Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1180 lines
45 KiB

/*******************************************************************/
/** Microsoft LAN Manager **/
/** Copyright(c) Microsoft Corp., 1990-1993 **/
/********************************************************************/
/* :ts=4 */
//** UDP.C - UDP protocol code.
//
// This file contains the code for the UDP protocol functions,
// principally send and receive datagram.
//
#include "precomp.h"
#include "addr.h"
#include "udp.h"
#include "tlcommon.h"
#include "info.h"
#include "tcpcfg.h"
#include "secfltr.h"
#include "tcpipbuf.h"
#if GPC
#include "qos.h"
#include "traffic.h"
#include "gpcifc.h"
#include "ntddtc.h"
extern GPC_HANDLE hGpcClient[];
extern ULONG GpcCfCounts[];
extern GPC_EXPORTED_CALLS GpcEntries;
extern ULONG GPCcfInfo;
#endif
NTSTATUS
GetIFAndLink(void *Rce, ULONG * IFIndex, IPAddr * NextHop);
extern ulong DisableUserTOSSetting;
ulong Fastpath = 0;
void *UDPProtInfo = NULL;
extern IPInfo LocalNetInfo;
extern
TDI_STATUS
MapIPError(IP_STATUS IPError, TDI_STATUS Default);
#undef SrcPort
//
// UDPDeliver - Deliver a datagram to a user.
//
// This routine delivers a datagram to a UDP user. We're called with
// the AddrObj to deliver on, and with the AddrObjTable lock held.
// We try to find a receive on the specified AddrObj, and if we do
// we remove it and copy the data into the buffer. Otherwise we'll
// call the receive datagram event handler, if there is one. If that
// fails we'll discard the datagram.
//
// Input: RcvAO - AO to receive the datagram.
// SrcIP - Source IP address of datagram.
// SrcPort - Source port of datagram.
// RcvBuf - The IPReceive buffer containing the data.
// RcvSize - Size received, including the UDP header.
// TableHandle - Lock handle for AddrObj table.
// DeliverInfo - Information about the recieved packet.
//
// Returns: Nothing.
//
void
UDPDeliver(AddrObj * RcvAO, IPAddr SrcIP, ushort SrcPort, IPRcvBuf * RcvBuf,
uint RcvSize, IPOptInfo * OptInfo, CTELockHandle TableHandle,
DGDeliverInfo * DeliverInfo)
{
Queue *CurrentQ;
CTELockHandle AOHandle;
DGRcvReq *RcvReq;
uint BytesTaken = 0;
uchar AddressBuffer[TCP_TA_SIZE];
uint RcvdSize;
EventRcvBuffer *ERB = NULL;
#if TRACE_EVENT
PTDI_DATA_REQUEST_NOTIFY_ROUTINE CPCallBack;
WMIData WMIInfo;
#endif
BOOLEAN FreeBuffer = FALSE;
int BufferSize;
PVOID BufferToSend = NULL;
DEBUGMSG(DBG_TRACE && DBG_UDP && DBG_RX,
(DTEXT("+UDPDeliver(%x, %x, %x, %x, %d, %x...)\n"),
RcvAO, SrcIP, SrcPort, RcvBuf, RcvSize, OptInfo));
CTEStructAssert(RcvAO, ao);
CTEGetLock(&RcvAO->ao_lock, &AOHandle);
CTEFreeLock(&AddrObjTableLock.Lock, AOHandle);
//UH = (UDPHeader *) RcvBuf->ipr_buffer;
if (DeliverInfo->Flags & NEED_CHECKSUM) {
if (XsumRcvBuf(PHXSUM(SrcIP, DeliverInfo->DestAddr, PROTOCOL_UDP, RcvSize), RcvBuf) != 0xffff) {
UStats.us_inerrors++;
DeliverInfo->Flags &= ~NEED_CHECKSUM;
CTEFreeLock(&RcvAO->ao_lock, TableHandle);
return; // Checksum failed.
}
}
if (AO_VALID(RcvAO)) {
//By default broadcast rcv is set on AO
if ((DeliverInfo->Flags & IS_BCAST) && !AO_BROADCAST(RcvAO)) {
goto loop_exit;
}
if ((DeliverInfo->Flags & IS_BCAST) && (DeliverInfo->Flags & SRC_LOCAL)
&& (RcvAO->ao_mcast_loop == 0)) {
goto loop_exit;
}
CurrentQ = QHEAD(&RcvAO->ao_rcvq);
// Walk the list, looking for a receive buffer that matches.
while (CurrentQ != QEND(&RcvAO->ao_rcvq)) {
RcvReq = QSTRUCT(DGRcvReq, CurrentQ, drr_q);
CTEStructAssert(RcvReq, drr);
// If this request is a wildcard request, or matches the source IP
// address, check the port.
if (IP_ADDR_EQUAL(RcvReq->drr_addr, NULL_IP_ADDR) ||
IP_ADDR_EQUAL(RcvReq->drr_addr, SrcIP)) {
// The local address matches, check the port. We'll match
// either 0 or the actual port.
if (RcvReq->drr_port == 0 || RcvReq->drr_port == SrcPort) {
TDI_STATUS Status;
// The ports matched. Remove this from the queue.
REMOVEQ(&RcvReq->drr_q);
// We're done. We can free the AddrObj lock now.
CTEFreeLock(&RcvAO->ao_lock, TableHandle);
// Call CopyRcvToNdis, and then complete the request.
//KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "RcvAO %x rcvbuf %x size %x\n",RcvAO,RcvReq->drr_buffer,
// RcvReq->drr_size));
RcvdSize = CopyRcvToNdis(RcvBuf, RcvReq->drr_buffer,
RcvReq->drr_size, sizeof(UDPHeader), 0);
ASSERT(RcvdSize <= RcvReq->drr_size);
Status = UpdateConnInfo(RcvReq->drr_conninfo, OptInfo,
SrcIP, SrcPort);
UStats.us_indatagrams++;
#if TRACE_EVENT
CPCallBack = TCPCPHandlerRoutine;
if (CPCallBack != NULL) {
ulong GroupType;
WMIInfo.wmi_srcport = SrcPort;
WMIInfo.wmi_srcaddr = SrcIP;
WMIInfo.wmi_destport = DeliverInfo->DestPort;
WMIInfo.wmi_destaddr = DeliverInfo->DestAddr;
WMIInfo.wmi_size = RcvdSize;
WMIInfo.wmi_context = RcvAO->ao_owningpid;
GroupType = EVENT_TRACE_GROUP_UDPIP + EVENT_TRACE_TYPE_RECEIVE;
(*CPCallBack)( GroupType, (PVOID) &WMIInfo, sizeof(WMIInfo), NULL);
}
#endif
DEBUGMSG(DBG_INFO && DBG_UDP && DBG_RX,
(DTEXT("UDPDeliver completing RcvReq %x for Ao %x.\n"),
RcvReq, RcvAO));
(*RcvReq->drr_rtn) (RcvReq->drr_context, Status, RcvdSize);
FreeDGRcvReq(RcvReq);
return;
}
}
// Either the IP address or the port didn't match. Get the next
// one.
CurrentQ = QNEXT(CurrentQ);
}
// We've walked the list, and not found a buffer. Call the recv.
// handler now.
if (RcvAO->ao_rcvdg != NULL) {
PRcvDGEvent RcvEvent = RcvAO->ao_rcvdg;
PVOID RcvContext = RcvAO->ao_rcvdgcontext;
TDI_STATUS RcvStatus;
ULONG Flags = TDI_RECEIVE_COPY_LOOKAHEAD;
REF_AO(RcvAO);
CTEFreeLock(&RcvAO->ao_lock, TableHandle);
BuildTDIAddress(AddressBuffer, SrcIP, SrcPort);
UStats.us_indatagrams++;
if (DeliverInfo->Flags & IS_BCAST) {
// This flag is true if this is a multicast, subnet broadcast,
// or broadcast. We need to differentiate to set the right
// receive flags.
//
if (!CLASSD_ADDR(DeliverInfo->DestAddr)) {
Flags |= TDI_RECEIVE_BROADCAST;
} else {
Flags |= TDI_RECEIVE_MULTICAST;
}
}
// Set the buffer variables that we will send to the
// receive event handler. These may change if we find
// any socket option that requires ancillary data to be
// passed to the handler.
//
BufferToSend = OptInfo->ioi_options;
BufferSize = OptInfo->ioi_optlength;
// If the IP_PKTINFO option was set, then create the control
// information to be passed to the handler. Currently only one
// such option exists, so only one ancillary data object is
// created. We should be able to support an array of them as
// more options are added.
//
if (AO_PKTINFO(RcvAO)) {
BufferToSend = DGFillIpPktInfo(DeliverInfo->DestAddr,
DeliverInfo->LocalAddr,
&BufferSize);
if (BufferToSend) {
FreeBuffer = TRUE;
// Set the receive flag so the receive handler knows
// we are passing up control info.
//
Flags |= TDI_RECEIVE_CONTROL_INFO;
}
}
DEBUGMSG(DBG_INFO && DBG_UDP && DBG_RX,
(DTEXT("UDPDeliver: calling Event %x for Ao %x\n"), RcvEvent, RcvAO));
RcvStatus = (*RcvEvent) (RcvContext, TCP_TA_SIZE,
(PTRANSPORT_ADDRESS) AddressBuffer, BufferSize,
BufferToSend, Flags,
RcvBuf->ipr_size - sizeof(UDPHeader),
RcvSize - sizeof(UDPHeader), (PULONG)&BytesTaken,
RcvBuf->ipr_buffer + sizeof(UDPHeader), &ERB);
if (FreeBuffer) {
ExFreePool(BufferToSend);
}
DEBUGMSG(DBG_INFO && DBG_UDP && DBG_RX,
(DTEXT("UDPDeliver: Event status for AO %x: %x \n"), RcvAO, RcvStatus));
if (RcvStatus == TDI_MORE_PROCESSING) {
ASSERT(ERB != NULL);
// We were passed back a receive buffer. Copy the data in now.
// He can't have taken more than was in the indicated
// buffer, but in debug builds we'll check to make sure.
ASSERT(BytesTaken <= (RcvBuf->ipr_size - sizeof(UDPHeader)));
#if !MILLEN
{
PIO_STACK_LOCATION IrpSp;
PTDI_REQUEST_KERNEL_RECEIVEDG DatagramInformation;
IrpSp = IoGetCurrentIrpStackLocation(ERB);
DatagramInformation = (PTDI_REQUEST_KERNEL_RECEIVEDG)
& (IrpSp->Parameters);
//
// Copy the remaining data to the IRP.
//
RcvdSize = CopyRcvToMdl(RcvBuf, ERB->MdlAddress,
RcvSize - sizeof(UDPHeader) - BytesTaken,
sizeof(UDPHeader) + BytesTaken, 0);
//
// Update the return address info
//
RcvStatus = UpdateConnInfo(
DatagramInformation->ReturnDatagramInformation,
OptInfo, SrcIP, SrcPort);
//
// Complete the IRP.
//
ERB->IoStatus.Information = RcvdSize;
ERB->IoStatus.Status = RcvStatus;
#if TRACE_EVENT
// Calling before Irp Completion. Irp could go away otherwise.
CPCallBack = TCPCPHandlerRoutine;
if (CPCallBack!=NULL) {
ulong GroupType;
WMIInfo.wmi_srcport = SrcPort;
WMIInfo.wmi_srcaddr = SrcIP;
WMIInfo.wmi_destport = DeliverInfo->DestPort;
WMIInfo.wmi_destaddr = DeliverInfo->DestAddr;
WMIInfo.wmi_context = RcvAO->ao_owningpid;
WMIInfo.wmi_size = (ushort)RcvdSize + BytesTaken;
GroupType = EVENT_TRACE_GROUP_UDPIP + EVENT_TRACE_TYPE_RECEIVE;
(*CPCallBack)( GroupType, (PVOID) &WMIInfo, sizeof(WMIInfo), NULL);
}
#endif
IoCompleteRequest(ERB, 2);
}
#else // !MILLEN
RcvdSize = CopyRcvToNdis(RcvBuf, ERB->erb_buffer,
RcvSize - sizeof(UDPHeader) - BytesTaken,
sizeof(UDPHeader) + BytesTaken, 0);
//
// Call the completion routine.
//
(*ERB->erb_rtn)(ERB->erb_context, TDI_SUCCESS, RcvdSize);
#endif // MILLEN
} else {
DEBUGMSG(DBG_WARN && RcvStatus != TDI_SUCCESS && RcvStatus != TDI_NOT_ACCEPTED,
(DTEXT("WARN> UDPDgRcvHandler returned %x\n"), RcvStatus));
ASSERT(
(RcvStatus == TDI_SUCCESS) ||
(RcvStatus == TDI_NOT_ACCEPTED)
);
ASSERT(ERB == NULL);
#if TRACE_EVENT
CPCallBack = TCPCPHandlerRoutine;
if (CPCallBack != NULL){
ulong GroupType;
WMIInfo.wmi_srcport = SrcPort;
WMIInfo.wmi_srcaddr = SrcIP;
WMIInfo.wmi_destport = DeliverInfo->DestPort;
WMIInfo.wmi_destaddr = DeliverInfo->DestAddr;
WMIInfo.wmi_context = RcvAO->ao_owningpid;
WMIInfo.wmi_size = (ushort)BytesTaken;
GroupType = EVENT_TRACE_GROUP_UDPIP + EVENT_TRACE_TYPE_RECEIVE;
(*CPCallBack)( GroupType, (PVOID)(&WMIInfo), sizeof(WMIInfo), NULL);
}
#endif
}
DELAY_DEREF_AO(RcvAO);
return;
} else
UStats.us_inerrors++;
// When we get here, we didn't have a buffer to put this data into.
// Fall through to the return case.
} else
UStats.us_inerrors++;
loop_exit:
CTEFreeLock(&RcvAO->ao_lock, TableHandle);
}
//** UDPSend - Send a datagram.
//
// The real send datagram routine. We assume that the busy bit is
// set on the input AddrObj, and that the address of the SendReq
// has been verified.
//
// We start by sending the input datagram, and we loop until there's
// nothing left on the send q.
//
// Input: SrcAO - Pointer to AddrObj doing the send.
// SendReq - Pointer to sendreq describing send.
//
// Returns: Nothing
//
void
UDPSend(AddrObj * SrcAO, DGSendReq * SendReq)
{
UDPHeader *UH;
PNDIS_BUFFER UDPBuffer;
CTELockHandle AOHandle;
RouteCacheEntry *RCE; // RCE used for each send.
IPAddr SrcAddr; // Source address IP thinks we should
// use.
IPAddr DestAddr;
ushort DestPort;
uchar DestType = 0; // Type of destination address.
ushort UDPXsum; // Checksum of packet.
ushort SendSize; // Size we're sending.
IP_STATUS SendStatus; // Status of send attempt.
ushort MSS;
uint AddrValid;
IPOptInfo OptInfo;
IPAddr BoundAddr;
CTEStructAssert(SrcAO, ao);
ASSERT(SrcAO->ao_usecnt != 0);
//* Loop while we have something to send, and can get
// resources to send.
for (;;) {
BOOLEAN CachedRCE = FALSE;
CTEStructAssert(SendReq, dsr);
// Make sure we have a UDP header buffer for this send. If we
// don't, try to get one.
if ((UDPBuffer = SendReq->dsr_header) == NULL) {
// Don't have one, so try to get one.
UDPBuffer = GetDGHeader(&UH);
if (UDPBuffer != NULL) {
SendReq->dsr_header = UDPBuffer;
} else {
// Couldn't get a header buffer. Push the send request
// back on the queue, and queue the addr object for when
// we get resources.
CTEGetLock(&SrcAO->ao_lock, &AOHandle);
PUSHQ(&SrcAO->ao_sendq, &SendReq->dsr_q);
PutPendingQ(SrcAO);
CTEFreeLock(&SrcAO->ao_lock, AOHandle);
return;
}
}
// At this point, we have the buffer we need. Call IP to get an
// RCE (along with the source address if we need it), then compute
// the checksum and send the data.
ASSERT(UDPBuffer != NULL);
BoundAddr = SrcAO->ao_addr;
if (!CLASSD_ADDR(SendReq->dsr_addr)) {
// This isn't a multicast send, so we'll use the ordinary
// information.
OptInfo = SrcAO->ao_opt;
} else {
OptInfo = SrcAO->ao_mcastopt;
}
//KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "udpsend: ao %x, %x %x %x\n", SrcAO, SendReq, SendReq->dsr_addr,SendReq->dsr_port));
if (!(SrcAO->ao_flags & AO_DHCP_FLAG)) {
if (AO_CONNUDP(SrcAO) && SrcAO->ao_rce) {
if (SrcAO->ao_rce->rce_flags & RCE_VALID) {
SrcAddr = SrcAO->ao_rcesrc;
RCE = SrcAO->ao_rce;
CachedRCE = TRUE;
} else {
// Close the invalid RCE, and reset the cached information
CTEGetLock(&SrcAO->ao_lock, &AOHandle);
RCE = SrcAO->ao_rce;
SrcAO->ao_rce = NULL;
SrcAO->ao_rcesrc = NULL_IP_ADDR;
CTEFreeLock(&SrcAO->ao_lock, AOHandle);
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"udpsend: closing old RCE %x %x\n",
SrcAO, RCE));
(*LocalNetInfo.ipi_closerce) (RCE);
// retrieve the destination address to which the socket
// is connected, and use it to open a new RCE, if possible.
// N.B. we always open an RCE to the *connected* destination,
// rather than the destination to which the user is currently
// sending.
GetAddress((PTRANSPORT_ADDRESS) SrcAO->ao_RemoteAddress,
&DestAddr, &DestPort);
SrcAddr = (*LocalNetInfo.ipi_openrce) (DestAddr, BoundAddr,
&RCE, &DestType,
&MSS, &OptInfo);
if (!IP_ADDR_EQUAL(SrcAddr, NULL_IP_ADDR)) {
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"udpsend: storing new RCE %x %x\n",
SrcAO, RCE));
CTEGetLock(&SrcAO->ao_lock, &AOHandle);
SrcAO->ao_rce = RCE;
SrcAO->ao_rcesrc = SrcAddr;
CachedRCE = TRUE;
CTEFreeLock(&SrcAO->ao_lock, AOHandle);
}
}
IF_TCPDBG(TCP_DEBUG_CONUDP)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL,
"udpsend: ao %x, %x %x %x %x\n", SrcAO,
SrcAddr, SrcAO->ao_port, SendReq->dsr_addr,
SendReq->dsr_port));
} else { // unconnected
if ((OptInfo.ioi_mcastif) && CLASSD_ADDR(SendReq->dsr_addr)) {
uint BoundIf;
// mcast_if is set and this is a mcast send
BoundIf = (*LocalNetInfo.ipi_getifindexfromaddr)(BoundAddr,IF_CHECK_NONE);
// Use the bound IP address only if the 'interfaces match' and the
// 'bound address is not NULL'
if ((BoundIf == OptInfo.ioi_mcastif) &&
(!IP_ADDR_EQUAL(BoundAddr, NULL_IP_ADDR))) {
SrcAddr = BoundAddr;
} else {
SrcAddr = (*LocalNetInfo.ipi_isvalidindex) (OptInfo.ioi_mcastif);
}
// go thru slow path
RCE = NULL;
} else {
SrcAddr = (*LocalNetInfo.ipi_openrce) (SendReq->dsr_addr,
BoundAddr, &RCE,
&DestType, &MSS,
&OptInfo);
}
}
AddrValid = !IP_ADDR_EQUAL(SrcAddr, NULL_IP_ADDR);
IF_TCPDBG(TCP_DEBUG_CONUDP)
if (!AddrValid) {
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "udpsend: addrinvalid!!\n"));
}
} else {
// This is a DHCP send. He really wants to send from the
// NULL IP address.
SrcAddr = NULL_IP_ADDR;
RCE = NULL;
AddrValid = TRUE;
}
if (AddrValid) {
//
// clear the precedence bits and get ready to be set
// according to the service type
//
if (DisableUserTOSSetting)
OptInfo.ioi_tos &= TOS_MASK;
if (!CLASSD_ADDR(SendReq->dsr_addr) &&
!IP_ADDR_EQUAL(BoundAddr, NULL_IP_ADDR)) {
//
// Unless we're doing a multicast lookup (which must be strong
// host), use the bound address as the source.
//
SrcAddr = BoundAddr;
}
#if GPC
if (RCE && GPCcfInfo) {
//
// we'll fall into here only if the GPC client is there
// and there is at least one CF_INFO_QOS installed
// (counted by GPCcfInfo).
//
GPC_STATUS status = STATUS_SUCCESS;
ulong ServiceType = 0;
GPC_IP_PATTERN Pattern;
//
// if the packet is being sent to a different destination,
// invalidate the classification handle (CH), to force a database search.
// o/w, just call to classify with the current CH
//
if (SrcAO->ao_destaddr != SendReq->dsr_addr ||
SrcAO->ao_destport != SendReq->dsr_port) {
SrcAO->ao_GPCHandle = 0;
}
//
// set the pattern
//
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPSend: Classifying dgram ao %x\n", SrcAO));
Pattern.SrcAddr = SrcAddr;
Pattern.DstAddr = SendReq->dsr_addr;
Pattern.ProtocolId = SrcAO->ao_prot;
Pattern.gpcSrcPort = SrcAO->ao_port;
Pattern.gpcDstPort = SendReq->dsr_port;
if (SrcAO->ao_GPCCachedRTE != (void *)RCE->rce_rte) {
//
// first time we use this RTE, or it has been changed
// since the last send
//
if (GetIFAndLink(RCE,
&SrcAO->ao_GPCCachedIF,
(IPAddr *) & SrcAO->ao_GPCCachedLink) == STATUS_SUCCESS) {
SrcAO->ao_GPCCachedRTE = (void *)RCE->rce_rte;
}
//
// invaludate the classification handle
//
SrcAO->ao_GPCHandle = 0;
}
Pattern.InterfaceId.InterfaceId = SrcAO->ao_GPCCachedIF;
Pattern.InterfaceId.LinkId = SrcAO->ao_GPCCachedLink;
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPSend: IF=%x Link=%x\n",
Pattern.InterfaceId.InterfaceId,
Pattern.InterfaceId.LinkId));
if (!SrcAO->ao_GPCHandle) {
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPsend: Classification Handle is NULL, getting one now.\n"));
status = GpcEntries.GpcClassifyPatternHandler(
hGpcClient[GPC_CF_QOS],
GPC_PROTOCOL_TEMPLATE_IP,
&Pattern,
NULL, // context
&SrcAO->ao_GPCHandle,
0,
NULL,
FALSE
);
}
//
// Only if QOS patterns exist, we get the TOS bits out.
//
if (NT_SUCCESS(status) && GpcCfCounts[GPC_CF_QOS]) {
status = GpcEntries.GpcGetUlongFromCfInfoHandler(
hGpcClient[GPC_CF_QOS],
SrcAO->ao_GPCHandle,
FIELD_OFFSET(CF_INFO_QOS, TransportInformation),
&ServiceType);
//
// It is likely that the pattern has gone by now
// and the handle that we are caching is INVALID.
// We need to pull up a new handle and get the
// TOS bit again.
//
if (STATUS_INVALID_HANDLE == status) {
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPsend: RE-Classification is required.\n"));
SrcAO->ao_GPCHandle = 0;
status = GpcEntries.GpcClassifyPatternHandler(
hGpcClient[GPC_CF_QOS],
GPC_PROTOCOL_TEMPLATE_IP,
&Pattern,
NULL, // context
&SrcAO->ao_GPCHandle,
0,
NULL,
FALSE
);
//
// Only if QOS patterns exist, we get the TOS bits out.
//
if (NT_SUCCESS(status)) {
status = GpcEntries.GpcGetUlongFromCfInfoHandler(
hGpcClient[GPC_CF_QOS],
SrcAO->ao_GPCHandle,
FIELD_OFFSET(CF_INFO_QOS, TransportInformation),
&ServiceType);
}
}
}
//
// Perhaps something needs to be done if GPC_CF_IPSEC has non-zero patterns.
//
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPsend: ServiceType(%d)=%d\n",
FIELD_OFFSET(CF_INFO_QOS, TransportInformation), ServiceType));
SrcAO->ao_opt.ioi_GPCHandle =
SrcAO->ao_mcastopt.ioi_GPCHandle = (int)SrcAO->ao_GPCHandle;
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPSend:Got CH %x\n", SrcAO->ao_GPCHandle));
if (status == STATUS_SUCCESS) {
SrcAO->ao_destaddr = SendReq->dsr_addr;
SrcAO->ao_destport = SendReq->dsr_port;
} else {
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPSend: no service type found, dstip=%x, dstport=%d\n",
SendReq->dsr_addr, SendReq->dsr_port));
}
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPsend: ServiceType=%d\n", ServiceType));
if (status == STATUS_SUCCESS) {
OptInfo.ioi_tos |= ServiceType;
}
// Copy GPCHandle in the local option info.
OptInfo.ioi_GPCHandle = SrcAO->ao_opt.ioi_GPCHandle;
IF_TCPDBG(TCP_DEBUG_GPC)
KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UDPsend: TOS set to 0x%x\n", OptInfo.ioi_tos));
} // if (RCE && GPCcfInfo)
#endif
// The OpenRCE worked. Compute the checksum, and send it.
UH = TcpipBufferVirtualAddress(UDPBuffer, NormalPagePriority);
if (UH == NULL) {
SendStatus = IP_NO_RESOURCES;
} else {
UH = (UDPHeader *) ((PUCHAR) UH + LocalNetInfo.ipi_hsize);
NdisAdjustBufferLength(UDPBuffer, sizeof(UDPHeader));
NDIS_BUFFER_LINKAGE(UDPBuffer) = SendReq->dsr_buffer;
UH->uh_src = SrcAO->ao_port;
UH->uh_dest = SendReq->dsr_port;
SendSize = SendReq->dsr_size + sizeof(UDPHeader);
UH->uh_length = net_short(SendSize);
UH->uh_xsum = 0;
if (AO_XSUM(SrcAO)) {
// Compute the header xsum, and then call XsumNdisChain
UDPXsum = XsumSendChain(PHXSUM(SrcAddr, SendReq->dsr_addr,
PROTOCOL_UDP, SendSize), UDPBuffer);
// We need to negate the checksum, unless it's already all
// ones. In that case negating it would take it to 0, and
// then we'd have to set it back to all ones.
if (UDPXsum != 0xffff)
UDPXsum = ~UDPXsum;
UH->uh_xsum = UDPXsum;
}
// We've computed the xsum. Now send the packet.
UStats.us_outdatagrams++;
#if TRACE_EVENT
SendReq->dsr_pid = SrcAO->ao_owningpid;
SendReq->dsr_srcaddr = SrcAddr;
SendReq->dsr_srcport = SrcAO->ao_port;
#endif
SendStatus = (*LocalNetInfo.ipi_xmit) (UDPProtInfo, SendReq,
UDPBuffer, (uint) SendSize, SendReq->dsr_addr, SrcAddr,
&OptInfo, RCE, PROTOCOL_UDP, SendReq->dsr_context);
}
if (!CachedRCE) {
(*LocalNetInfo.ipi_closerce) (RCE);
}
// If it completed immediately, give it back to the user.
// Otherwise we'll complete it when the SendComplete happens.
// Currently, we don't map the error code from this call - we
// might need to in the future.
if (SendStatus != IP_PENDING)
DGSendComplete(SendReq, UDPBuffer, SendStatus);
} else {
TDI_STATUS Status;
if (DestType == DEST_INVALID)
Status = TDI_BAD_ADDR;
else
Status = TDI_DEST_UNREACHABLE;
// Complete the request with an error.
(*SendReq->dsr_rtn) (SendReq->dsr_context, Status, 0);
// Now free the request.
SendReq->dsr_rtn = NULL;
DGSendComplete(SendReq, UDPBuffer, IP_SUCCESS);
}
CTEGetLock(&SrcAO->ao_lock, &AOHandle);
if (!EMPTYQ(&SrcAO->ao_sendq)) {
DEQUEUE(&SrcAO->ao_sendq, SendReq, DGSendReq, dsr_q);
CTEFreeLock(&SrcAO->ao_lock, AOHandle);
} else {
CLEAR_AO_REQUEST(SrcAO, AO_SEND);
CTEFreeLock(&SrcAO->ao_lock, AOHandle);
return;
}
}
}
//* UDPRcv - Receive a UDP datagram.
//
// The routine called by IP when a UDP datagram arrived. We
// look up the port/local address pair in our address table,
// and deliver the data to a user if we find one. For broadcast
// frames we may deliver it to multiple users.
//
// Entry: IPContext - IPContext identifying physical i/f that
// received the data.
// Dest - IPAddr of destination.
// Src - IPAddr of source.
// LocalAddr - Local address of network which caused this to be
// received.
// SrcAddr - Address of local interface which received the packet
// IPH - IP Header.
// IPHLength - Bytes in IPH.
// RcvBuf - Pointer to receive buffer chain containing data.
// Size - Size in bytes of data received.
// IsBCast - Boolean indicator of whether or not this came in as
// a bcast.
// Protocol - Protocol this came in on - should be UDP.
// OptInfo - Pointer to info structure for received options.
//
// Returns: Status of reception. Anything other than IP_SUCCESS will cause
// IP to send a 'port unreachable' message.
//
IP_STATUS
UDPRcv(void *IPContext, IPAddr Dest, IPAddr Src, IPAddr LocalAddr,
IPAddr SrcAddr, IPHeader UNALIGNED * IPH, uint IPHLength, IPRcvBuf * RcvBuf,
uint IPSize, uchar IsBCast, uchar Protocol, IPOptInfo * OptInfo)
{
UDPHeader UNALIGNED *UH;
CTELockHandle AOTableHandle;
AddrObj *ReceiveingAO;
uint Size;
uchar DType;
BOOLEAN firsttime=TRUE;
DGDeliverInfo DeliverInfo = {0};
DType = (*LocalNetInfo.ipi_getaddrtype) (Src);
if (DType == DEST_LOCAL) {
DeliverInfo.Flags |= SRC_LOCAL;
}
// The following code relies on DEST_INVALID being a broadcast dest type.
// If this is changed the code here needs to change also.
if (IS_BCAST_DEST(DType)) {
if (!IP_ADDR_EQUAL(Src, NULL_IP_ADDR) || !IsBCast) {
UStats.us_inerrors++;
return IP_SUCCESS; // Bad src address.
}
}
UH = (UDPHeader *) RcvBuf->ipr_buffer;
// Check if IP payload contains enough bytes for a UDP header to be
// present.
if (IPSize < sizeof(UDPHeader)) {
UStats.us_inerrors++;
return IP_SUCCESS;
}
Size = (uint) (net_short(UH->uh_length));
if (Size < sizeof(UDPHeader)) {
UStats.us_inerrors++;
return IP_SUCCESS; // Size is too small.
}
if (Size != IPSize) {
// Size doesn't match IP datagram size. If the size is larger
// than the datagram, throw it away. If it's smaller, truncate the
// recv. buffer.
if (Size < IPSize) {
IPRcvBuf *TempBuf = RcvBuf;
uint TempSize = Size;
while (TempBuf != NULL) {
TempBuf->ipr_size = MIN(TempBuf->ipr_size, TempSize);
TempSize -= TempBuf->ipr_size;
TempBuf = TempBuf->ipr_next;
}
} else {
// Size is too big, toss it.
UStats.us_inerrors++;
return IP_SUCCESS;
}
}
if (UH->uh_xsum != 0) {
//let udpdeliver compute the checksum
DeliverInfo.Flags |= NEED_CHECKSUM;
}
// Set the rest of our DeliverInfo for UDPDeliver to consume.
//
DeliverInfo.Flags |= IsBCast ? IS_BCAST : 0;
DeliverInfo.LocalAddr = LocalAddr;
DeliverInfo.DestAddr = Dest;
#if TRACE_EVENT
DeliverInfo.DestPort = UH->uh_dest;
#endif
CTEGetLock(&AddrObjTableLock.Lock, &AOTableHandle);
//
// See if we are filtering the destination interface/port.
//
if (!SecurityFilteringEnabled ||
IsPermittedSecurityFilter(
SrcAddr,
IPContext,
PROTOCOL_UDP,
(ulong) net_short(UH->uh_dest)
)
) {
// Try to find an AddrObj to give this to. In the broadcast case, we
// may have to do this multiple times. If it isn't a broadcast, just
// get the best match and deliver it to them.
if (!IsBCast) {
ReceiveingAO = GetBestAddrObj(Dest, UH->uh_dest, PROTOCOL_UDP,
GAO_FLAG_CHECK_IF_LIST);
if (ReceiveingAO && (ReceiveingAO->ao_rcvdg == NULL)) {
AddrObj *tmpAO;
tmpAO = GetNextBestAddrObj(Dest, UH->uh_dest, PROTOCOL_UDP,
ReceiveingAO,
GAO_FLAG_CHECK_IF_LIST);
if (tmpAO != NULL) {
ReceiveingAO = tmpAO;
}
}
if (ReceiveingAO != NULL) {
UDPDeliver(ReceiveingAO, Src, UH->uh_src, RcvBuf, Size,
OptInfo, AOTableHandle, &DeliverInfo);
return IP_SUCCESS;
} else {
CTEFreeLock(&AddrObjTableLock.Lock, AOTableHandle);
//do the checksum and if it fails, just return IP_SUCCESS
if (UH->uh_xsum != 0) {
if (XsumRcvBuf(PHXSUM(Src, Dest, PROTOCOL_UDP, Size), RcvBuf) != 0xffff) {
UStats.us_inerrors++;
return IP_SUCCESS; // Checksum failed.
}
}
UStats.us_noports++;
return IP_GENERAL_FAILURE;
}
} else {
// This is a broadcast, we'll need to loop.
AOSearchContext Search;
uint IfIndex;
DType = (*LocalNetInfo.ipi_getaddrtype) (Dest);
//
// Get interface index, this will needed in multicast delivery.
//
IfIndex = (*LocalNetInfo.ipi_getifindexfromnte) (IPContext,IF_CHECK_NONE);
ReceiveingAO = GetFirstAddrObj(LocalAddr, UH->uh_dest, PROTOCOL_UDP,
&Search);
//
// If there is an AO corresponding to the address of the interface
// over which we got the packet, process it
//
if (ReceiveingAO != NULL) {
do {
//
// If the packet is broadcast we deliver it to all clients
// waiting on the dest. address (or INADDR_ANY) and port.
// If the pkt is mcast, we deliver it to all clients that
// are members of the mcast group and waiting on the dest
// port. NOTE, if loopback is disabled, we do not deliver
// to the guy who sent it
if ((DType != DEST_MCAST) ||
((DType == DEST_MCAST) &&
MCastAddrOnAO(ReceiveingAO, Dest, Src, IfIndex, LocalAddr))) {
UDPDeliver(ReceiveingAO, Src, UH->uh_src, RcvBuf, Size,
OptInfo, AOTableHandle, &DeliverInfo);
//turn off chksum check, since it would have been already
//computed once
CTEGetLock(&AddrObjTableLock.Lock, &AOTableHandle);
if (UH->uh_xsum && firsttime && !(DeliverInfo.Flags & NEED_CHECKSUM)){
break;
}
DeliverInfo.Flags &= ~NEED_CHECKSUM;
firsttime=FALSE;
}
ReceiveingAO = GetNextAddrObj(&Search);
} while (ReceiveingAO != NULL);
} else
UStats.us_noports++;
}
}
CTEFreeLock(&AddrObjTableLock.Lock, AOTableHandle);
return IP_SUCCESS;
}
//* UDPStatus - Handle a status indication.
//
// This is the UDP status handler, called by IP when a status event
// occurs. For most of these we do nothing. For certain severe status
// events we will mark the local address as invalid.
//
// Entry: StatusType - Type of status (NET or HW). NET status
// is usually caused by a received ICMP
// message. HW status indicate a HW
// problem.
// StatusCode - Code identifying IP_STATUS.
// OrigDest - If this is NET status, the original dest. of
// DG that triggered it.
// OrigSrc - " " " " " , the original src.
// Src - IP address of status originator (could be local
// or remote).
// Param - Additional information for status - i.e. the
// param field of an ICMP message.
// Data - Data pertaining to status - for NET status, this
// is the first 8 bytes of the original DG.
//
// Returns: Nothing
//
void
UDPStatus(uchar StatusType, IP_STATUS StatusCode, IPAddr OrigDest,
IPAddr OrigSrc, IPAddr Src, ulong Param, void *Data)
{
UDPHeader UNALIGNED *UH = (UDPHeader UNALIGNED *) Data;
CTELockHandle AOTableHandle, AOHandle;
AddrObj *AO;
IPAddr WildCardSrc = NULL_IP_ADDR;
if (StatusType == IP_NET_STATUS) {
ushort destport = UH->uh_dest;
ushort Srcport = UH->uh_src;
//KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UdpStatus: srcport %x OrigDest %x UHdest %x \n",Srcport,OrigDest, destport));
CTEGetLock(&AddrObjTableLock.Lock, &AOTableHandle);
AO = GetBestAddrObj(WildCardSrc, Srcport, PROTOCOL_UDP, 0);
if (AO == NULL) {
//Let us try with local addrss
AO = GetBestAddrObj(OrigSrc, Srcport, PROTOCOL_UDP, 0);
}
if (AO != NULL) {
CTEGetLock(&AO->ao_lock, &AOHandle);
CTEFreeLock(&AddrObjTableLock.Lock, AOTableHandle);
//KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UdpStatus: Found AO %x Ip stat %x\n", AO, StatusCode));
if (AO_VALID(AO) && (AO->ao_errorex != NULL)) {
PErrorEx ErrEvent = AO->ao_errorex;
PVOID ErrContext = AO->ao_errorexcontext;
TA_IP_ADDRESS *TAaddress;
REF_AO(AO);
CTEFreeLock(&AO->ao_lock, AOHandle);
TAaddress = ExAllocatePoolWithTag(NonPagedPool, sizeof(TA_IP_ADDRESS), 'uPCT');
if (TAaddress) {
TAaddress->TAAddressCount = 1;
TAaddress->Address[0].AddressType = TDI_ADDRESS_TYPE_IP;
TAaddress->Address[0].AddressLength = TDI_ADDRESS_LENGTH_IP;
TAaddress->Address[0].Address[0].sin_port = destport;
TAaddress->Address[0].Address[0].in_addr = OrigDest;
memset(TAaddress->Address[0].Address[0].sin_zero,
0,
sizeof(TAaddress->Address[0].Address[0].sin_zero));
(*ErrEvent) (ErrContext, MapIPError(StatusCode, TDI_DEST_UNREACHABLE), TAaddress);
ExFreePool(TAaddress);
}
//KdPrintEx((DPFLTR_TCPIP_ID, DPFLTR_INFO_LEVEL, "UdpStatus: Indicated error %x\n",MapIPError(StatusCode,TDI_DEST_UNREACHABLE) ));
DELAY_DEREF_AO(AO);
return;
}
CTEFreeLock(&AO->ao_lock, AOHandle);
} else {
CTEFreeLock(&AddrObjTableLock.Lock, AOTableHandle);
}
return;
}
// If this is a HW status, it could be because we've had an address go
// away.
if (StatusType == IP_HW_STATUS) {
if (StatusCode == IP_ADDR_DELETED) {
//
// An address has gone away. OrigDest identifies the address.
//
//
// Delete any security filters associated with this address
//
DeleteProtocolSecurityFilter(OrigDest, PROTOCOL_UDP);
return;
}
if (StatusCode == IP_ADDR_ADDED) {
//
// An address has materialized. OrigDest identifies the address.
// Data is a handle to the IP configuration information for the
// interface on which the address is instantiated.
//
AddProtocolSecurityFilter(OrigDest, PROTOCOL_UDP,
(NDIS_HANDLE) Data);
return;
}
}
}