomFiller = FALSE;
break;
case 'q':
g_params.LoggingPeriod = atoi(&argv[0][2]);
break;
default:
Usage();
}
argv++;
argc--;
}
//
// Make an ioctl to Timestmp driver, if its exists about the
// port to timestamp on.
//
printf("Trying to open %s\n", DriverName);
hDriver = CreateFile(DriverName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
0, // Default security
OPEN_EXISTING,
0,
0); // No template
if(hDriver == INVALID_HANDLE_VALUE) {
printf("Timestmp.sys CreateFile- Error %ld - Maybe its not INSTALLED\n", GetLastError());
// Otherwise, print success and close the driver
} else {
printf("Timestmp.sys - CreateFile Success.\n");
b = DeviceIoControl(
hDriver, // handle to a device, file, or directory
IOCTL_TIMESTMP_REGISTER_PORT, // control code of operation to perform
&port, // pointer to buffer to supply input data
2, //nInBufferSize, // size, in bytes, of input buffer
NULL, //lpOutBuffer, // pointer to buffer to receive output data
0, //nOutBufferSize, // size, in bytes, of output buffer
&bytesreturned, // pointer to variable to receive byte count
NULL // pointer to overlapped structure
);
printf("IOCTL performed\n");
if (!b) {
printf("IOCTL FAILED!\n", GetLastError());
// Close the driver
CloseHandle(hDriver);
} else {
printf("IOCTL succeeded!\n");
}
}
// get the host address if we're the sender
if(trans) {
if(argc != 1)
Usage();
host = malloc(strlen(argv[0]) + 1);
strcpy(host,argv[0]);
}
// first, we see if this is a conversion -- if it is, just jump right in, else go on
if (g_params.ConvertOnly) {
DoStatsFromFile();
exit(0);
}
// see if we're supposed to do stat aggregation
if (g_params.AggregateStats) {
AggregateStats();
exit(0);
}
// Do argument sanity tests & set default values if not already set
if (!GoodParams()) exit(1);
// Spawn off the control socket monitor thread
CreateThread(NULL, 0, ControlSocketMonitor, (LPVOID)host, 0, NULL);
// Get the sockets ready, set for QoS, and wait for a connection
SetupSockets();
// Check for a RESV only session
if (g_params.RESVonly) { // keep socket open and hang out
fprintf(stdout, "RSVP connection established. Press return to quit.\n");
while(TRUE){
if(getchar())
break;
}
exit(0);
}
// start up the RSVPMonitor and keyboard monitor threads to watch for wackiness
hRSVPMonitor = CreateThread(NULL,0,RSVPMonitor,NULL,0,&idRSVPMonitor);
CreateThread(NULL,0,KeyboardMonitor,NULL,0,NULL);
// wait for the control channel to be set up, if it's not already
while (g_sockControl == INVALID_SOCKET) Sleep(50);
if (!trans) { // we want to make sure these are not initialized, so we don't put wrong values in .sta
g_params.buflen = 0;
g_params.nbuf = 2048; // it's ok to init this because it's not saved in .sta
g_params.TokenRate = 0;
}
totalBuffers = g_params.nbuf + g_params.calibration;
// Tell the receiver the important parameters
if (trans) {
if (g_params.RunForever) totalBuffers = 2048;
sprintf(szBuf, "%s %d", MSGST_NUM, totalBuffers);
SendControlMessage(g_sockControl, szBuf);
sprintf(szBuf, "%s %d", MSGST_SIZE, g_params.buflen);
SendControlMessage(g_sockControl, szBuf);
if (g_params.RateInBytes) sprintf(szBuf, "%s %d", MSGST_RATE, g_params.TokenRate);
else sprintf(szBuf, "%s %d", MSGST_RATE, 1000 * g_params.TokenRate);
SendControlMessage(g_sockControl, szBuf);
}
while (!g_fReadyForXmit) Sleep(50);
// If we're the receiver, set up the log buffer and files
if((Name != NULL) && !trans){
SetupLogs();
}
// Let the user know what's up
if(trans){
fprintf(stdout, "qtcp TRANSMITTER\n");
if (g_params.calibration)
fprintf(stdout, "\tSending %d calibration buffers.\n", g_params.calibration);
fprintf(stdout, "\tSending %d buffers of length %d.\n", g_params.nbuf, g_params.buflen);
fprintf(stdout, "\tDestination address (port) is %s (%d).\n", argv[0], port);
if (g_params.RateInBytes)
fprintf(stdout, "\tToken rate is %d bytes/sec.\n", g_params.TokenRate);
else
fprintf(stdout, "\tToken rate is %d Kbytes/sec.\n", g_params.TokenRate);
fprintf(stdout, "\tBucket size is %d bytes.\n", g_params.BucketSize);
}
else{
fprintf(stdout, "qtcp RECEIVER\n");
if (g_params.calibration)
fprintf(stdout, "\tPrepared to receive %d calibration buffers.\n", g_params.calibration);
if (!g_params.nBufUnspecified) {
fprintf(stdout, "\tPrepared to receive %d buffers.\n", g_params.nbuf);
}
}
// Do the actual communication
time0 = GetUserTime();
if (trans)
DoTransmit();
else
DoReceive();
time1 = GetUserTime();
timeElapsed = (time1 - time0)/10000;
// tell the other guy we're done
SendControlMessage(g_sockControl, MSGST_DONE);
// get to a new line
printf("\n");
// put some stats on the transmitter console
if (trans) {
printf("Sent %ld bytes in %I64d milliseconds = %I64d KBps\n",
g_state.nBytesTransferred, timeElapsed, g_state.nBytesTransferred/timeElapsed);
}
// wait for the other side to tell us it's done.
while (!g_fOtherSideFinished) Sleep(50);
// let the user know if timestmp.sys was installed
if (g_params.NoSenderTimestamps && g_params.NoReceiverTimestamps)
printf("WARNING: No kernel-level timestamps detected on sender or receiver\n\tUsing user-mode timestamps.\n");
else if (g_params.NoSenderTimestamps)
printf("WARNING: No kernel-level timestamps detected on sender\n\tUsing user-mode timestamps.\n");
else if (g_params.NoReceiverTimestamps)
printf("WARNING: No kernel-level timestamps detected on receiver\n Using user-mode timestamps.\n");
// Close down the sockets
if (closesocket((SOCKET)g_params.hSocket) != 0)
fprintf(stderr,"closesocket failed: %d\n",WSAGetLastError());
if(timeElapsed <= 100){
fprintf(stdout,
"qtcp %s:Time interval too short for valid measurement!\n",
trans?"-t":"-r");
}
// Close files & exit
if(!trans && Name != NULL){
if (g_log.nBuffersLogged) {
DoStats();
} else {
printf("ERROR: no buffers logged due to errors.\n");
}
CloseHandle(hRawFile);
CloseHandle(hLogFile);
CloseHandle(hStatFile);
DestroyLog(&g_log);
}
if (WSACleanup() != 0)
fprintf(stderr,"WSACleanup failed: %d\n",WSAGetLastError());
printf("\n");
_exit(0);
} // main()
VOID SetDefaults()
{
g_params.hSocket = NULL;
g_params.TokenRate = 100;
g_params.MaxSDUSize = QOS_NOT_SPECIFIED;
g_params.BucketSize = QOS_NOT_SPECIFIED;
g_params.MinPolicedSize = QOS_NOT_SPECIFIED;
g_params.dwServiceType = SERVICETYPE_GUARANTEED;
g_params.szServiceType = "GR";
g_params.buflen = 1472; /* length of buffer */
g_params.nbuf = 2 * 1024; /* number of buffers to send */
g_params.calibration = 0;
g_params.UserStamps = FALSE; // By default, we use kernel mode timestamping, if available
g_params.SkipConfirm = FALSE; // By default, we wait for user confirmation at certain times
g_params.SkewFitMode = 2; // by default, we use absolute deviation
g_params.Wait = TRUE; // By default, we wait for a QoS reservation
g_params.Dummy = FALSE; // insert dummy rows in log by default
g_params.PrintDrops = FALSE; // report dropped packets on console
g_params.ForceShape = FALSE; // by default, we do not force shaping on CL flows
g_params.RateInBytes = FALSE; // KB by default
g_params.ConvertOnly = FALSE; // by default, we act normally and do not go around converting files
g_params.AggregateStats = FALSE;
g_params.NoSenderTimestamps = FALSE;
g_params.NoReceiverTimestamps = FALSE;
g_params.TimedRun = FALSE; // by default, we run for a number of packets
g_params.RunForever = FALSE; // by default, we run fora number of packets
g_params.nBufUnspecified = TRUE;
g_params.RandomFiller = TRUE; // by default, we use random filler to prevent compression
g_params.LoggingPeriod = 1;
} // SetDefaults()
VOID Usage()
{
fprintf(stderr,"Usage: qtcp [-options] -t host\n");
fprintf(stderr," qtcp [-options] -r\n");
fprintf(stderr," -t options:\n");
fprintf(stderr," -B## TokenBucket size signaled to network and to traffic control\n");
fprintf(stderr," (default is equal to buffer size)\n");
fprintf(stderr," -m## MinPolicedSize signaled to network and to traffic control\n");
fprintf(stderr," (default is equal to buffer size)\n");
fprintf(stderr," -R## TokenRate in kilobytes per second (default is 100 KBPS)\n");
fprintf(stderr," -R##B TokenRate in bytes per second\n");
fprintf(stderr," -e Force shaping to TokenRate.\n");
fprintf(stderr," -M MaxSDUSize to be used in signaling messages (default is buffer\n");
fprintf(stderr," size\n");
fprintf(stderr," -l## length of buffers to transmit (default is 1472 bytes)\n");
fprintf(stderr," -n## number of source bufs written to network (default is 2048 bytes)\n");
fprintf(stderr," -n##s numbef of seconds to send buffers for (numbef of buffers will\n");
fprintf(stderr," be calculated based on other parameters\n");
fprintf(stderr," -ni run indefinitely (will stop when 'q' is pressed on either)\n");
fprintf(stderr," -c## Specifies number of calibration packets to be sent\n");
fprintf(stderr," Calibration packets will be sent immediately\n");
fprintf(stderr," After calibration packets are sent, n additional\n");
fprintf(stderr," packets will be sent. This option is useful if you want to\n");
fprintf(stderr," change network conditions after a set calibration phase\n");
fprintf(stderr," -y skip confirmation message after calibration phase\n");
fprintf(stderr," -p## port number to send to or listen at (default 5003)\n");
fprintf(stderr," -i use more compressible buffer data\n");
fprintf(stderr," -r options:\n");
fprintf(stderr," -f\"filename\" Name prefix to be used in generating log file and\n");
fprintf(stderr," statistics summary. (no file generated by default)\n");
fprintf(stderr," -c## Specifies number of buffers to use in clock-skew calibration\n");
fprintf(stderr," -k0 do not calculate clock skew\n");
fprintf(stderr," -k1 use chi squared as goodness of fit\n");
fprintf(stderr," -k2 use absolute deviation as goodness of fit (default)\n");
fprintf(stderr," -k3 use abs dev and check for clock jumps\n");
fprintf(stderr," -d suppress insertion of dummy log records for lost packets.\n");
fprintf(stderr," -N Normalize before dumping raw file (default is after)\n");
fprintf(stderr," -P enables console reporting of dropped packets\n");
fprintf(stderr," -u use user mode timestamps instead of kernel timestamps in logs\n");
fprintf(stderr," -q## log only every ##th packet\n");
fprintf(stderr," common options:\n");
fprintf(stderr," -S\"service type\" (CL or GR -- GR is default)\n");
fprintf(stderr," -W Suppress waiting for QoS reservation\n");
fprintf(stderr," -v Set up QoS reservation only, send no data\n");
fprintf(stderr," -F\"filename\" Name prefix of raw file to be converted to log file\n");
fprintf(stderr," -A\"path\" Path to directory for aggregate statistics computation\n");
WSACleanup();
exit(1);
} // Usage()
BOOLEAN GoodParams()
{
BOOLEAN ok = TRUE;
if(g_params.buflen < sizeof(BUFFER_FORMAT)){
printf("Buffer size too small for record!\n");
ok = FALSE;
}
// Unless otherwise specified, min policed size will be equal to
// buflen.
if(g_params.MinPolicedSize == QOS_NOT_SPECIFIED){
g_params.MinPolicedSize = g_params.buflen;
}
// Same goes for bucket size
if(g_params.BucketSize == QOS_NOT_SPECIFIED){
g_params.BucketSize = g_params.buflen;
}
// And for MaxSDU
if(g_params.MaxSDUSize == QOS_NOT_SPECIFIED){
g_params.MaxSDUSize = g_params.buflen;
}
// If the bucket size is smaller than the buffer size,
// and this is a sender, then warn the user because
// data will be discarded
if((g_params.BucketSize < g_params.buflen) && trans){
printf("Token bucket size is smaller than buffer size!\n");
ok = FALSE;
}
if(g_params.MaxSDUSize < g_params.buflen){
printf("MaxSDU cannot be less than buffer size!\n");
ok = FALSE;
}
if(g_params.buflen < 5){
g_params.buflen = 5; // send more than the sentinel size
}
if(g_params.TimedRun) {
if (g_params.RateInBytes)
g_params.nbuf = g_params.nbuf * g_params.TokenRate / g_params.buflen;
else
g_params.nbuf = g_params.nbuf * g_params.TokenRate * 1000 / g_params.buflen;
printf("Using %d buffers\n",g_params.nbuf);
}
return ok;
} // GoodParams()
VOID SetupLogs()
{
CreateLog(&g_log, totalBuffers);
// set up logging files
if(ERROR_SUCCESS != MyCreateFile(Name,".raw",&hRawFile)){
fprintf(stderr, "WARNING: Could not create raw file.\n");
}
if(ERROR_SUCCESS == MyCreateFile(Name,".log", &hLogFile)){
fprintf(stdout,"Logging per-packet data to %s.log.\n",Name);
}
else{
fprintf(stderr, "WARNING: Could not create log file.\n");
}
if(ERROR_SUCCESS == MyCreateFile(Name, ".sta", &hStatFile)){
fprintf(stdout,"Writing statistics sumary to %s.sta\n",Name);
}
else{
fprintf(stderr,"Could not create statistics file.\n");
}
} // SetupLogs()
VOID SetupSockets()
{
struct hostent *addr;
ULONG addr_tmp;
char szAddr[MAX_STRING];
int dwAddrSize, dwError;
// Set address and port parameters
if(trans) {
bzero((char *)&sinhim, sizeof(sinhim));
if (atoi(host) > 0 ) {
sinhim.sin_family = AF_INET;
sinhim.sin_addr.s_addr = inet_addr(host);
}
else{
if ((addr=gethostbyname(host)) == NULL){
printf("ERROR: bad hostname\n");
WSACleanup();
exit(1);
}
sinhim.sin_family = addr->h_addrtype;
bcopy(addr->h_addr,(char*)&addr_tmp, addr->h_length);
sinhim.sin_addr.s_addr = addr_tmp;
}
sinhim.sin_port = htons(port);
sinme.sin_port = 0; /* free choice */
}
else{
sinme.sin_port = htons(port);
}
sinme.sin_family = AF_INET;
// Open socket for QoS traffic
fd = OpenQoSSocket();
if((fd == (UINT_PTR)NULL) || (fd == INVALID_SOCKET)){
fprintf(stderr,"Failed to open QoS socket!\n");
exit(1);
}
// Prepare to get QoS notifications
if((QoSEvents = WSACreateEvent()) == WSA_INVALID_EVENT){
fprintf(stderr,
"Failed to create an event for QoS notifications %ld\n",
WSAGetLastError());
exit(1);
}
if(WSAEventSelect(fd, QoSEvents, FD_QOS) == SOCKET_ERROR){
fprintf(stderr,
"Unable to get notifications for QoS events. %ld\n",
WSAGetLastError());
}
if(trans){
// Set QoS on sending traffic
if(SetQoSSocket(fd, TRUE)){
exit(1);
}
fprintf(stdout, "Initiated QoS connection. Waiting for receiver.\n");
WaitForQoS(SENDER, fd);
}
else{ // we're the receiver, so bind and wait
if(bind(fd, (PSOCKADDR)&sinme, sizeof(sinme)) < 0){
printf("bind() failed: %ld\n", GetLastError( ));
}
if(SetQoSSocket(fd, FALSE)){
exit(1);
}
fprintf(stdout, "Waiting for QoS sender to initiate QoS connection.\n");
WaitForQoS(RECEIVER, fd);
}
// set some options
// none to set!
g_params.hSocket = (HANDLE)fd;
} // SetupSockets()
SOCKET
OpenQoSSocket(
)
{
INT bufferSize = 0;
INT numProtocols;
LPWSAPROTOCOL_INFO installedProtocols, qosProtocol;
INT i;
SOCKET fd;
BOOLEAN QoSInstalled = FALSE;
// Call WSAEnumProtocols to determine buffer size required
numProtocols = WSAEnumProtocols(NULL, NULL, &bufferSize);
if((numProtocols != SOCKET_ERROR) && (WSAGetLastError() != WSAENOBUFS)){
printf("Failed to enumerate protocols!\n");
return((UINT_PTR)NULL);
}
else{
// Enumerate the protocols, find the QoS enabled one
installedProtocols = (LPWSAPROTOCOL_INFO)malloc(bufferSize);
numProtocols = WSAEnumProtocols(NULL,
(LPVOID)installedProtocols,
&bufferSize);
if(numProtocols == SOCKET_ERROR){
printf("Failed to enumerate protocols!\n");
return((UINT_PTR)NULL);
}
else{
qosProtocol = installedProtocols;
for(i=0; i<numProtocols; i++){
if((qosProtocol->dwServiceFlags1 & XP1_QOS_SUPPORTED)&&
(qosProtocol->dwServiceFlags1 & XP1_CONNECTIONLESS) &&
(qosProtocol->iAddressFamily == AF_INET)){
QoSInstalled = TRUE;
break;
}
qosProtocol++;
}
}
// Now open the socket.
if (!QoSInstalled) {
fprintf(stderr,"ERROR: No QoS protocols installed on this machine\n");
exit(1);
}
fd = WSASocket(0,
SOCK_DGRAM,
0,
qosProtocol,
0,
WSA_FLAG_OVERLAPPED);
free(installedProtocols);
return(fd);
}
} // OpenQoSSocket()
INT
SetQoSSocket(
SOCKET fd,
BOOL Sending)
{
QOS qos;
INT status;
LPFLOWSPEC flowSpec;
INT dummy;
INT receiverServiceType = Sending?
SERVICETYPE_NOTRAFFIC:
g_params.dwServiceType;
qos.ProviderSpecific.len = 0;
qos.ProviderSpecific.buf = 0;
// receiving flowspec is either NO_TRAFFIC (on a sender) or all
// defaults except for the service type (on a receiver)
flowSpec = &qos.ReceivingFlowspec;
flowSpec->TokenRate = QOS_NOT_SPECIFIED;
flowSpec->TokenBucketSize = QOS_NOT_SPECIFIED;
flowSpec->PeakBandwidth = QOS_NOT_SPECIFIED;
flowSpec->Latency = QOS_NOT_SPECIFIED;
flowSpec->DelayVariation = QOS_NOT_SPECIFIED;
flowSpec->ServiceType = receiverServiceType;
flowSpec->MaxSduSize = QOS_NOT_SPECIFIED;
flowSpec->MinimumPolicedSize = QOS_NOT_SPECIFIED;
// now do the sending flowspec
flowSpec = &qos.SendingFlowspec;
if(Sending){
if (g_params.RateInBytes)
flowSpec->TokenRate = g_params.TokenRate;
else
flowSpec->TokenRate = g_params.TokenRate * 1000;
flowSpec->TokenBucketSize = g_params.BucketSize;
if (g_params.ForceShape) {
if (g_params.RateInBytes)
flowSpec->PeakBandwidth = g_params.TokenRate;
else
flowSpec->PeakBandwidth = g_params.TokenRate * 1000;
}
else
flowSpec->PeakBandwidth = QOS_NOT_SPECIFIED;
flowSpec->Latency = QOS_NOT_SPECIFIED;
flowSpec->DelayVariation = QOS_NOT_SPECIFIED;
flowSpec->ServiceType = g_params.dwServiceType;
if (g_params.ForceShape && flowSpec->ServiceType == SERVICETYPE_BESTEFFORT )
flowSpec->ServiceType = SERVICETYPE_GUARANTEED | SERVICE_NO_QOS_SIGNALING;
flowSpec->MaxSduSize = g_params.MaxSDUSize;
flowSpec->MinimumPolicedSize = g_params.MinPolicedSize;
printf("Sending Flowspec\n");
PrintFlowspec(&qos.SendingFlowspec);
status = WSAConnect(fd,
(PSOCKADDR)&sinhim,
sizeof(sinhim),
NULL,
NULL,
&qos,
NULL);
if(status){
printf("SetQoS failed on socket: %ld\n", WSAGetLastError());
}
}
else{
flowSpec->TokenRate = QOS_NOT_SPECIFIED;
flowSpec->TokenBucketSize = QOS_NOT_SPECIFIED;
flowSpec->PeakBandwidth = QOS_NOT_SPECIFIED;
flowSpec->Latency = QOS_NOT_SPECIFIED;
flowSpec->DelayVariation = QOS_NOT_SPECIFIED;
flowSpec->ServiceType = SERVICETYPE_NOTRAFFIC;
flowSpec->MaxSduSize = QOS_NOT_SPECIFIED;
flowSpec->MinimumPolicedSize = QOS_NOT_SPECIFIED;
status = WSAIoctl(fd,
SIO_SET_QOS,
&qos,
sizeof(QOS),
NULL,
0,
&dummy,
NULL,
NULL);
if(status){
printf("SetQoS failed on socket: %ld\n", WSAGetLastError());
}
}
return(status);
} // SetQoSSocket()
VOID
WaitForQoS(
BOOL Sender,
SOCKET fd)
{
ULONG status;
if(!g_params.Wait){
// For best effort, we don't do anything QoS... Return
// right away. In this case, the sender should be started
// after the reciever, since there is no synchronization
// via rsvp and data could be missed.
fprintf(stdout, "WARNING: Not waiting for QoS reservation.\n");
return;
}
while(TRUE){
// get the statuscode, waiting for as long as it takes
status = GetRsvpStatus(WSA_INFINITE,fd);
switch (status) {
case WSA_QOS_RECEIVERS: // at least one RESV has arrived
if (Sender)
fprintf(stdout, "QoS reservation installed for %s service.\n", g_params.szServiceType);
break;
case WSA_QOS_SENDERS: // at least one PATH has arrived
if (!Sender)
fprintf(stdout, "QoS sender detected using %s service.\n", g_params.szServiceType);
break;
default:
PrintRSVPStatus(status);
break;
}
// if we received one of the coveted status codes, break out
// altogether. otherwise wait and see if we get another batch
// of indications.
if( ((status == WSA_QOS_RECEIVERS) && Sender) ||
((status == WSA_QOS_SENDERS) && !Sender) ) {
break;
}
}
} // WaitForQoS()
ULONG
GetRsvpStatus(
DWORD dwTimeout,
SOCKET fd)
{
LPQOS qos;
UCHAR qosBuffer[500];
LPRSVP_STATUS_INFO rsvpStatus;
INT bytesReturned;
qos = (LPQOS)qosBuffer;
qos->ProviderSpecific.len = sizeof(RSVP_STATUS_INFO);
qos->ProviderSpecific.buf = (PUCHAR)(qos+1);
// wait for notification that a QoS event has occured
WSAWaitForMultipleEvents(1,
&QoSEvents,
FALSE,
dwTimeout,
TRUE);
// loop through all qos events
WSAIoctl(fd,
SIO_GET_QOS,
NULL,
0,
qosBuffer,
sizeof(qosBuffer),
&bytesReturned,
NULL,
NULL);
rsvpStatus = (LPRSVP_STATUS_INFO)qos->ProviderSpecific.buf;
return rsvpStatus->StatusCode;
} // GetRsvpStatus
VOID
PrintRSVPStatus(ULONG code)
{
switch (code) {
case WSA_QOS_RECEIVERS: // at least one RESV has arrived
printf("WSA_QOS_RECEIVERS\n");
break;
case WSA_QOS_SENDERS: // at least one PATH has arrived
printf("WSA_QOS_SENDERS\n");
break;
case WSA_QOS_REQUEST_CONFIRMED: // Reserve has been confirmed
printf("WSA_QOS_REQUEST_CONFIRMED\n");
break;
case WSA_QOS_ADMISSION_FAILURE: // error due to lack of resources
printf("WSA_QOS_ADMISSION_FAILURE\n");
break;
case WSA_QOS_POLICY_FAILURE: // rejected for admin reasons
printf("WSA_QOS_POLICY_FAILURE\n");
break;
case WSA_QOS_BAD_STYLE: // unknown or conflicting style
printf("WSA_QOS_BAD_STYLE\n");
break;
case WSA_QOS_BAD_OBJECT: // problem with some part of the
// filterspec/providerspecific
// buffer in general
printf("WSA_QOS_BAD_OBJECT\n");
break;
case WSA_QOS_TRAFFIC_CTRL_ERROR: // problem with some part of the
// flowspec
printf("WSA_QOS_TRAFFIC_CTRL_ERROR\n");
break;
case WSA_QOS_GENERIC_ERROR: // general error
printf("WSA_QOS_GENERIC_ERROR\n");
break;
default:
printf("Unknown RSVP StatusCode %lu\n", code);
break;
}
} // PrintRSVPStatus
VOID
DoTransmit()
{
IOREQ IOReq[MAX_PENDING_IO_REQS] = { 0 };
INT i;
BOOL ret;
BOOL fOk;
g_state.nBytesTransferred = 0;
g_state.nBuffersSent = 0;
g_state.nWritesInProgress = 0;
// fill up the initial buffers and send them on their way
for (i=0; i<MAX_PENDING_IO_REQS; i++) {
IOReq[i].pBuffer = malloc(g_params.buflen);
FillBuffer(IOReq[i].pBuffer,g_params.buflen);
TimeStamp(IOReq[i].pBuffer,g_params.buflen);
IOReq[i].Overlapped.Internal = 0;
IOReq[i].Overlapped.InternalHigh = 0;
IOReq[i].Overlapped.Offset = 0;
IOReq[i].Overlapped.OffsetHigh = 0;
IOReq[i].Overlapped.hEvent = NULL;
if (g_state.nBuffersSent < totalBuffers) {
WriteFileEx(g_params.hSocket,
IOReq[i].pBuffer,
g_params.buflen,
&IOReq[i].Overlapped,
TransmitCompletionRoutine);
g_state.nWritesInProgress++;
g_state.nBuffersSent++;
}
}
// now loop until an error happens or we're done writing to the socket
while (g_state.nWritesInProgress > 0) {
SleepEx(INFINITE, TRUE);
}
// send the end of transmission delimiters
for (i=0; i<MAX_PENDING_IO_REQS; i++) {
strncpy(IOReq[i].pBuffer,TheEnd,strlen(TheEnd));
fOk = WriteFileEx(g_params.hSocket,
IOReq[i].pBuffer,
strlen(TheEnd),
&IOReq[i].Overlapped,
DelimiterSendCompletion);
g_state.nWritesInProgress++;
if (!fOk) {
printf("WriteFileEx() failed: %lu\n",GetLastError());
}
}
// wait for all the delimiters to be sent
while (g_state.nWritesInProgress > 0) {
SleepEx(INFINITE, TRUE);
}
// free up the used memory
for (i=0; i<MAX_PENDING_IO_REQS; i++) {
free(IOReq[i].pBuffer);
}
} // DoTransmit()
VOID WINAPI
TransmitCompletionRoutine(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED pOverlapped)
{
PIOREQ pIOReq = (PIOREQ) pOverlapped;
BOOL fOk;
if (dwErrorCode == ERROR_REQUEST_ABORTED) {
g_state.Done = TRUE;
}
else if (dwErrorCode != NO_ERROR) {
printf("ERROR: Write completed abnormally: %u\n",dwErrorCode);
}
g_state.nWritesInProgress--;
g_state.nBytesTransferred += dwNumberOfBytesTransferred;
// check to make sure we're not done
if (g_state.Done)
return;
// give some indication of life
if(!(g_state.nBuffersSent % 100)){
fprintf(stdout, ".");
}
// if there are more buffers to go, send one
if (g_state.nBuffersSent < totalBuffers || g_params.RunForever) {
// see if this was the last of the calibration buffers (if we want confirmation)
if (g_params.SkipConfirm == FALSE) {
if (g_params.calibration && (g_state.nBuffersSent == g_params.calibration)) {
printf("\nCalibration complete. Type 'c' to continue.\n");
while(TRUE){
if(getchar() == 'c'){
break;
}
}
}
}
// fill in the buffer with new values
FillBuffer(pIOReq->pBuffer,g_params.buflen);
TimeStamp(pIOReq->pBuffer,g_params.buflen);
// send a request to write the new buffer
fOk = WriteFileEx(g_params.hSocket,
pIOReq->pBuffer,
g_params.buflen,
pOverlapped,
TransmitCompletionRoutine);
if (!fOk) {
printf("WriteFileEx() failed: %lu\n",GetLastError());
}
g_state.nWritesInProgress++;
g_state.nBuffersSent++;
}
} // TransmitCompletionRoutine()
VOID WINAPI
DelimiterSendCompletion(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED pOverlapped)
{
g_state.nWritesInProgress--;
} // DelimiterSendCompletion()
VOID
FillBuffer(
CHAR *Cp,
INT Cnt)
{
PBUFFER_FORMAT buf = (PBUFFER_FORMAT) Cp;
CHAR c = 0;
// Fill with a background pattern
if (g_params.RandomFiller) { // incompressible
while(Cnt-- > 0) {
c = rand() % 0x5F;
c += 0x20;
*Cp++ = c;
}
}
else { // compressible
while(Cnt-- > 0){
while(!isprint((c&0x7F))) c++;
*Cp++ = (c++&0x7F);
}
}
buf->TimeSent = -1;
buf->TimeReceived = -1;
} // FillBuffer()
INT
TimeStamp(
CHAR *Cp,
INT Cnt)
{
PBUFFER_FORMAT record;
LARGE_INTEGER timeSent;
INT64 time;
record = (BUFFER_FORMAT *)Cp;
// Stamp with length and sequence number
if(Cnt < sizeof(BUFFER_FORMAT)){
printf("ERROR: Buffer length smaller than record size!\n");
return(0);
}
else{
time = GetUserTime();
record->TimeSentUser = time;
record->BufferSize = Cnt;
record->SequenceNumber = SequenceNumber++;
}
return 1;
} // TimeStamp()
VOID
DoReceive()
{
IOREQ IOReq[MAX_PENDING_IO_REQS] = { 0 };
INT i;
BOOL ret;
// set the start state
g_state.Done = FALSE;
g_state.nBytesTransferred = 0;
g_state.nBuffersReceived = 0;
g_state.nReadsInProgress = 0;
// fill up the initial buffers and send them on their way
for (i=0; i<MAX_PENDING_IO_REQS; i++) {
IOReq[i].pBuffer = malloc(g_params.buflen);
IOReq[i].Overlapped.Internal = 0;
IOReq[i].Overlapped.InternalHigh = 0;
IOReq[i].Overlapped.Offset = 0;
IOReq[i].Overlapped.OffsetHigh = 0;
IOReq[i].Overlapped.hEvent = NULL;
if (g_state.nBuffersReceived < totalBuffers) {
ReadFileEx(g_params.hSocket,
IOReq[i].pBuffer,
g_params.buflen,
&IOReq[i].Overlapped,
RecvCompletionRoutine);
g_state.nReadsInProgress++;
}
}
InitializeCriticalSection(&g_csLogRecord);
// now loop until an error happens or we're done writing to the socket
while ((g_state.nReadsInProgress > 0) && !g_state.Done) {
SleepEx(5000, TRUE);
if (g_state.Done)
break;
}
DeleteCriticalSection(&g_csLogRecord);
// cancel the other pending reads
CancelIo(g_params.hSocket);
// free up the used memory
for (i=0; i<MAX_PENDING_IO_REQS; i++) {
free(IOReq[i].pBuffer);
}
} // DoReceive()
VOID WINAPI
RecvCompletionRoutine(
DWORD dwErrorCode,
DWORD dwNumberOfBytesTransferred,
LPOVERLAPPED pOverlapped)
{
PIOREQ pIOReq = (PIOREQ) pOverlapped;
BOOL fOk;
static BOOL fLastWasError = FALSE;
g_state.nReadsInProgress--;
g_state.nBytesTransferred += dwNumberOfBytesTransferred;
if (dwNumberOfBytesTransferred == 0) { // an error occurred
if (!fLastWasError) {
printf("ERROR in RecvCompletionRoutine: code=%d, lasterr=%d\n",
dwErrorCode, GetLastError());
printf("\tReceived no data. Telling sender to abort...\n");
SendControlMessage(g_sockControl, MSGST_ERROR);
}
fLastWasError = TRUE;
}
else fLastWasError = FALSE;
// if this is the first packet we've received, save the system time
if (g_state.nBuffersReceived == 0) {
GetSystemTime(&systimeStart);
}
// give some indication of life
if(!(g_state.nBuffersReceived % 100)){
fprintf(stdout, ".");
}
// end of transmission delimiter? if so, set the total buffers to the number got
if(!(strncmp(pIOReq->pBuffer, TheEnd, 6))) {
totalBuffers = g_state.nBuffersReceived;
g_state.Done = TRUE;
}
// check to see if someone's set our done flag (if they have, leave)
if (g_state.Done)
return;
// if not, then the buffer should hold a scheduling record.
if(dwNumberOfBytesTransferred>0 && dwNumberOfBytesTransferred <= sizeof(BUFFER_FORMAT)) {
printf("Buffer too small for scheduling record\n");
printf("\tOnly %d bytes read.\n", dwNumberOfBytesTransferred);
}
// Log the record, but don't log more than one at a time (lock on this call)
if (dwNumberOfBytesTransferred >= sizeof(BUFFER_FORMAT) &&
g_state.nBuffersReceived % g_params.LoggingPeriod == 0) {
EnterCriticalSection(&g_csLogRecord);
LogRecord(pIOReq->pBuffer);
LeaveCriticalSection(&g_csLogRecord);
}
// if there are more buffers (or if we don't know how many are coming), ask for one
if ((g_state.nBuffersReceived < totalBuffers) || g_params.nBufUnspecified) {
// send a request to read the next buffer
fOk = ReadFileEx(g_params.hSocket,
pIOReq->pBuffer,
g_params.buflen,
pOverlapped,
RecvCompletionRoutine);
if (!fOk) {
printf("ReadFileEx() failed: %lu\n",GetLastError());
}
g_state.nReadsInProgress++;
g_state.nBuffersReceived++;
}
} // RecvCompletionRoutine()
void LogRecord(char * Buffer)
{
// This function copies the recieved record to the scheduling array.
// The contents of the array are processed and written to file once
// reception is complete.
PBUFFER_FORMAT inRecord = (PBUFFER_FORMAT)Buffer;
LOG_RECORD outRecord;
INT64 time;
SYSTEMTIME CurrentTime;
time = GetUserTime();
outRecord.TimeSentUser = inRecord->TimeSentUser;
outRecord.TimeReceivedUser = time;
outRecord.TimeSent = inRecord->TimeSent;
outRecord.TimeReceived = inRecord->TimeReceived;
outRecord.BufferSize = inRecord->BufferSize;
outRecord.SequenceNumber = inRecord->SequenceNumber;
if (inRecord->TimeSent == -1) {
outRecord.TimeSent = outRecord.TimeSentUser;
g_params.NoSenderTimestamps = TRUE;
}
if (inRecord->TimeReceived == -1) {
outRecord.TimeReceived = outRecord.TimeReceivedUser;
g_params.NoReceiverTimestamps = TRUE;
}
if(g_params.UserStamps){
outRecord.TimeSent = outRecord.TimeSentUser;
outRecord.TimeReceived = outRecord.TimeReceivedUser;
}
outRecord.Latency = outRecord.TimeReceived - outRecord.TimeSent;
AddLogEntry(&g_log, &outRecord);
if(g_params.PrintDrops){
if(inRecord->SequenceNumber != LastSequenceNumber + g_params.LoggingPeriod){
GetLocalTime(&CurrentTime);
printf("\n%4d/%02d/%02d %02d:%02d:%02d:%04d: ",
CurrentTime.wYear,
CurrentTime.wMonth,
CurrentTime.wDay,
CurrentTime.wHour,
CurrentTime.wMinute,
CurrentTime.wSecond,
CurrentTime.wMilliseconds);
printf("Dropped %d packets after packet %d.\n",
inRecord->SequenceNumber - LastSequenceNumber,
LastSequenceNumber);
}
LastSequenceNumber = inRecord->SequenceNumber;
}
return;
} // LogRecord()
BOOL CreateLog(PLOG plog, INT64 c) {
// sets up a log structure that can hold c entries
char szTempFile[MAX_PATH];
char szTempPath[MAX_PATH];
SYSTEM_INFO si;
DWORD dwFileSizeHigh;
DWORD dwFileSizeLow;
INT64 qwFileSize;
// get some system info
GetSystemInfo(&si);
// allocate logging array
plog->nBuffersLogged = 0;
plog->pbMapView = NULL;
plog->qwMapViewOffset = -1;
// set up the temporary storage file for logging
GetTempPath(MAX_PATH, szTempPath);
GetTempFileName(szTempPath, "qtc", 0, szTempFile);
plog->szStorageFile = malloc(strlen(szTempFile) + 1);
strcpy(plog->szStorageFile, szTempFile);
plog->hStorageFile = CreateFile(szTempFile, GENERIC_READ | GENERIC_WRITE, 0,
NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_TEMPORARY, NULL);
if (plog->hStorageFile == INVALID_HANDLE_VALUE)
ErrorExit("Could not create temp storage file",GetLastError());
// create the memory mapping kernel object
qwFileSize = c * sizeof(LOG_RECORD);
dwFileSizeHigh = (DWORD) (qwFileSize >> 32);
dwFileSizeLow = (DWORD) (qwFileSize & 0xFFFFFFFF);
plog->qwFileSize = qwFileSize;
plog->hFileMapping = CreateFileMapping(plog->hStorageFile, NULL, PAGE_READWRITE,
dwFileSizeHigh,dwFileSizeLow,NULL);
if (plog->hFileMapping == NULL)
ErrorExit("Could not create mapping for temp storage file",GetLastError());
return TRUE;
}
BOOL DestroyLog(PLOG plog) {
DWORD dwError;
// destroys the log and all associated data
dwError = CloseHandle(plog->hFileMapping);
if (!dwError) printf("Error in DestroyLog:CloseHandle(FileMapping) %d\n",GetLastError());
dwError = CloseHandle(plog->hStorageFile);
if (!dwError) printf("Error in DestroyLog:CloseHandle(StorageFile) %d\n",GetLastError());
dwError = UnmapViewOfFile(plog->pbMapView);
if (!dwError) printf("Error in DestroyLog:UnmapViewOfFile(plog->pbMapView) %d\n",GetLastError());
dwError = DeleteFile(plog->szStorageFile);
if (!dwError) printf("Error in DestroyLog:DeleteFile(StroageFile) %d\n",GetLastError());
free(plog->szStorageFile);
return FALSE;
}
void PrintLogRecord(PLOG_RECORD prec) {
char szBuf[MAX_STRING];
sprintf(szBuf,"%d: %I64u - %I64u (%I64d)",
prec->SequenceNumber,prec->TimeSent,prec->TimeReceived,prec->Latency);
puts(szBuf);
}
BOOL ExtendLog(PLOG plog) {
// makes the log bigger by some fixed constant
HANDLE hNewFileMapping;
INT64 qwNewFileSize;
UnmapViewOfFile(plog->pbMapView);
qwNewFileSize = plog->qwFileSize + g_si.dwAllocationGranularity * sizeof(LOG_RECORD);
hNewFileMapping = CreateFileMapping(plog->hStorageFile, NULL, PAGE_READWRITE,
(DWORD)(qwNewFileSize >> 32), (DWORD)(qwNewFileSize & 0xFFFFFFFF), NULL);
if (hNewFileMapping == NULL) {
ErrorExit("Could not create mapping for temp storage file",GetLastError());
return FALSE;
}
plog->qwFileSize = qwNewFileSize;
CloseHandle(plog->hFileMapping);
plog->hFileMapping = hNewFileMapping;
plog->qwMapViewOffset = -1;
return TRUE;
}
BOOL GetLogEntry(PLOG plog, PLOG_RECORD prec, INT64 i) {
// fills prec with the (0 indexed) i'th log in plog
// returns TRUE if it was successful, FALSE otherwise
INT64 qwT;
PLOG_RECORD entry;
// first, check to see if this is within the range of our file
if ((INT64)((i+1)*sizeof(LOG_RECORD)) > plog->qwFileSize) {
// too high, so we return false
return FALSE;
}
// we have to round down to the nearest allocation boundary
qwT = sizeof(LOG_RECORD) * i; // offset within file
qwT /= g_si.dwAllocationGranularity; // in allocation granularity units
// check to see if we do not already have this mapped in memory
if (plog->qwMapViewOffset != qwT * g_si.dwAllocationGranularity) {
if (plog->pbMapView != NULL) UnmapViewOfFile(plog->pbMapView);
plog->qwMapViewOffset = qwT * g_si.dwAllocationGranularity; // offset of lower allocation bound
if (plog->qwFileSize < (INT64)g_si.dwAllocationGranularity) {
// file is smaller than allocation granularity
plog->qwMapViewOffset = 0;
plog->pbMapView = MapViewOfFile(plog->hFileMapping, FILE_MAP_WRITE, 0, 0, 0);
}
else if (plog->qwFileSize - plog->qwMapViewOffset < g_si.dwAllocationGranularity) {
// we're within an allocation granularity of the end of the file
plog->pbMapView = MapViewOfFile(plog->hFileMapping, FILE_MAP_WRITE,
(DWORD)(plog->qwMapViewOffset >> 32),
(DWORD)(plog->qwMapViewOffset & 0xFFFFFFFF),
(DWORD)(plog->qwFileSize - plog->qwMapViewOffset));
}
else {
// we're just somewhere in the file with space around us
plog->pbMapView = MapViewOfFile(plog->hFileMapping, FILE_MAP_WRITE,
(DWORD)(plog->qwMapViewOffset >> 32),
(DWORD)(plog->qwMapViewOffset & 0xFFFFFFFF),
RoundUp(g_si.dwAllocationGranularity,sizeof(LOG_RECORD)));
}
if (plog->pbMapView == NULL)
ErrorExit("GetLogEntry could not MapViewOfFile",GetLastError());
}
qwT = sizeof(LOG_RECORD) * i;
entry = (PLOG_RECORD)(plog->pbMapView + (qwT - plog->qwMapViewOffset));
CopyMemory(prec, entry, sizeof(LOG_RECORD));
return TRUE;
}
BOOL SetLogEntry(PLOG plog, PLOG_RECORD prec, INT64 i) {
// fills log entry i with the data pointed to by prec
// returns TRUE if it was successful, FALSE otherwise
INT64 qwT;
PLOG_RECORD entry;
// first, check to see if this is within the range of our file
if ((INT64)((i+1)*sizeof(LOG_RECORD)) > plog->qwFileSize) {
// we need to make our mapping bigger
ExtendLog(plog);
}
// we have to round down to the nearest allocation boundary
qwT = sizeof(LOG_RECORD) * i; // offset within file
qwT /= g_si.dwAllocationGranularity; // in allocation granularity units
// check to see if we do not already have this mapped in memory
if (plog->qwMapViewOffset != qwT * g_si.dwAllocationGranularity) {
if (plog->pbMapView != NULL) UnmapViewOfFile(plog->pbMapView);
plog->qwMapViewOffset = qwT * g_si.dwAllocationGranularity; // offset of lower allocation bound
if (plog->qwFileSize < (INT64)g_si.dwAllocationGranularity) {
// file is smaller than allocation granularity
plog->qwMapViewOffset = 0;
plog->pbMapView = MapViewOfFile(plog->hFileMapping, FILE_MAP_WRITE, 0, 0, 0);
}
else if (plog->qwFileSize - plog->qwMapViewOffset < g_si.dwAllocationGranularity) {
// we're within an allocation granularity of the end of the file
plog->pbMapView = MapViewOfFile(plog->hFileMapping, FILE_MAP_WRITE,
(DWORD)(plog->qwMapViewOffset >> 32),
(DWORD)(plog->qwMapViewOffset & 0xFFFFFFFF),
(DWORD)(plog->qwFileSize - plog->qwMapViewOffset));
}
else {
// we're just somewhere in the file with space around us
plog->pbMapView = MapViewOfFile(plog->hFileMapping, FILE_MAP_WRITE,
(DWORD)(plog->qwMapViewOffset >> 32),
(DWORD)(plog->qwMapViewOffset & 0xFFFFFFFF),
RoundUp(g_si.dwAllocationGranularity,sizeof(LOG_RECORD)));
}
if (plog->pbMapView == NULL)
ErrorExit("SetLogEntry could not MapViewOfFile",GetLastError());
}
qwT = sizeof(LOG_RECORD) * i;
entry = (PLOG_RECORD)(plog->pbMapView + (qwT - plog->qwMapViewOffset));
CopyMemory(entry, prec, sizeof(LOG_RECORD));
return TRUE;
}
BOOL AddLogEntry(PLOG plog, PLOG_RECORD prec) {
PLOG_RECORD entry;
// adds the data pointed to by prec to the end of the log
// returns TRUE if it was successful, FALSE otherwise
SetLogEntry(plog, prec, plog->nBuffersLogged);
plog->nBuffersLogged++;
return TRUE;
}
UINT64
GetUserTime()
{ // This function returns the performance counter time in units of 100ns
LARGE_INTEGER count, freq;
NtQueryPerformanceCounter(&count,&freq);
// make sure we have hardware performance counting
if(freq.QuadPart == 0) {
NtQuerySystemTime(&count);
return (UINT64)count.QuadPart;
}
return (UINT64)((10000000 * count.QuadPart) / freq.QuadPart);
} // GetUserTime()
UINT64
GetBadHalAdjustment() {
// this function returns the amount the hal timer in a machine with
// an intel chipset with the piix4 timer chip will jump forward in the case of
// repeated garbage returned fom the piix4 (bug #347410) so we can correct it out
// in the FixWackyTimestamps routine
LARGE_INTEGER freq;
UINT64 diff;
QueryPerformanceFrequency(&freq);
// so we want to find how much it is increased in 100ns intervals if we increase
// byte 3 by 1.
diff = 0x01000000;
diff *= 10000000;
diff /= (UINT64)freq.QuadPart;
return diff;
}
DWORD
MyCreateFile(
IN PCHAR Name,
IN PCHAR Extension,
OUT HANDLE *File)
{
HANDLE hFile;
UCHAR * fileName;
fileName = malloc(strlen(Name) + 5);
bzero(fileName,strlen(Name) + 5);
strncpy(fileName, Name, strlen(Name));
if (strlen(Extension)==4) {
strcat(fileName,Extension);
}
else
return !ERROR_SUCCESS;
hFile = CreateFile(fileName,
GENERIC_WRITE | GENERIC_READ,
0,
NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);
*File = hFile;
return(INVALID_HANDLE_VALUE == hFile ? (!(ERROR_SUCCESS)) : ERROR_SUCCESS);
} // MyCreateFile()
void AggregateStats() {
// this will go through the directory specified in Name and aggregate stats from
// all the .sta files therein. it will then output the results of the aggregation
// in a file within that directory called stats.qtc
char szDirPath[3 * MAX_PATH];
char szSearchString[3 * MAX_PATH];
WIN32_FIND_DATA FileData; // Data structure describes the file found
HANDLE hSearch; // Search handle returned by FindFirstFile
PCHAR rgszStaFiles[1000]; // an array of the names of the .sta files
int cStaFiles = 0, i,j,k,l; // keeps track of how many of the .sta files there are
STATS * pStats;
int rgSizes[1000], cSizes = 0;
int rgRates[1000], cRates = 0;
char szAggFile[3 * MAX_PATH];
char szLineBuf[1000];
STATS statsT;
FILE *pfile;
FILETIME rgtime[1000];
SYSTEMTIME st;
ULARGE_INTEGER uliT;
int ctime = 0;
int cSpecs = 0;
PathCanonicalize(szDirPath,Name);
if (szDirPath[strlen(szDirPath) - 1] == '"') szDirPath[strlen(szDirPath) - 1] = 0;
if (!PathIsDirectory(szDirPath)) {
printf("Path (%s) is not a directory\n",szDirPath);
ErrorExit("Invalid Path for aggregate stats", -1);
}
// so now szDirPath is the path to the directory we want to go through
// and we begin our search for .sta files
sprintf(szSearchString,"%s\\*.sta",szDirPath);
hSearch = FindFirstFile (szSearchString, &FileData);
if (hSearch == INVALID_HANDLE_VALUE) {
ErrorExit("No .sta files found.",GetLastError());
}
do {
rgszStaFiles[cStaFiles] = malloc(sizeof(char) * 3 * MAX_PATH);
// check to see if it's a good .sta file
sprintf(statsT.szStaFile,"%s\\%s", szDirPath, FileData.cFileName);
if (GetStatsFromFile(&statsT)) {
// if it's good, include it
strcpy(rgszStaFiles[cStaFiles], FileData.cFileName);
cStaFiles++;
}
} while (FindNextFile(hSearch, &FileData));
if (GetLastError() != ERROR_NO_MORE_FILES) {
ErrorExit("Problem in FindNextFile()",GetLastError());
}
// open the stats file
sprintf(szAggFile,"%s\\stats.qtc",szDirPath);
pfile = fopen(szAggFile,"w+");
if (pfile == NULL) printf("Could not open file for aggregate stats: %s\n",szAggFile);
pStats = malloc(cStaFiles * sizeof(STATS));
ZeroMemory(pStats, cStaFiles * sizeof(STATS));
for (i=0; i<cStaFiles; i++) {
sprintf(pStats[i].szStaFile, "%s\\%s", szDirPath, rgszStaFiles[i]);
GetStatsFromFile(&(pStats[i]));
}
// at this point our pStats array is loaded up, so we can go to work
for (i=0; i<cStaFiles; i++) {
rgSizes[i] = pStats[i].nBytesPerBuffer;
rgRates[i] = pStats[i].nTokenRate;
rgtime[i] = pStats[i].time;
}
// now sort them and get out the dupliates
cSizes = cRates = ctime = cStaFiles;
RemoveDuplicates(rgSizes, &cSizes);
RemoveDuplicates(rgRates, &cRates);
RemoveDuplicatesI64((INT64 *)rgtime, &ctime);
// --- do the stats by by time ---
fprintf(pfile, "Latency Characteristics at varying times\n");
fprintf(pfile, " Latency Characteristics (microseconds) Rates (Bps) Buffers\n");
fprintf(pfile, " Time (UTC) Median StDev Mean Skew Kurt Send Receive Received Dropped\n");
for (i=0; i<cRates; i++) {
for (j=0; j<cSizes; j++) {
// print the flowspec
if (IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles) != -1) {
fprintf(pfile, "FLOWSPEC %d: %dB buffers at %d Bps\n",
cSpecs++, rgSizes[j], rgRates[i]);
for (k=0; k<ctime; k++) {
// check to see if there is something with these params and print it
ZeroMemory(&uliT, sizeof(ULARGE_INTEGER));
CopyMemory(&uliT, &rgtime[k], sizeof(ULARGE_INTEGER));
l = IndexOfStatRecWith(rgRates[i],rgSizes[j],uliT.QuadPart,pStats,cStaFiles);
if (l > 0) {
FileTimeToSystemTime(&pStats[l].time, &st);
fprintf(pfile,"%02hu/%02hu/%04hu %2hu:%02hu.%02hu.%03hu: %10.1lf %10.1lf %10.1lf %8.2lf %8.2lf %10.1lf %10.1lf %10d %10d\n",
st.wMonth, st.wDay, st.wYear, st.wHour, st.wMinute, st.wSecond, st.wMilliseconds,
pStats[l].median, sqrt((double)pStats[l].var), pStats[l].mean,
pStats[l].skew, pStats[l].kurt, pStats[l].sendrate, pStats[l].recvrate,
pStats[l].nBuffers, pStats[l].nDrops);
}
}
fprintf(pfile,"\n");
}
}
}
fprintf(pfile, "Latency Characteristics by flowspec\n");
// --- do the stats by flowspec ---
// now write the file, line by line, to szLineBuf, then to the file
// median
fprintf(pfile,"Median Latency (microseconds)\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.1lf ",pStats[k].median);
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// mean
fprintf(pfile,"Mean Latency (microseconds)\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.2lf ",pStats[k].mean);
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// variance
fprintf(pfile,"Latency Standard Deviation\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.2lf ",sqrt((double)pStats[k].var));
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// skew
fprintf(pfile,"Latency Skew\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.2lf ",pStats[k].skew);
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// kurtosis
fprintf(pfile,"Latency Kurtosis\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.2lf ",pStats[k].kurt);
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// send rate
fprintf(pfile,"Send Rate (Bps)\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.1lf ",pStats[k].sendrate);
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// recv rate
fprintf(pfile,"Receive Rate (Bps)\n");
fprintf(pfile," ");
for (i=0; i<cSizes; i++)
fprintf(pfile,"%9dB ",rgSizes[i]);
fprintf(pfile,"\n");
for (i=0; i<cRates; i++) {
fprintf(pfile,"%7dBps ",rgRates[i]);
for (j=0; j<cSizes; j++) {
k = IndexOfStatRecWith(rgRates[i],rgSizes[j],-1,pStats,cStaFiles);
if (k != -1) {
fprintf(pfile,"%10.1lf ",pStats[k].recvrate);
}
else {
fprintf(pfile," ");
}
}
fprintf(pfile,"\n");
}
fprintf(pfile,"\n");
// show the file to the screen, just for kicks
rewind(pfile);
while (fgets(szLineBuf, 1000, pfile) != NULL)
printf("%s", szLineBuf);
// we're done, so we free up the memory we used
printf("Saved aggregate stats to %s\n",szAggFile);
fclose(pfile);
for (i=0; i<cStaFiles; i++) {
free(rgszStaFiles[i]);
}
free(pStats);
}
int IndexOfStatRecWith(int rate, int size, INT64 time, PSTATS pStats, int cStats) {
// returns an index into pStats that has the requested values for rate and size
// if there are more than one, returns arbitrary match
// returns -1 if no suitable entry is found.
int i;
ULARGE_INTEGER uliT;
for (i=0; i<cStats; i++) {
if (rate == -1 || pStats[i].nTokenRate == rate) {
if (size == -1 || pStats[i].nBytesPerBuffer == size) {
CopyMemory(&uliT, &(pStats[i].time), sizeof(ULARGE_INTEGER));
if (time == -1 || uliT.QuadPart == (UINT64)time) {
return i;
}
}
}
}
return -1;
}
BOOL GetStatsFromFile(PSTATS pstats) {
// this function gets the overall statistics from the .sta file it's pointed to
// it returns true if successful, false otherwise
PCHAR szBuf = NULL;
double T1,T2,T3;
int nT1,nT2,nT3,nT4,nT5,nT6;
HANDLE hFile;
DWORD dwFileSize;
DWORD dwRead;
int nFields;
SYSTEMTIME st;
szBuf = malloc(sizeof(CHAR) * 1000);
if (!szBuf) return FALSE;
ZeroMemory(szBuf,1000);
// open the file
hFile = CreateFile(pstats->szStaFile,GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, 0, NULL);
dwFileSize = GetFileSize(hFile, NULL);
if (dwFileSize == 0) return FALSE;
// read the whole file into szBuf
ReadFile(hFile, szBuf, dwFileSize, &dwRead, NULL);
// close the file
CloseHandle(hFile);
// parse the buffer
nFields = sscanf(szBuf,
"Sender: %s Receiver: %s\n" \
"First packet received: %hu:%hu.%hu.%hu %hu/%hu/%hu (UTC)\n" \
"Buffer size: %d\tTokenrate: %d\n" \
"Received %d packets.\n" \
"Logged %d records.\n" \
"Received %d bytes in %d milliseconds = %d KBps\n" \
"Clock skew is %lf microseconds per second.\n " \
"\tbased on %d calibration points\n" \
"Overall send rate: %lf Bytes/s\n" \
"Overall recv rate: %lf Bytes/s\n" \
"Latency Statistics (microsecond units): median: %lf\n" \
"\tMean: %lf\tStdev: %lf\tAbDev: %lf\n" \
"\tVariance: %lf\tSkew: %lf\t Kurtosis: %lf \n" \
"Dropped %d packets\n",
pstats->szSender, pstats->szReceiver,
&(st.wHour), &(st.wMinute), &(st.wSecond), &(st.wMilliseconds),
&(st.wDay), &(st.wMonth), &(st.wYear),
&(pstats->nBytesPerBuffer), &(pstats->nTokenRate),
&(pstats->nBuffers), &nT2, &nT3, &nT4, &nT5, &T1, &nT6, &(pstats->sendrate),
&(pstats->recvrate), &(pstats->median),
&(pstats->mean),&T2,&(pstats->abdev),
&(pstats->var),&(pstats->skew),&(pstats->kurt),
&(pstats->nDrops));
if (nFields != 28 && nFields != 27) { // see if they ran without clock skew calc
nFields = sscanf(szBuf,
"Sender: %s Receiver: %s\n" \
"First packet received: %hu:%hu.%hu.%hu %hu/%hu/%hu (UTC)\n" \
"Buffer size: %d\tTokenrate: %d\n" \
"Received %d packets.\n" \
"Logged %d records.\n" \
"Received %d bytes in %d milliseconds = %d KBps\n" \
"Overall send rate: %lf Bytes/s\n" \
"Overall recv rate: %lf Bytes/s\n" \
"Latency Statistics (microsecond units): median: %lf\n" \
"\tMean: %lf\tStdev: %lf\tAbDev: %lf\n" \
"\tVariance: %lf\tSkew: %lf\t Kurtosis: %lf \n" \
"Dropped %d packets\n",
pstats->szSender, pstats->szReceiver,
&(st.wHour), &(st.wMinute), &(st.wSecond), &(st.wMilliseconds),
&(st.wDay), &(st.wMonth), &(st.wYear),
&(pstats->nBytesPerBuffer), &(pstats->nTokenRate),
&nT1, &nT2, &nT3, &nT4, &nT5, &(pstats->sendrate),
&(pstats->recvrate), &(pstats->median),
&(pstats->mean),&T2,&(pstats->abdev),
&(pstats->var),&(pstats->skew),&(pstats->kurt),
&(pstats->nDrops));
if (nFields != 26 && nFields != 25) return FALSE;
}
// assemble a FILETIME structure from the date & time
if (!SystemTimeToFileTime(&st,&pstats->time)) {
return FALSE;
}
free(szBuf);
return TRUE;
}
VOID
DoStatsFromFile()
{
DOUBLE slope = 0;
DOUBLE offset = 0;
printf("Logging stats from file.\n");
if (Name == NULL) {
fprintf(stderr, "ERROR: you must specify a file to convert\n");
}
if(MyCreateFile(Name, ".log", &hLogFile) != ERROR_SUCCESS) {
fprintf(stderr, "ERROR: could not create log file\n");
exit(1);
}
if(OpenRawFile(Name, &hRawFile) != ERROR_SUCCESS) {
fprintf(stderr, "ERROR: could not open raw file\n");
exit(1);
}
ReadSchedulingRecords(hRawFile);
if (g_params.calibration == 0)
g_params.calibration = g_log.nBuffersLogged;
NormalizeTimeStamps();
// here we check for wacky timestamps on the sender and receiver
if (g_params.SkewFitMode == 3)
FixWackyTimestamps();
if (g_params.SkewFitMode) {
ClockSkew(&slope, &offset);
AdjustForClockSkew(slope,offset);
NormalizeTimeStamps();
}
if(hLogFile != INVALID_HANDLE_VALUE) {
WriteSchedulingRecords(hLogFile, g_params.Dummy);
}
printf("Done stats from file.\n");
} // DoStatsFromFile()
DWORD
OpenRawFile(
IN PCHAR Name,
OUT HANDLE *File
)
{
HANDLE hFile;
UCHAR * logName;
logName = malloc(strlen(Name) + 4);
strncpy(logName, Name, strlen(Name));
logName[strlen(Name)+0] = '.';
logName[strlen(Name)+1] = 'r';
logName[strlen(Name)+2] = 'a';
logName[strlen(Name)+3] = 'w';
logName[strlen(Name)+4] = (UCHAR)NULL;
hFile = CreateFile(logName,
GENERIC_READ,
0,
NULL,
OPEN_EXISTING ,
FILE_ATTRIBUTE_NORMAL,
NULL);
*File = hFile;
return(INVALID_HANDLE_VALUE == hFile ? (!(ERROR_SUCCESS)) : ERROR_SUCCESS);
} // OpenRawFile()
INT64 ReadSchedulingRecords(HANDLE File)
{
char szTempFile[MAX_PATH];
char szTempPath[MAX_PATH];
LOG_RECORD currentRecord;
CHAR lineBuf[MAX_STRING];
CHAR nextChar[2] = {0,0};
DWORD readBytes = 0;
INT assignedFields;
if (!File || (File == INVALID_HANDLE_VALUE)) {
fprintf(stderr,"ERROR: Invalid File\n");
return 0;
}
CreateLog(&g_log, 2048);
// loop through the file, reading in line after line
do
{
// get the next line of characters
bzero(lineBuf, MAX_STRING);
ZeroMemory(lineBuf, MAX_STRING);
do {
ReadFile(File,nextChar,1,&readBytes,NULL);
if (readBytes == 0) {
if (g_log.nBuffersLogged == 0) {
fprintf(stderr,"ERROR: no logs read\n");
exit(1);
}
break;
}
strcat(lineBuf,nextChar);
} while (*nextChar != '\n');
// parse line and add it to the log
assignedFields = sscanf(lineBuf,
"%I64u:%I64u:%I64u:%d:%d\n",
&(currentRecord.TimeSent),
&(currentRecord.TimeReceived),
&(currentRecord.Latency),
&(currentRecord.BufferSize),
&(currentRecord.SequenceNumber));
if ((assignedFields != 5) && (assignedFields != EOF))
printf("ERROR: parsing the log gave bad field assignments on record %d\n",
g_log.nBuffersLogged);
if (assignedFields == EOF) break;
AddLogEntry(&g_log, &currentRecord);
}
while (readBytes != 0);
printf("read %d records\n",g_log.nBuffersLogged);
return g_log.nBuffersLogged; // return the number of records read
} // ReadSchedulingRecords()
VOID
DoStats()
{
DOUBLE slope = 0;
DOUBLE offset = 0;
GenericStats();
if(!normalize){
if(hRawFile != INVALID_HANDLE_VALUE){
WriteSchedulingRecords(hRawFile, FALSE);
}
}
NormalizeTimeStamps();
if(normalize){
if(hRawFile != INVALID_HANDLE_VALUE){
WriteSchedulingRecords(hRawFile, FALSE);
}
}
if(!g_params.calibration) { // if we have nothing specified, calibrate on all buffers
g_params.calibration = g_state.nBuffersReceived;
}
// here we check for wacky timestamps on the sender and receiver
if (g_params.SkewFitMode == 3)
FixWackyTimestamps();
if(g_params.SkewFitMode) {
ClockSkew(&slope, &offset);
AdjustForClockSkew(slope, offset);
NormalizeTimeStamps();
}
// we calculate these stats on the normalized / skew adjusted data
AdvancedStats();
CheckForLostPackets();
if(hLogFile != INVALID_HANDLE_VALUE){
WriteSchedulingRecords(hLogFile, g_params.Dummy);
}
printf("\n");
}
VOID
WriteSchedulingRecords(
HANDLE File,
BOOLEAN InsertDummyRows)
{
LOG_RECORD scheduleRecord;
CHAR formattingBuffer[MAX_STRING];
INT dwWritten;
INT64 records = g_log.nBuffersLogged;
INT wrote;
INT i;
INT64 maxLatency = (INT64)0;
if(!File || (File == INVALID_HANDLE_VALUE)){
return;
}
while(records){
GetLogEntry(&g_log, &scheduleRecord, g_log.nBuffersLogged - records);
ZeroMemory(formattingBuffer,MAX_STRING);
wrote = sprintf(formattingBuffer,
"%020I64u:%020I64u:%010I64d:%10d:%10d\n",
scheduleRecord.TimeSent,
scheduleRecord.TimeReceived,
scheduleRecord.Latency,
scheduleRecord.BufferSize,
scheduleRecord.SequenceNumber);
WriteFile(File, formattingBuffer, wrote, &dwWritten, NULL);
records--;
}
} // WriteSchedulingRecords()
VOID
GenericStats()
{
INT bytesWritten;
UCHAR holdingBuffer[MAX_STRING];
INT count;
// say who the sender and receiver are
count = sprintf(holdingBuffer, "Sender: %s Receiver: %s\n",szHisAddr, szMyAddr);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
// say when we received the first packet
count = sprintf(holdingBuffer, "First packet received: %02u:%02u.%02u.%03u %02u/%02u/%04u (UTC)\n",
systimeStart.wHour, systimeStart.wMinute, systimeStart.wSecond,
systimeStart.wMilliseconds, systimeStart.wDay, systimeStart.wMonth, systimeStart.wYear);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
// write the test params to the .sta file
bzero(holdingBuffer, MAX_STRING);
count = _snprintf(holdingBuffer, MAX_STRING -1,
"Buffer size: %d\tTokenrate: %d\n",
g_params.buflen, g_params.TokenRate);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
// write some generic results
bzero(holdingBuffer, MAX_STRING);
count = _snprintf(holdingBuffer,
MAX_STRING-1, // leave room for NULL
"Received %u packets.\n",
g_state.nBuffersReceived);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
bzero(holdingBuffer, MAX_STRING);
count = _snprintf(holdingBuffer,
MAX_STRING-1, // leave room for NULL
"Logged %I64u records.\n",
g_log.nBuffersLogged);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
bzero(holdingBuffer, MAX_STRING);
count = _snprintf(holdingBuffer,
MAX_STRING-1, // room for NULL
"Received %ld bytes in %I64d milliseconds = %I64d KBps\n",
g_state.nBytesTransferred,
timeElapsed,
g_state.nBytesTransferred/timeElapsed);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
} // GenericStats()
void AdvancedStats() {
// write some more interesting stats to the .sta file
char szBuf[MAX_STRING];
INT64 i,n;
int count;
INT64 FirstTime,LastTime;
double rate, median, mean, var, abdev, skew, kurt, sdev, ep = 0.0, s, p;
LOG_RECORD rec;
double * sortedLatencies;
// overall send rate
GetLogEntry(&g_log, &rec, 0);
FirstTime = rec.TimeSent;
GetLogEntry(&g_log, &rec, g_log.nBuffersLogged - 1);
LastTime = rec.TimeSent;
rate = (rec.SequenceNumber * g_params.buflen)/((double)(LastTime - FirstTime)/10000000.0);
count = sprintf(szBuf, "Overall send rate: %.3f Bytes/s\n",rate);
WriteStats(szBuf, count);
printf("%s",szBuf);
GetLogEntry(&g_log, &rec, 0);
FirstTime = rec.TimeReceived;
GetLogEntry(&g_log, &rec, g_log.nBuffersLogged - 1);
LastTime = rec.TimeReceived;
rate = (g_state.nBytesTransferred)/((double)(LastTime - FirstTime)/10000000.0);
count = sprintf(szBuf, "Overall recv rate: %.3f Bytes/s\n",rate);
WriteStats(szBuf, count);
printf("%s",szBuf);
// now show mean, variance, avdev, etc of latency.
s = 0.0;
n = g_log.nBuffersLogged;
sortedLatencies = malloc(sizeof(double) * (UINT)n);
for (i=0; i < n; i++) { // first pass, we get mean
GetLogEntry(&g_log, &rec, i);
s += (double)rec.Latency/10.0;
sortedLatencies[i] = (double)rec.Latency/10.0;
}
qsort(sortedLatencies,(UINT)n,sizeof(double),compare);
median = (n & 1) ? sortedLatencies[(n-1)/2] : 0.5*(sortedLatencies[n/2] + sortedLatencies[n/2 - 1]);
free(sortedLatencies);
mean = s / n;
abdev = var = skew = kurt = 0.0;
for (i=0; i<n; i++) { // second pass, we get 1st,2nd,3rd,4th moments of deviation from mean
GetLogEntry(&g_log, &rec, i);
abdev += fabs(s=(double)rec.Latency/10.0 - mean);
ep += s;
var += (p = s*s);
skew += (p *= s);
kurt += (p *= s);
}
abdev /= n;
var = (var - ep*ep/n) / (n-1);
sdev = sqrt(var);
if (var) { // if var=0, no skew/kurtosis defined
skew /= (n*var*sdev);
kurt = kurt / (n*var*var) - 3.0;
}
count = sprintf(szBuf, "Latency Statistics (microsecond units): median: %.1lf\n",median);
WriteStats(szBuf, count);
printf("%s",szBuf);
count = sprintf(szBuf, "\tMean: %6.2lf\tStdev: %6.2lf\tAbDev: %6.2lf\n",mean,sdev,abdev);
WriteStats(szBuf, count);
printf("%s",szBuf);
count = sprintf(szBuf, "\tVariance: %6.2lf\tSkew: %6.2lf\tKurtosis: %6.2lf\n",var,skew,kurt);
WriteStats(szBuf, count);
printf("%s",szBuf);
}
VOID
CheckForLostPackets()
{
LOG_RECORD currentRecord;
INT currentSequenceNumber = 0;
INT bytesWritten;
UCHAR holdingBuffer[MAX_STRING];
INT count;
INT64 nLost = 0;
INT i;
for(i=0; i<g_log.nBuffersLogged; i++){
GetLogEntry(&g_log, &currentRecord, i);
if(currentRecord.SequenceNumber != currentSequenceNumber){
nLost += currentRecord.SequenceNumber - currentSequenceNumber;
currentSequenceNumber = currentRecord.SequenceNumber;
}
currentSequenceNumber += g_params.LoggingPeriod;
}
count = sprintf(holdingBuffer, "Dropped %I64u packets\n", nLost);
WriteStats(holdingBuffer, count);
} // CheckForLostPackets()
VOID
WriteStats(
UCHAR * HoldingBuffer,
INT Count)
{
INT bytesWritten;
if(Count < 0){
Count = MAX_STRING;
}
WriteFile(hStatFile,
HoldingBuffer,
Count,
&bytesWritten,
NULL);
} // WriteStats()
VOID
NormalizeTimeStamps()
{
LOG_RECORD currentRecord;
INT bytesWritten;
UCHAR holdingBuffer[MAX_STRING];
INT count;
INT i;
UINT64 timeSent;
UINT64 timeReceived;
UINT64 smaller;
INT64 constantDelay = MAX_INT64;
INT64 currentDelay;
UINT64 base = 0xFFFFFFFFFFFFFFFF;
for(i=0; i<g_log.nBuffersLogged; i++){
GetLogEntry(&g_log, &currentRecord, i);
currentDelay = currentRecord.TimeReceived - currentRecord.TimeSent;
constantDelay = (currentDelay < constantDelay) ? currentDelay : constantDelay;
}
// now subtract off the constant delay off
for(i=0; i<g_log.nBuffersLogged; i++){
GetLogEntry(&g_log, &currentRecord, i);
currentRecord.TimeReceived -= constantDelay;
currentRecord.Latency = currentRecord.TimeReceived - currentRecord.TimeSent;
SetLogEntry(&g_log, &currentRecord, i);
}
for (i=0; i<g_log.nBuffersLogged; i++) {
GetLogEntry(&g_log, &currentRecord, i);
smaller = (currentRecord.TimeReceived < currentRecord.TimeSent) ?
currentRecord.TimeReceived : currentRecord.TimeSent;
base = (base < smaller)?base:smaller; // find the smallest timestamp
}
// now we can subtract the base off of the send & receive times
for (i=0; i<g_log.nBuffersLogged; i++) {
GetLogEntry(&g_log, &currentRecord, i);
currentRecord.TimeSent -= base;
currentRecord.TimeReceived -= base;
SetLogEntry(&g_log, &currentRecord, i);
}
} // NormalizeTimeStamps()
VOID
ClockSkew(
DOUBLE * Slope,
DOUBLE * Offset) {
// If there is a calibration period, we can estimate clock skew between
// sender and receiver. See comments under AdjustForClockSkew. We use
// calculus to determine the best-fit slope.
INT i;
LOG_RECORD currentRecord;
DOUBLE N;
DOUBLE slope;
DOUBLE offset;
UCHAR holdingBuffer[MAX_STRING];
INT count;
double *x, *y, abdev;
double devpercent;
// We find the clock skew using medfit, a function which fits to minimum absolute deviation
N = (double) g_params.calibration;
x = malloc(sizeof(double) * (UINT)N);
y = malloc(sizeof(double) * (UINT)N);
for (i = 0; i<N; i++) {
GetLogEntry(&g_log,&currentRecord,i);
x[i] = (DOUBLE)currentRecord.TimeSent;
y[i] = (DOUBLE)currentRecord.Latency;
}
medfit(x, y, (INT)N, &offset, &slope, &abdev);
// Now write out our findings.
bzero(holdingBuffer, MAX_STRING);
count = _snprintf(holdingBuffer,
MAX_STRING-1, // leave room for NULL
"Clock skew is %f microseconds per second.\n " \
"\tbased on %d calibration points\n",
100000*slope, g_params.calibration);
WriteStats(holdingBuffer, count);
printf("%s",holdingBuffer);
for (i = 0,devpercent = 0.0; i<N; i++) {
devpercent += y[i];
}
devpercent /= N;
devpercent = 100 * abdev / devpercent;
printf("\tfit resulted in avg. absolute deviation of %f percent from mean\n",devpercent);
free(x);
free(y);
*Slope = slope;
*Offset = offset;
} // ClockSkew()
BOOLEAN
AnomalousPoint(
DOUBLE x,
DOUBLE y)
{
// here we simply keep a buffer of the past 10 calls and if this one
// falls out of a few standard deviations of the 8 inner points, we deem it anomalous
static DOUBLE buf[10];
DOUBLE sortedbuf[10];
DOUBLE mean = 0;
DOUBLE sum = 0;
DOUBLE sumsqdev = 0;
DOUBLE median = 0;
DOUBLE sdev = 0;
DOUBLE N;
static int curIndex = 0;
int i;
static INT64 submittedPoints;
buf[curIndex % 10] = y;
curIndex++;
submittedPoints++;
if (g_params.SkewFitMode != 4)
return FALSE;
if (submittedPoints >= 10) {
sum = 0;
sumsqdev = 0;
// sort them into sortedbuf
for (i=0; i<10; i++) sortedbuf[i] = buf[i];
qsort(sortedbuf, 10, sizeof(DOUBLE), compare);
// use only the inner 8 points in the calculation of mean & var
for (i = 1; i < 9; i++) {
sum += sortedbuf[i];
}
N = 8.0; // using only 8 points
mean = sum / N;
for (i = 1; i < 9; i++) {
sumsqdev += ((sortedbuf[i] - mean) * (sortedbuf[i] - mean));
}
sdev = sqrt(sumsqdev / N);
if (fabs(y - mean) < 2.5 * sdev) {
return FALSE;
}
else {
anomalies++;
return TRUE;
}
}
return TRUE;
} // AnomalousPoint()
VOID
AdjustForClockSkew(
DOUBLE Slope,
DOUBLE Offset)
{
//
// When measuring very low jitter, clock drift between machines
// introduces noise in the form of a monotonically increasing
// skew between sending and receiving clock. This effect can be
// filtered out by finding the best-fit slope for all samples
// taken during the calibration period, then using this slope to
// normalize the entire run. This routine normalizes using the
// slope determined in the routine ClockSkew.
//
INT i;
LOG_RECORD currentRecord;
INT64 minLatency = MAX_INT64;
INT64 x;
DOUBLE mXPlusB;
for(i=0; i < g_log.nBuffersLogged; i++){
GetLogEntry(&g_log, &currentRecord, i);
mXPlusB = (currentRecord.TimeSent*Slope) + Offset; // offset is not necessary
currentRecord.TimeReceived -= (INT64)mXPlusB;
currentRecord.Latency -= (INT64)mXPlusB;
SetLogEntry(&g_log, &currentRecord, i);
//
// find the minimum latency value
//
minLatency = (currentRecord.Latency < minLatency)?
currentRecord.Latency:
minLatency;
}
for(i=0; i < g_log.nBuffersLogged; i++){
GetLogEntry(&g_log, &currentRecord, i);
currentRecord.Latency -= minLatency;
currentRecord.TimeReceived -= minLatency;
SetLogEntry(&g_log, &currentRecord, i);
}
} // AdjustForClockSkew()
#define WACKY 2.5
BOOL FixWackyTimestamps() {
// This routine will look over the sender & receiver timestamps and try to see if there
// are any non-clock skew related irregularities (such as one of them bumping it's clock
// a fixed amount every once-in-a-while) and try to remove them.
INT64 *sendstamps, *recvstamps;
double *sendgaps, *recvgaps;
double *sortedsendgaps, *sortedrecvgaps;
double sendmean, sendsdev, sendsum, sendsumsqdev;
double recvmean, recvsdev, recvsum, recvsumsqdev;
double mediansendgap, medianrecvgap;
double modesendgap, moderecvgap;
double meansendwackiness, sdevsendwackiness, sumsendwackiness, sumsqdevsendwackiness;
double meanrecvwackiness, sdevrecvwackiness, sumrecvwackiness, sumsqdevrecvwackiness;
double fractionaldevofsendwackiness, fractionaldevofrecvwackiness;
double normalsendgapmean, normalrecvgapmean;
double trimmeansendgap, trimmeanrecvgap;
BOOL *fWackoSend, *fWackoRecv;
int cWackoSend, cWackoRecv;
BOOL *fMaybeWackoSend, *fMaybeWackoRecv;
int i,N;
LOG_RECORD currentRecord;
const double FixThreshold = 0.1;
double CumulativeFixMagnitude = 0.0;
N = (int)g_log.nBuffersLogged;
cWackoSend = cWackoRecv = 0;
// fill our arrays.
sendstamps = malloc(sizeof(INT64) * N);
recvstamps = malloc(sizeof(INT64) * N);
sendgaps = malloc(sizeof(double) * N);
recvgaps = malloc(sizeof(double) * N);
sortedsendgaps = malloc(sizeof(double) *N);
sortedrecvgaps = malloc(sizeof(double) *N);
fWackoRecv = malloc(sizeof(BOOL) * N);
fWackoSend = malloc(sizeof(BOOL) * N);
fMaybeWackoSend = malloc(sizeof(BOOL) * N);
fMaybeWackoRecv = malloc(sizeof(BOOL) * N);
for (i=0; i<N; i++) {
GetLogEntry(&g_log, &currentRecord, i);
sendstamps[i] = currentRecord.TimeSent;
recvstamps[i] = currentRecord.TimeReceived;
fWackoSend[i] = FALSE;
fMaybeWackoSend[i] = FALSE;
fWackoRecv[i] = FALSE;
fMaybeWackoRecv[i] = FALSE;
}
// First, check for wacky timestamps. This is a multistep process:
// 1. Calculate the interpacket gaps on both sender & receiver.
for (i=1; i<N; i++) {
sendgaps[i] = (double) (sendstamps[i] - sendstamps[i-1]);
recvgaps[i] = (double) (recvstamps[i] - recvstamps[i-1]);
}
// 2. We will define wacky as being at least WACKY standard deviations away from the
// mean.
sendsum = recvsum = 0.0;
for (i=1; i<N; i++) {
sendsum += sendgaps[i];
recvsum += recvgaps[i];
}
sendmean = sendsum / N;
recvmean = recvsum / N;
sendsumsqdev = recvsumsqdev = 0.0;
for (i=1; i<N; i++) {
sendsumsqdev += ((sendgaps[i] - sendmean) * (sendgaps[i] - sendmean));
recvsumsqdev += ((recvgaps[i] - recvmean) * (recvgaps[i] - recvmean));
}
sendsdev = sqrt(sendsumsqdev / N);
recvsdev = sqrt(recvsumsqdev / N);
for (i=1; i<N; i++) {
if ((sendgaps[i] < sendmean - WACKY*sendsdev) ||
(sendgaps[i] > sendmean + WACKY*sendsdev)) {
fMaybeWackoSend[i] = fWackoSend[i] = TRUE;
}
if ((recvgaps[i] < recvmean - WACKY*recvsdev) ||
(recvgaps[i] > recvmean + WACKY*recvsdev)) {
fMaybeWackoRecv[i] = fWackoRecv[i] = TRUE;
}
}
// 3. Check to see if any wacky points are unpaired (that is, a wacky point in the
// sending timestamps is not matched with an equally wacky point in the receiving
// timestamps).
for (i=1; i<N; i++) {
if (fMaybeWackoSend[i] && fMaybeWackoRecv[i]) {
// I should check to make sure they're equally wacky, but i'm not currently
fMaybeWackoSend[i] = fWackoSend[i] = FALSE;
fMaybeWackoRecv[i] = fWackoRecv[i] = FALSE;
}
}
// 4. Check to see if any wacky unpaired points are solitary (that is, they are not
// surrounded by other wacky points).
for (i=1; i<N-1; i++) {
if (fMaybeWackoSend[i]) {
if (fMaybeWackoSend[i-1] || fMaybeWackoSend[i+1]) {
fWackoSend[i] = FALSE;
}
}
if (fMaybeWackoRecv[i]) {
if (fMaybeWackoRecv[i-1] || fMaybeWackoRecv[i+1]) {
fWackoRecv[i] = FALSE;
}
}
}
if (fMaybeWackoSend[N-1] && fMaybeWackoSend[N-2]) fWackoSend[N-1] = FALSE;
if (fMaybeWackoRecv[N-1] && fMaybeWackoRecv[N-2]) fWackoRecv[N-1] = FALSE;
// 5. If we find a point that meets all these criteria, label it wacky and add it to
// our list of wacky points.
for (i=1; i<N; i++) {
fMaybeWackoSend[i] = fWackoSend[i];
fMaybeWackoRecv[i] = fWackoRecv[i];
}
// Now we find out the stats for the sends & receivees to use as the baseline
sendsum = recvsum = 0.0;
cWackoSend = cWackoRecv = 0;
for (i=1; i<N; i++) {
sortedsendgaps[i] = sendgaps[i];
sortedrecvgaps[i] = recvgaps[i];
if (!fWackoSend[i]) {
sendsum += sendgaps[i];
cWackoSend++;
}
if (!fWackoRecv[i]) {
recvsum += recvgaps[i];
cWackoRecv++;
}
}
normalsendgapmean = sendsum / cWackoSend;
normalrecvgapmean = recvsum / cWackoRecv;
qsort(sortedsendgaps, N, sizeof(double), compare);
qsort(sortedrecvgaps, N, sizeof(double), compare);
if (N & 1) { // odd N
mediansendgap = sortedsendgaps[(N+1) / 2];
medianrecvgap = sortedrecvgaps[(N+1) / 2];
} else { // even N
i = N/2;
mediansendgap = 0.5 * (sortedsendgaps[i] + sortedsendgaps[i+1]);
medianrecvgap = 0.5 * (sortedrecvgaps[i] + sortedrecvgaps[i+1]);
}
sendsum = recvsum = 0.0;
for (i=(int)(0.05*N); i<(int)(0.85*N); i++) { // find the 80% trimmean (bottom heavy)
sendsum += sortedsendgaps[i];
recvsum += sortedrecvgaps[i];
}
trimmeansendgap = sendsum / (0.80 * N);
trimmeanrecvgap = recvsum / (0.80 * N);
modesendgap = mode(sendgaps, N);
moderecvgap = mode(recvgaps, N);
// 6. we have to check to see if the wackiness at each wacky point is about equal to what
// we think it ought to be, based on the timer clock
for (i=1; i<N; i++) {
if (fWackoSend[i]) {
if (!InRange(sendgaps[i] - g_BadHalAdjustment,
mediansendgap - sendsdev, mediansendgap + sendsdev)) {
fWackoSend[i] = FALSE;
cWackoSend--;
}
}
if (fWackoRecv[i]) {
if (!InRange(recvgaps[i] - g_BadHalAdjustment,
medianrecvgap - recvsdev, medianrecvgap + recvsdev)) {
fWackoRecv[i] = FALSE;
cWackoRecv--;
}
}
}
// Now we want to correct for the wacky timestamps, so we see if the wacky points are all
// equally wacky. If they are, we're psyched and we simply subtract off the wackiness
// from the wacky points and all points after them. (Wackiness is cumulative!)
cWackoSend = cWackoRecv = 0;
sumsendwackiness = sumrecvwackiness = sumsqdevsendwackiness = sumsqdevrecvwackiness = 0.0;
for (i=1; i<N; i++) {
if (fWackoSend[i]) {
sumsendwackiness += (sendgaps[i] - trimmeansendgap);
cWackoSend++;
}
if (fWackoRecv[i]) {
sumrecvwackiness += (recvgaps[i] - trimmeanrecvgap);
cWackoRecv++;
}
}
meansendwackiness = sumsendwackiness / cWackoSend;
meanrecvwackiness = sumrecvwackiness / cWackoRecv;
for (i=1; i<N; i++) {
if (fWackoSend[i])
sumsqdevsendwackiness += ((sendgaps[i]-trimmeansendgap-meansendwackiness) * (sendgaps[i]-normalsendgapmean-meansendwackiness));
if (fWackoRecv[i])
sumsqdevrecvwackiness += ((recvgaps[i]-trimmeanrecvgap-meanrecvwackiness) * (recvgaps[i]-normalrecvgapmean-meanrecvwackiness));
}
sdevsendwackiness = sqrt(sumsqdevsendwackiness / cWackoSend);
sdevrecvwackiness = sqrt(sumsqdevrecvwackiness / cWackoRecv);
// so if the fractional deviation is less than some set amount, we apply the fix
fractionaldevofsendwackiness = sdevsendwackiness / meansendwackiness;
fractionaldevofrecvwackiness = sdevrecvwackiness / meanrecvwackiness;
if (cWackoSend && (fractionaldevofsendwackiness < FixThreshold)) {
// apply fix to send timestamps
CumulativeFixMagnitude = 0.0;
cWackoSend = 0;
for (i=0; i<N; i++) {
if (fWackoSend[i]) {
fWackySender = TRUE;
CumulativeFixMagnitude += g_BadHalAdjustment;
cWackoSend++;
}
sendstamps[i] -= (INT64)CumulativeFixMagnitude;
}
}
if (cWackoRecv && (fractionaldevofrecvwackiness < FixThreshold)) {
// apply fix to recv timestamps
CumulativeFixMagnitude = 0.0;
cWackoRecv = 0;
for (i=0; i<N; i++) {
if (fWackoRecv[i]) {
fWackyReceiver = TRUE;
CumulativeFixMagnitude += g_BadHalAdjustment;
cWackoRecv++;
}
recvstamps[i] -= (INT64)CumulativeFixMagnitude;
}
}
// set the globals to reflect our "fixed" values
for (i=0; i<N; i++) {
if (fWackySender) {
GetLogEntry(&g_log, &currentRecord, i);
currentRecord.TimeSent = sendstamps[i];
SetLogEntry(&g_log, &currentRecord, i);
}
if (fWackyReceiver) {
GetLogEntry(&g_log, &currentRecord, i);
currentRecord.TimeReceived = recvstamps[i];
SetLogEntry(&g_log, &currentRecord, i);
}
}
if (fWackySender || fWackyReceiver) {
printf("WARNING: I noticed some oddities among the timestamps on the");
if (fWackySender) printf(" sender");
if (fWackySender && fWackyReceiver) printf(" and");
if (fWackyReceiver) printf(" receiver");
printf(".\n");
if (fWackySender) {
printf("\t%d of them on the order of %fms each on the sender.\n",
cWackoSend, meansendwackiness / 10000); }
if (fWackyReceiver) {
printf("\t%d of them on the order of %fms each on the receiver.\n",
cWackoRecv, meanrecvwackiness / 10000); }
printf("\tThey are caused by a malfunctioning clock on the afflicted machine.\n");
printf("\tI have tried to compensate for them in the .log file.\n");
NormalizeTimeStamps(); // we have to renormalize now
}
return FALSE;
}
DWORD WINAPI RSVPMonitor (LPVOID lpvThreadParm) {
DWORD dwResult = 0;
ULONG status;
BOOLEAN confirmed = FALSE;
UINT64 ui64LastHi = 0,ui64Now = 0;
FILETIME filetime;
ULARGE_INTEGER ulargeint;
BOOLEAN fResvGood = FALSE;
// don't do anything until the control socket is established
while (g_sockControl == INVALID_SOCKET) {
Sleep(10);
}
while(TRUE){
// send a HELLO message every once in a while
GetSystemTimeAsFileTime(&filetime);
memcpy(&ulargeint, &filetime, sizeof(FILETIME));
ui64Now = ulargeint.QuadPart;
if (ui64LastHi + 10000000*SECONDS_BETWEEN_HELLOS < ui64Now) {
SendControlMessage(g_sockControl,MSGST_HELLO);
ui64LastHi = ui64Now;
}
// get the RSVP statuscode, waiting for as long as it takes
status = GetRsvpStatus(WSA_INFINITE,fd);
if (g_state.Done) {
ExitThread(1);
}
switch (status) {
case WSA_QOS_TRAFFIC_CTRL_ERROR: // sad if we get this
printf("RSVP-ERR: Reservation rejected by traffic control on server. Aborting.\n");
SendControlMessage(g_sockControl,MSGST_RSVPERR);
g_state.Done = TRUE;
exit(1);
break;
case WSA_QOS_REQUEST_CONFIRMED: // happy if we get this
if (!confirmed) {
printf("RSVP: Reservation confirmed\n");
confirmed = TRUE;
fResvGood = TRUE;
}
break;
case WSA_QOS_SENDERS:
if (!fResvGood && !trans) {
printf("\nRSVP Monitor: WSA_QOS_SENDERS at t=%I64ds\n",
(GetUserTime() - timeStart) / 10000000);
fResvGood = TRUE;
}
break;
case WSA_QOS_RECEIVERS:
if (!fResvGood && trans) {
printf("\nRSVP Monitor: WSA_QOS_RECEIVERS at t=%I64ds\n",
(GetUserTime() - timeStart) / 10000000);
fResvGood = TRUE;
}
break;
case WSA_QOS_NO_SENDERS: // the sender is now gone, so we stop
if (fResvGood && !trans) {
printf("\nRSVP Monitor: WSA_QOS_NO_SENDERS at t=%I64ds\n",
(GetUserTime() - timeStart) / 10000000);
fResvGood = FALSE;
}
break;
case WSA_QOS_NO_RECEIVERS: // means the sender is done, so he should exit
if (fResvGood && trans) {
printf("\nRSVP Monitor: WSA_QOS_NO_RECEIVERS at t=%I64ds\n",
(GetUserTime() - timeStart) / 10000000);
fResvGood = FALSE;
}
break;
default:
break;
}
Sleep(1000); // check at most once per second
}
return dwResult;
} // RSVPMonitor()
DWORD WINAPI KeyboardMonitor(LPVOID lpvThreadParm) {
DWORD dwResult = 0;
char ch;
while (TRUE) {
ch = (CHAR) getchar();
switch (ch) {
case 'q':
SendControlMessage(g_sockControl,MSGST_DONE);
g_state.Done = TRUE;
ExitThread(1);
break;
}
}
return 0;
}
DWORD WINAPI ControlSocketMonitor(LPVOID lpvThreadParm) {
DWORD dwResult = 0;
DWORD dwError, cbBuf = 0;
DWORD dwAddrSize = MAX_STRING;
char szAddr[MAX_STRING];
char szBuf[MAX_STRING],szCommand[MAX_STRING], *pchStart, *pchEnd;
int cch;
char szT[MAX_STRING];
char szT2[MAX_STRING];
char * szHost;
BOOL fSender;
SOCKET sockControl, sockListen;
SOCKADDR_IN sinmeControl, sinhimControl;
PHOSTENT phostent;
UINT64 ui64LastHello = 0;
BOOL fDone = FALSE;
BOOL fGotRate=FALSE, fGotSize=FALSE, fGotNum=FALSE;
BOOL fSentReady =FALSE;
// find out if we're the sender or receiver
if (lpvThreadParm == NULL) fSender = FALSE;
else fSender = TRUE;
// if sender, copy the host address into our local host string
if (fSender) {
szHost = malloc(strlen((char *)lpvThreadParm) + 1);
strcpy(szHost, (const char *)lpvThreadParm);
}
// set up a control socket
if (fSender) {
sockControl = socket(AF_INET, SOCK_STREAM, 0);
}
else {
sockListen = socket(AF_INET, SOCK_STREAM, 0);
}
// bind properly
sinmeControl.sin_family = AF_INET;
sinmeControl.sin_addr.s_addr = INADDR_ANY;
sinhimControl.sin_family = AF_INET;
if (fSender) {
sinmeControl.sin_port = 0;
// set up the sinhim structure
if (atoi(szHost) > 0 ) {
sinhimControl.sin_addr.s_addr = inet_addr(szHost);
}
else{
if ((phostent=gethostbyname(szHost)) == NULL) {
ErrorExit("bad host name",WSAGetLastError());
}
sinhimControl.sin_family = phostent->h_addrtype;
memcpy(&(sinhimControl.sin_addr.s_addr), phostent->h_addr, phostent->h_length);
}
sinhimControl.sin_port = htons(CONTROL_PORT);
dwError = bind(sockControl,(SOCKADDR*)&sinmeControl,sizeof(sinmeControl));
}
else { // receiver
sinmeControl.sin_port = htons(CONTROL_PORT);
dwError = bind(sockListen,(SOCKADDR*)&sinmeControl,sizeof(sinmeControl));
}
if (dwError == SOCKET_ERROR)
ErrorExit("bind failed",WSAGetLastError());
// now connect the socket
sinhimControl.sin_family = AF_INET;
if (fSender) {
// if we're the sender, keep trying to connect until we get through
dwAddrSize = MAX_STRING;
dwError = WSAAddressToString((SOCKADDR *)&(sinhimControl),
sizeof(SOCKADDR_IN),
NULL,
szAddr,
&dwAddrSize);
if (dwError == SOCKET_ERROR)
ErrorExit("WSAAddressToString failed", WSAGetLastError());
else
strcpy(szHisAddr,szAddr);
while (TRUE) {
dwError = connect(sockControl,(SOCKADDR*)&sinhimControl,sizeof(sinhimControl));
if (!dwError) {
printf("control socket: connected to %s\n",szAddr);
break;
}
dwError = WSAGetLastError();
if (dwError != WSAECONNREFUSED) {
ErrorExit("connect() failed",dwError);
}
Sleep(500); // wait a half second between attempts
}
}
else {
// if we're the receiver, listen / accept
if (listen(sockListen, SOMAXCONN) == SOCKET_ERROR) {
ErrorExit("listen() failed", WSAGetLastError());
}
sockControl = accept(sockListen, (SOCKADDR*)&sinhimControl, &dwAddrSize);
// once we've accepted, close the listen socket
closesocket(sockListen);
if ((INT_PTR)sockControl < 0) {
ErrorExit("accept() failed",WSAGetLastError());
}
dwAddrSize = MAX_STRING;
dwError = WSAAddressToString((SOCKADDR *)&(sinhimControl),
sizeof(SOCKADDR_IN),
NULL,
szAddr,
&dwAddrSize);
if (dwError == SOCKET_ERROR)
ErrorExit("WSAAddressToString failed", WSAGetLastError());
else
strcpy(szHisAddr, szAddr);
printf("control socket: accepted connection from %s\n",szAddr);
}
// set our global control socket variable
g_sockControl = sockControl;
// record my name
dwAddrSize = sizeof(SOCKADDR_IN);
getsockname(sockControl,(SOCKADDR *)&(sinmeControl),&dwAddrSize);
dwAddrSize = MAX_STRING;
dwError = WSAAddressToString((SOCKADDR *)&(sinmeControl),
sizeof(SOCKADDR_IN), NULL, szAddr, &dwAddrSize);
if (dwError == SOCKET_ERROR)
ErrorExit("WSAAddressToString failed", WSAGetLastError());
else
strcpy(szMyAddr, szAddr);
// exchange version information
sprintf(szBuf, "%s %s", MSGST_VER, VERSION_STRING);
SendControlMessage(sockControl, szBuf);
// now that we're all set, do the actual work of the control socket
while (!fDone) {
ZeroMemory(szBuf,MAX_STRING);
dwError = cbBuf = recv(sockControl, szBuf, MAX_STRING, 0);
pchStart = szBuf;
pchEnd = szBuf + cbBuf;
if (dwError == 0) { // the connection's been gracefully closed
fDone = TRUE;
closesocket(sockControl);
g_fOtherSideFinished=TRUE;
ExitThread(0);
}
if (dwError == SOCKET_ERROR) {
dwError = WSAGetLastError();
if (dwError == WSAECONNRESET) {
printf("\ncontrol socket: connection reset by peer");
printf("\n\t%I64us since last HELLO packet received",
(GetUserTime() - ui64LastHello)/10000000);
printf("\n\t%I64us since start",
(GetUserTime() - timeStart)/10000000);
g_state.Done = TRUE;
fDone = TRUE;
g_fOtherSideFinished = TRUE;
closesocket(sockControl);
ExitThread(1);
}
else {
printf("\ncontrol socket: error in recv: %d\n",dwError);
g_state.Done = TRUE;
fDone = TRUE;
g_fOtherSideFinished = TRUE;
closesocket(sockControl);
ExitThread(1);
}
continue;
}
while (pchStart < pchEnd) {
ZeroMemory(szCommand,MAX_STRING);
// consume the first command and act on it
if (pchEnd > szBuf + cbBuf) break;
pchEnd = strchr(pchStart, MSGCH_DELIMITER);
if (pchEnd == NULL) break;
strncpy(szCommand,pchStart,pchEnd - pchStart);
if (strcmp(szCommand,MSGST_HELLO) == 0) {
// update last hello time
ui64LastHello = GetUserTime();
// i should do something like set a timer here that sleeps until a certain timeout
// passes, at which point it aborts our transfer
}
if (strcmp(szCommand,MSGST_ERROR) == 0) {
// the other guy's had an error, so we stop and tell him to abort
g_fOtherSideFinished = TRUE;
g_state.Done = TRUE;
fDone = TRUE;
SendControlMessage(sockControl,MSGST_ABORT);
closesocket(sockControl);
ExitThread(1);
}
if (strcmp(szCommand,MSGST_ABORT) == 0) {
// we're told to abort, so do so
g_fOtherSideFinished = TRUE;
g_state.Done = TRUE;
fDone = TRUE;
closesocket(sockControl);
ExitThread(1);
}
if (strcmp(szCommand,MSGST_DONE) == 0) {
// we're told the other guy's done, so therefore are we
closesocket(sockControl);
g_fOtherSideFinished = TRUE;
g_state.Done = TRUE;
fDone = TRUE;
ExitThread(1);
}
if (strcmp(szCommand,MSGST_RSVPERR) == 0) {
// we're told the other guy got an rsvp error, so we abort the whole program
closesocket(sockControl);
g_fOtherSideFinished = TRUE;
g_state.Done = TRUE;
fDone = TRUE;
exit(1);
}
if (strncmp(szCommand,MSGST_SIZE,4) == 0) {
// the sender is telling us how big the buffers are
sscanf(szCommand,"%s %d",szT, &g_params.buflen);
fGotSize = TRUE;
}
if (strncmp(szCommand,MSGST_RATE,4) == 0) {
// the sender is telling us how fast the buffers are coming
sscanf(szCommand, "%s %d",szT, &g_params.TokenRate);
fGotRate = TRUE;
}
if (strncmp(szCommand,MSGST_NUM,3) == 0) {
// the sender is telling us how many buffers it's sending
sscanf(szCommand, "%s %d",szT, &g_params.nbuf);
totalBuffers = g_params.nbuf;
fGotNum = TRUE;
}
if (strncmp(szCommand,MSGST_VER,3) == 0) {
sscanf(szCommand, "%s %s",szT, szT2);
if (strcmp(szT2,VERSION_STRING) != 0) {
printf("WARNING: remote machine using different version of qtcp: %s vs. %s\n",
szT2,VERSION_STRING);
}
}
if (trans) {
if (strcmp(szCommand,MSGST_READY) == 0) {
g_fReadyForXmit = TRUE;
}
}
else {
if (!fSentReady && fGotRate && fGotSize && fGotNum) {
SendControlMessage(sockControl, MSGST_READY);
fSentReady = TRUE;
g_fReadyForXmit = TRUE;
}
}
pchStart = pchEnd + 1;
pchEnd = szBuf + cbBuf;
}
}
return 0;
}
int SendControlMessage(SOCKET sock, char * szMsg) {
int iResult;
char szBuf[MAX_STRING];
sprintf(szBuf,"%s%c",szMsg,MSGCH_DELIMITER);
iResult = send (sock, szBuf, strlen(szBuf), 0);
if (iResult == SOCKET_ERROR) {
return WSAGetLastError();
}
return iResult;
}
void ErrorExit(char *msg, DWORD dwErrorNumber) {
fprintf(stderr,"ERROR: %d\n",dwErrorNumber);
if (msg != NULL)
fprintf(stderr,"\t%s\n",msg);
else {
switch(dwErrorNumber) {
case WSAEFAULT:
fprintf(stderr,"\tWSAEFAULT: Buffer too small to contain name\n");
break;
case WSAEINVAL:
fprintf(stderr,"\tWSAEINVAL: Invalid socket address\n");
break;
case WSANOTINITIALISED:
fprintf(stderr,"\tWSANOTINITIALIZED: WSA Not initialized\n");
break;
default:
fprintf(stderr,"\tUnknown error\n");
break;
}
}
SendControlMessage(g_sockControl, MSGST_ABORT);
DestroyLog(&g_log);
WSACleanup();
exit(1);
_exit(1);
}
// some math utility functions
// comparison for doubles (to use in qsort)
int __cdecl compare( const void *arg1, const void *arg2 )
{
DOUBLE dTemp;
DOUBLE d1 = * (DOUBLE *) arg1;
DOUBLE d2 = * (DOUBLE *) arg2;
dTemp = d1 - d2;
if (dTemp < 0) return -1;
if (dTemp == 0) return 0;
else
return 1;
}
// comparison for ints (to use in qsort)
int __cdecl compareint( const void *arg1, const void *arg2 )
{
int nTemp;
int n1 = * (int *) arg1;
int n2 = * (int *) arg2;
nTemp = n1 - n2;
if (nTemp < 0) return -1;
if (nTemp == 0) return 0;
else
return 1;
}
// comparison for int64s (to use in qsort)
int __cdecl compareI64( const void *arg1, const void *arg2 )
{
INT64 nTemp;
INT64 n1 = * (INT64 *) arg1;
INT64 n2 = * (INT64 *) arg2;
nTemp = n1 - n2;
if (nTemp < 0) return -1;
if (nTemp == 0) return 0;
else return 1;
}
#define EPS 1.0e-7
// sum up error function for given value of b
double rofunc(double b, int N, double yt[], double xt[], double * paa, double * pabdevt) {
int i;
double *pfT;
double d, sum=0.0;
double aa = *paa;
double abdevt = *pabdevt;
pfT = malloc(sizeof(double) * N);
for (i = 0; i < N; i++) pfT[i] = yt[i]-b*xt[i];
qsort(pfT, N, sizeof(DOUBLE), compare);
if (N & 1) { // odd N
aa = pfT[(N+1) / 2];
}
else {
i = N / 2;
aa = 0.5 * (pfT[i] + pfT[i+1]);
}
abdevt = 0.0;
for (i = 0; i<N; i++) {
d = yt[i] - (b*xt[i]+aa);
abdevt += fabs(d);
if (yt[i] != 0.0) d /= fabs(yt[i]);
if (fabs(d) > EPS) sum += (d >= 0.0 ? xt[i]: -xt[i]);
}
*paa = aa;
*pabdevt = abdevt;
free(pfT);
return sum;
}
#define SIGN(a,b) ((b) >= 0 ? fabs(a) : fabs(-a))
void medfit(double x[], double y[], int N, double *a, double *b, double *abdev) {
// fit y = a + bx to least absolute deviation. abdev is mean absolute deviation.
// incoming, a and b are treated as starting guesses
int i;
double *xt = x;
double *yt = y;
double sx, sy, sxy, sxx, chisq;
double del, sigb;
double bb, b1, b2, aa, abdevt, f, f1, f2, temp;
sx = sy = sxy = sxx = chisq = 0.0;
// we find chisq fit to use as starting guess
for (i=0; i<N; i++) {
sx += x[i];
sy += y[i];
sxy += x[i]*y[i];
sxx += x[i]*x[i];
}
del = N*sxx - sx*sx;
aa = (sxx*sy-sx*sxy) / del;
bb = (N*sxy - sx*sy) / del;
// do the absolute deviation fit, if we're supposed to.
if (g_params.SkewFitMode == 2) {
for (i=0; i<N; i++)
chisq += (temp=y[i]-(aa+bb*x[i]), temp*temp);
sigb = sqrt(chisq/del);
b1 = bb;
f1 = rofunc(b1, N, yt, xt, &aa, &abdevt);
// guess the bracket as 3 sigma away in downhill direction from f1
b2 = bb + SIGN(3.0 * sigb, f1);
f2 = rofunc(b2, N, yt, xt, &aa, &abdevt);
if (b2 == b1) {
*a = aa;
*b = bb;
*abdev = abdevt / N;
return;
}
// Bracketing
while ((f1*f2) > 0.0) {
if (fabs(f1) < fabs(f2))
f1 = rofunc(b1 += 1.6*(b1-b2),N,yt,xt,&aa,&abdevt);
else
f2 = rofunc(b2 += 1.6*(b2-b1),N,yt,xt,&aa,&abdevt);
}
sigb = 0.000001 * sigb; // refine
while (fabs(b2 - b1) > sigb) {
bb = b1 + 0.5 * (b2 - b1);
if (bb == b1 || bb == b2) break;
f = rofunc(bb, N, yt, xt, &aa, &abdevt);
if (f*f1 >= 0.0) {
f1 = f;
b1 = bb;
} else {
f2 = f;
b2 = bb;
}
}
}
*a = aa;
*b = bb;
*abdev = abdevt / N;
}
double mode(const double data[], const int N) {
// finds and returns the mode of the N points in data
double * sorted;
double mode, cur=0;
int cMode, cCur;
int i;
sorted = malloc(N * sizeof(double));
for (i=0; i<N; i++) sorted[i] = data[i];
qsort(sorted, N, sizeof(double), compare);
mode = sorted[0];
cMode = cCur = 0;
for (i=0; i<N; i++) {
if (cCur > cMode) {
mode = cur;
cMode = cCur;
}
if (sorted[i] == mode) {
cMode++;
} else {
if (sorted[i] == cur) cCur++;
else {
cur = sorted[i];
cCur = 1;
}
}
}
free(sorted);
return mode;
}
void RemoveDuplicates(int rg[], int * pN) {
// this removes duplicates from the array passed in and returns it with *pN = #remaining
// it makes no guarantees about elements after rg[#remaining]
int *pNewArray;
int cNew;
int i;
qsort(rg,*pN,sizeof(int),compareint);
pNewArray = malloc(sizeof(int) * *pN);
pNewArray[0] = rg[0];
cNew = 1;
for (i=1; i<*pN; i++) {
if (rg[i] != pNewArray[cNew - 1]) {
pNewArray[cNew++] = rg[i];
}
}
*pN = cNew;
for (i=0; i<cNew; i++)
rg[i] = pNewArray[i];
}
void RemoveDuplicatesI64(INT64 rg[], int * pN) {
// this removes duplicates from the array passed in and returns it with *pN = #remaining
// it makes no guarantees about elements after rg[#remaining]
INT64 *pNewArray;
int cNew;
int i;
qsort(rg,*pN,sizeof(INT64),compareI64);
pNewArray = malloc(sizeof(INT64) * *pN);
pNewArray[0] = rg[0];
cNew = 1;
for (i=1; i<*pN; i++) {
if (rg[i] != pNewArray[cNew - 1]) {
pNewArray[cNew++] = rg[i];
}
}
*pN = cNew;
for (i=0; i<cNew; i++)
rg[i] = pNewArray[i];
}
void PrintFlowspec(LPFLOWSPEC lpfs) {
printf("TokenRate: %lu bytes/sec\n",lpfs->TokenRate);
printf("TokenBucketSize: %lu bytes\n",lpfs->TokenBucketSize);
printf("PeakBandwidth: %lu bytes/sec\n",lpfs->PeakBandwidth);
printf("Latency: %lu microseconds\n",lpfs->Latency);
printf("DelayVariation: %lu microseconds\n",lpfs->DelayVariation);
printf("ServiceType: %X\n",lpfs->ServiceType);
printf("MaxSduSize: %lu bytes\n",lpfs->MaxSduSize);
printf("MinimumPolicedSize: %lu bytes\n",lpfs->MinimumPolicedSize);
}