|
|
//***************************************************************************
//
// Copyright (c) 1997-2001 Microsoft Corporation, All Rights Reserved
//
// ChStrArr.CPP
//
// Purpose: utility library version of MFC CStringArray
//
//***************************************************************************
/////////////////////////////////////////////////////////////////////////////
// NOTE: we allocate an array of 'm_nMaxSize' elements, but only
// the current size 'm_nSize' contains properly constructed
// objects.
/////////////////////////////////////////////////////////////////////////////
#include "precomp.h"
#pragma warning( disable : 4290 )
#include <chstring.h>
#include <chstrarr.h>
#include <AssertBreak.h>
extern LPCWSTR afxPchNil; extern const CHString& afxGetEmptyCHString();
#define afxEmptyCHString afxGetEmptyCHString()
/////////////////////////////////////////////////////////////////////////////
// Special implementations for CHStrings
// it is faster to bit-wise copy a CHString than to call an official
// constructor - since an empty CHString can be bit-wise copied
/////////////////////////////////////////////////////////////////////////////
static inline void ConstructElement(CHString* pNewData) { memcpy(pNewData, &afxEmptyCHString, sizeof(CHString)); }
/////////////////////////////////////////////////////////////////////////////
static inline void DestructElement(CHString* pOldData) { pOldData->~CHString(); }
/////////////////////////////////////////////////////////////////////////////
static inline void CopyElement(CHString* pSrc, CHString* pDest) { *pSrc = *pDest; }
/////////////////////////////////////////////////////////////////////////////
static void ConstructElements(CHString* pNewData, int nCount) { ASSERT_BREAK(nCount >= 0);
while (nCount--) { ConstructElement(pNewData); pNewData++; } }
/////////////////////////////////////////////////////////////////////////////
static void DestructElements(CHString* pOldData, int nCount) { ASSERT_BREAK(nCount >= 0);
while (nCount--) { DestructElement(pOldData); pOldData++; } }
/////////////////////////////////////////////////////////////////////////////
static void CopyElements(CHString* pDest, CHString* pSrc, int nCount) { ASSERT_BREAK(nCount >= 0);
while (nCount--) { *pDest = *pSrc; ++pDest; ++pSrc; } }
/////////////////////////////////////////////////////////////////////////////
CHStringArray::CHStringArray() : m_pData ( NULL ) , m_nSize ( 0 ) , m_nMaxSize ( 0 ) , m_nGrowBy ( 0 )
{ }
/////////////////////////////////////////////////////////////////////////////
CHStringArray::~CHStringArray() { DestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; }
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::SetSize(int nNewSize, int nGrowBy) { ASSERT_BREAK(nNewSize >= 0);
if (nGrowBy != -1) { m_nGrowBy = nGrowBy; // set new size
}
if (nNewSize == 0) { // shrink to nothing
DestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; m_pData = NULL; m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { #ifdef SIZE_T_MAX
ASSERT_BREAK(nNewSize <= SIZE_T_MAX/sizeof(CHString)); // no overflow
#endif
// create one with exact size
m_pData = (CHString*) new BYTE[nNewSize * sizeof(CHString)]; if ( m_pData ) { ConstructElements(m_pData, nNewSize);
m_nSize = m_nMaxSize = nNewSize; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } else if (nNewSize <= m_nMaxSize) { // it fits
if (nNewSize > m_nSize) { // initialize the new elements
ConstructElements(&m_pData[m_nSize], nNewSize-m_nSize);
} else if (m_nSize > nNewSize) // destroy the old elements
{ DestructElements(&m_pData[nNewSize], m_nSize-nNewSize); }
m_nSize = nNewSize; } else { // otherwise, grow array
int nGrowBy = m_nGrowBy; if (nGrowBy == 0) { // heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8)); }
int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) { nNewMax = m_nMaxSize + nGrowBy; // granularity
} else { nNewMax = nNewSize; // no slush
}
ASSERT_BREAK(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT_BREAK(nNewMax <= SIZE_T_MAX/sizeof(CHString)); // no overflow
#endif
CHString* pNewData = (CHString*) new BYTE[nNewMax * sizeof(CHString)]; if ( pNewData ) { // copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(CHString));
// construct remaining elements
ASSERT_BREAK(nNewSize > m_nSize);
ConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData; m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } }
/////////////////////////////////////////////////////////////////////////////
int CHStringArray::Append(const CHStringArray& src) { ASSERT_BREAK(this != &src); // cannot append to itself
int nOldSize = m_nSize; SetSize(m_nSize + src.m_nSize);
CopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize);
return nOldSize; }
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::Copy(const CHStringArray& src) { ASSERT_BREAK(this != &src); // cannot append to itself
SetSize(src.m_nSize);
CopyElements(m_pData, src.m_pData, src.m_nSize);
}
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::FreeExtra() { if (m_nSize != m_nMaxSize) { // shrink to desired size
#ifdef SIZE_T_MAX
ASSERT_BREAK(m_nSize <= SIZE_T_MAX/sizeof(CHString)); // no overflow
#endif
CHString* pNewData = NULL; if (m_nSize != 0) { pNewData = (CHString*) new BYTE[m_nSize * sizeof(CHString)]; if ( pNewData ) { // copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(CHString)); } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } }
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData; m_pData = pNewData; m_nMaxSize = m_nSize; } }
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::SetAtGrow(int nIndex, LPCWSTR newElement) { ASSERT_BREAK(nIndex >= 0);
if (nIndex >= m_nSize) { SetSize(nIndex+1); }
m_pData[nIndex] = newElement; }
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::InsertAt(int nIndex, LPCWSTR newElement, int nCount) { ASSERT_BREAK(nIndex >= 0); // will expand to meet need
ASSERT_BREAK(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize) { // adding after the end of the array
SetSize(nIndex + nCount); // grow so nIndex is valid
} else { // inserting in the middle of the array
int nOldSize = m_nSize; SetSize(m_nSize + nCount); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(CHString));
// re-init slots we copied from
ConstructElements(&m_pData[nIndex], nCount);
}
// insert new value in the gap
ASSERT_BREAK(nIndex + nCount <= m_nSize); while (nCount--) { m_pData[nIndex++] = newElement; } }
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::RemoveAt(int nIndex, int nCount) { ASSERT_BREAK(nIndex >= 0); ASSERT_BREAK(nCount >= 0); ASSERT_BREAK(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
DestructElements(&m_pData[nIndex], nCount);
if (nMoveCount) { memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(CHString)); }
m_nSize -= nCount; }
/////////////////////////////////////////////////////////////////////////////
void CHStringArray::InsertAt(int nStartIndex, CHStringArray* pNewArray) { ASSERT_BREAK(pNewArray != NULL); ASSERT_BREAK(nStartIndex >= 0);
if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()); for (int i = 0; i < pNewArray->GetSize(); i++) { SetAt(nStartIndex + i, pNewArray->GetAt(i)); } } }
#if (defined DEBUG || defined _DEBUG)
CHString CHStringArray::GetAt(int nIndex) const { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; }
void CHStringArray::SetAt(int nIndex, LPCWSTR newElement) { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize); m_pData[nIndex] = newElement; }
CHString& CHStringArray::ElementAt(int nIndex) { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; } #endif
|