|
|
/*++
Copyright (C) 1997-2001 Microsoft Corporation
Module Name:
WINNTSEC.CPP
Abstract:
Generic wrapper classes for NT security objects.
Documention on class members is in WINNTSEC.CPP. Inline members are commented in this file.
History:
raymcc 08-Jul-97 Created.
--*/
#include "precomp.h"
#include <stdio.h>
#include <io.h>
#include <errno.h>
#include <winntsec.h>
#include <tchar.h>
#include <genutils.h>
#include "arena.h"
#include "reg.h"
#include "wbemutil.h"
#include "arrtempl.h"
#include <cominit.h>
extern "C" { #include <lmaccess.h>
#include <lmapibuf.h>
#include <lmerr.h>
};
//***************************************************************************
//
// CNtSid::GetSize
//
// Returns the size of the SID in bytes.
//
//***************************************************************************
// ok
DWORD CNtSid::GetSize() { if (m_pSid == 0 || !IsValidSid(m_pSid)) return 0;
return GetLengthSid(m_pSid); }
//***************************************************************************
//
// CNtSid Copy Constructor
//
//***************************************************************************
// ok
CNtSid::CNtSid(CNtSid &Src) { m_pSid = 0; m_dwStatus = 0; m_pMachine = 0; *this = Src; }
//***************************************************************************
//
// CNtSid Copy Constructor
//
//***************************************************************************
// ok
CNtSid::CNtSid(SidType st) { m_pSid = 0; m_dwStatus = InternalError; m_pMachine = 0; if(st == CURRENT_USER ||st == CURRENT_THREAD) { HANDLE hToken; if(st == CURRENT_USER) { if(!OpenProcessToken(GetCurrentProcess(), TOKEN_READ, &hToken)) return; } else { if(!OpenThreadToken(GetCurrentThread(), TOKEN_QUERY, TRUE, &hToken)) return; }
// Get the user sid
// ================
TOKEN_USER tu; DWORD dwLen = 0; GetTokenInformation(hToken, TokenUser, &tu, sizeof(tu), &dwLen);
if(dwLen == 0) { CloseHandle(hToken); return; }
BYTE* pTemp = new BYTE[dwLen]; if (!pTemp) { CloseHandle(hToken); return; }
DWORD dwRealLen = dwLen; if(!GetTokenInformation(hToken, TokenUser, pTemp, dwRealLen, &dwLen)) { CloseHandle(hToken); delete [] pTemp; return; }
CloseHandle(hToken);
// Make a copy of the SID
// ======================
PSID pSid = ((TOKEN_USER*)pTemp)->User.Sid; DWORD dwSidLen = GetLengthSid(pSid); m_pSid = new BYTE[dwSidLen]; if (m_pSid) CopySid(dwSidLen, m_pSid, pSid); delete [] pTemp; m_dwStatus = 0; } return; }
//***************************************************************************
//
// CNtSid::CopyTo
//
// An unchecked copy of the internal SID to the destination pointer.
//
// Parameters:
// <pDestination> points to the buffer to which to copy the SID. The
// buffer must be large enough to hold the SID.
//
// Return value:
// TRUE on success, FALSE on failure.
//
//***************************************************************************
// ok
BOOL CNtSid::CopyTo(PSID pDestination) { if (m_pSid == 0 || m_dwStatus != NoError) return FALSE;
DWORD dwLen = GetLengthSid(m_pSid); memcpy(pDestination, m_pSid, dwLen);
return TRUE; }
//***************************************************************************
//
// CNtSid assignment operator
//
//***************************************************************************
// ok
CNtSid & CNtSid::operator =(CNtSid &Src) { if (m_pMachine != 0) { delete [] m_pMachine; m_pMachine = 0; }
if (m_pSid != 0) { delete [] m_pSid; m_pSid = 0; }
if (Src.m_pSid == 0) { m_pSid = 0; m_dwStatus = NullSid; return *this; }
if (!IsValidSid(Src.m_pSid)) { m_pSid = 0; m_dwStatus = InvalidSid; return *this; }
// If here, the source has a real SID.
// ===================================
DWORD dwLen = GetLengthSid(Src.m_pSid);
m_pSid = (PSID) new BYTE [dwLen]; if (!m_pSid) { m_dwStatus = InternalError; return *this; }
ZeroMemory(m_pSid, dwLen);
if (!CopySid(dwLen, m_pSid, Src.m_pSid)) { delete [] m_pSid; m_pSid = NULL; m_dwStatus = InternalError; return *this; }
if (Src.m_pMachine) { m_pMachine = new wchar_t[wcslen(Src.m_pMachine) + 1]; if (!m_pMachine) { delete [] m_pSid; m_pSid = NULL; m_dwStatus = InternalError; return *this; }
wcscpy(m_pMachine, Src.m_pMachine); }
m_dwStatus = NoError; return *this; }
//***************************************************************************
//
// CNtSid comparison operator
//
//***************************************************************************
int CNtSid::operator ==(CNtSid &Comparand) { if (m_pSid == 0 && Comparand.m_pSid == 0) return 1; if (m_pSid == 0 || Comparand.m_pSid == 0) return 0;
return EqualSid(m_pSid, Comparand.m_pSid); }
//***************************************************************************
//
// CNtSid::CNtSid
//
// Constructor which builds a SID directly from a user or group name.
// If the machine is available, then its name can be used to help
// distinguish the same name in different SAM databases (domains, etc).
//
// Parameters:
//
// <pUser> The desired user or group.
//
// <pMachine> Points to a machine name with or without backslashes,
// or else is NULL, in which case the current machine, domain,
// and trusted domains are searched for a match.
//
// After construction, call GetStatus() to determine if the constructor
// succeeded. NoError is expected.
//
//***************************************************************************
// ok
CNtSid::CNtSid( LPWSTR pUser, LPWSTR pMachine ) { DWORD dwRequired = 0; DWORD dwDomRequired = 0; LPWSTR pszDomain = NULL; m_pSid = 0; m_pMachine = 0;
if (pMachine) { m_pMachine = new wchar_t[wcslen(pMachine) + 1]; if (!m_pMachine) { m_dwStatus = Failed; return; } wcscpy(m_pMachine, pMachine); }
BOOL bRes = LookupAccountNameW( m_pMachine, pUser, m_pSid, &dwRequired, pszDomain, &dwDomRequired, &m_snu );
DWORD dwLastErr = GetLastError();
if (dwLastErr != ERROR_INSUFFICIENT_BUFFER) { m_pSid = 0; if (dwLastErr == ERROR_ACCESS_DENIED) m_dwStatus = AccessDenied; else m_dwStatus = InvalidSid; return; }
m_pSid = (PSID) new BYTE [dwRequired]; if (!m_pSid) { m_dwStatus = Failed; return; }
ZeroMemory(m_pSid, dwRequired); pszDomain = new wchar_t[dwDomRequired + 1]; if (!pszDomain) { delete [] m_pSid; m_pSid = 0; m_dwStatus = Failed; return; }
bRes = LookupAccountNameW( pMachine, pUser, m_pSid, &dwRequired, pszDomain, &dwDomRequired, &m_snu );
if (!bRes || !IsValidSid(m_pSid)) { delete [] m_pSid; delete [] pszDomain; m_pSid = 0; m_dwStatus = InvalidSid; return; }
delete [] pszDomain; // We never really needed this
m_dwStatus = NoError; }
//***************************************************************************
//
// CNtSid::CNtSid
//
// Constructs a CNtSid object directly from an NT SID. The SID is copied,
// so the caller retains ownership.
//
// Parameters:
// <pSrc> The source SID upon which to base the object.
//
// Call GetStatus() after construction to ensure the object was
// constructed correctly. NoError is expected.
//
//***************************************************************************
// ok
CNtSid::CNtSid(PSID pSrc) { m_pMachine = 0; m_pSid = 0; m_dwStatus = NoError;
if (!IsValidSid(pSrc)) { m_dwStatus = InvalidSid; return; }
DWORD dwLen = GetLengthSid(pSrc);
m_pSid = (PSID) new BYTE [dwLen]; // Check for mem. alloc. failure
// NT RAID#: 158600 [marioh]
if ( m_pSid == NULL ) { m_dwStatus = Failed; return; }
ZeroMemory(m_pSid, dwLen);
if (!CopySid(dwLen, m_pSid, pSrc)) { delete [] m_pSid; m_dwStatus = InternalError; return; } }
//***************************************************************************
//
// CNtSid::GetInfo
//
// Returns information about the SID.
//
// Parameters:
// <pRetAccount> Receives a UNICODE string containing the account
// name (user or group). The caller must use operator
// delete to free the memory. This can be NULL if
// this information is not required.
// <pRetDomain> Returns a UNICODE string containing the domain
// name in which the account resides. The caller must
// use operator delete to free the memory. This can be
// NULL if this information is not required.
// <pdwUse> Points to a DWORD to receive information about the name.
// Possible return values are defined under SID_NAME_USE
// in NT SDK documentation. Examples are
// SidTypeUser, SidTypeGroup, etc. See CNtSid::Dump()
// for an example.
//
// Return values:
// NoError, InvalidSid, Failed
//
//***************************************************************************
// ok
int CNtSid::GetInfo( LPWSTR *pRetAccount, // Account, use operator delete
LPWSTR *pRetDomain, // Domain, use operator delete
DWORD *pdwUse // See SID_NAME_USE for values
) { if (pRetAccount) *pRetAccount = 0; if (pRetDomain) *pRetDomain = 0; if (pdwUse) *pdwUse = 0;
if (!m_pSid || !IsValidSid(m_pSid)) return InvalidSid;
DWORD dwNameLen = 0; DWORD dwDomainLen = 0; LPWSTR pUser = 0; LPWSTR pDomain = 0; SID_NAME_USE Use;
// Do the first lookup to get the buffer sizes required.
// =====================================================
BOOL bRes = LookupAccountSidW( m_pMachine, m_pSid, pUser, &dwNameLen, pDomain, &dwDomainLen, &Use );
DWORD dwLastErr = GetLastError();
if (dwLastErr != ERROR_INSUFFICIENT_BUFFER) { return Failed; }
// Allocate the required buffers and look them up again.
// =====================================================
pUser = new wchar_t[dwNameLen + 1]; if (!pUser) return Failed;
pDomain = new wchar_t[dwDomainLen + 1]; if (!pDomain) { delete pUser; return Failed; }
bRes = LookupAccountSidW( m_pMachine, m_pSid, pUser, &dwNameLen, pDomain, &dwDomainLen, &Use );
if (!bRes) { delete [] pUser; delete [] pDomain; return Failed; }
if (pRetAccount) *pRetAccount = pUser; else delete [] pUser; if (pRetDomain) *pRetDomain = pDomain; else delete [] pDomain; if (pdwUse) *pdwUse = Use;
return NoError; }
//***************************************************************************
//
// CNtSid::Dump
//
// Dumps the SID to the console outuput for debugging.
//
//***************************************************************************
// ok
void CNtSid::Dump() { LPWSTR pUser, pDomain; DWORD dwUse;
printf("---SID DUMP---\n");
if (m_pSid == 0) { printf("<NULL>\n"); return; }
if (!IsValidSid(m_pSid)) { printf("<Invalid Sid>\n"); return; }
int nRes = GetInfo(&pUser, &pDomain, &dwUse);
if (nRes != NoError) return;
// Print out SID in SID-style notation.
// ====================================
// Print out human-readable info.
// ===============================
printf("User = %S Domain = %S Type = ", pUser, pDomain);
delete [] pUser; delete [] pDomain;
switch (dwUse) { case SidTypeUser: printf("SidTypeUser\n"); break;
case SidTypeGroup: printf("SidTypeGroup\n"); break;
case SidTypeDomain: printf("SidTypeDomain\n"); break;
case SidTypeAlias: printf("SidTypeAlias\n"); break;
case SidTypeWellKnownGroup: printf("SidTypeWellKnownGroup\n"); break;
case SidTypeDeletedAccount: printf("SidTypeDeletedAccount\n"); break;
case SidTypeUnknown: printf("SidTypeUnknown\n"); break;
case SidTypeInvalid: default: printf("SidTypeInvalid\n"); } }
//***************************************************************************
//
// CNtSid destructor
//
//***************************************************************************
CNtSid::~CNtSid() { if (m_pSid) delete [] m_pSid; if (m_pMachine) delete [] m_pMachine; }
//***************************************************************************
//
// CNtSid::GetTextSid
//
// Converts the sid to text form. The caller should passin a 130 character
// buffer.
//
//***************************************************************************
BOOL CNtSid::GetTextSid(LPTSTR pszSidText, LPDWORD dwBufferLen) { PSID_IDENTIFIER_AUTHORITY psia; DWORD dwSubAuthorities = 0; DWORD dwSidRev=SID_REVISION; DWORD dwCounter = 0; DWORD dwSidSize = 0;
// test if Sid is valid
if(m_pSid == 0 || !IsValidSid(m_pSid)) return FALSE;
// obtain SidIdentifierAuthority
psia=GetSidIdentifierAuthority(m_pSid);
// obtain sidsubauthority count
PUCHAR p = GetSidSubAuthorityCount(m_pSid); dwSubAuthorities = *p;
// compute buffer length
// S-SID_REVISION- + identifierauthority- + subauthorities- + NULL
dwSidSize=(15 + 12 + (12 * dwSubAuthorities) + 1) * sizeof(TCHAR);
// check provided buffer length. If not large enough, indicate proper size.
if (*dwBufferLen < dwSidSize) { *dwBufferLen = dwSidSize; return FALSE; }
// prepare S-SID_REVISION-
dwSidSize=wsprintf(pszSidText, TEXT("S-%lu-"), dwSidRev );
// prepare SidIdentifierAuthority
if ( (psia->Value[0] != 0) || (psia->Value[1] != 0) ) { dwSidSize+=wsprintf(pszSidText + lstrlen(pszSidText), TEXT("0x%02hx%02hx%02hx%02hx%02hx%02hx"), (USHORT)psia->Value[0], (USHORT)psia->Value[1], (USHORT)psia->Value[2], (USHORT)psia->Value[3], (USHORT)psia->Value[4], (USHORT)psia->Value[5]); } else { dwSidSize+=wsprintf(pszSidText + lstrlen(pszSidText), TEXT("%lu"), (ULONG)(psia->Value[5] ) + (ULONG)(psia->Value[4] << 8) + (ULONG)(psia->Value[3] << 16) + (ULONG)(psia->Value[2] << 24) ); }
// loop through SidSubAuthorities
for (dwCounter=0 ; dwCounter < dwSubAuthorities ; dwCounter++) { dwSidSize+=wsprintf(pszSidText + dwSidSize, TEXT("-%lu"), *GetSidSubAuthority(m_pSid, dwCounter) ); } return TRUE; }
//***************************************************************************
//
// CNtAce::CNtAce
//
// Constructor which directly builds the ACE based on a user, access mask
// and flags without a need to build an explicit SID.
//
//
// Parameters:
// <AccessMask> A WINNT ACCESS_MASK which specifies the permissions
// the user should have to the object being secured.
// See ACCESS_MASK in NT SDK documentation.
// <dwAceType> One of the following:
// ACCESS_ALLOWED_ACE_TYPE
// ACCESS_DENIED_ACE_TYPE
// ACCESS_AUDIT_ACE_TYPE
// See ACE_HEADER in NT SDK documentation.
// <dwAceFlags> Of of the ACE propation flags. See ACE_HEADER
// in NT SDK documentation for legal values.
// <sid> CNtSid specifying the user or group for which the ACE is being
// created.
//
// After construction, call GetStatus() to verify that the ACE
// is valid. NoError is expected.
//
//***************************************************************************
// ok
CNtAce::CNtAce( ACCESS_MASK AccessMask, DWORD dwAceType, DWORD dwAceFlags, CNtSid & Sid ) { m_pAce = 0; m_dwStatus = 0;
// If the SID is invalid, the ACE will be as well.
// ===============================================
if (Sid.GetStatus() != CNtSid::NoError) { m_dwStatus = InvalidAce; return; }
// Compute the size of the ACE.
// ============================
DWORD dwSidLength = Sid.GetSize();
DWORD dwTotal = dwSidLength + sizeof(GENERIC_ACE) - 4;
m_pAce = (PGENERIC_ACE) new BYTE[dwTotal]; if (m_pAce) { ZeroMemory(m_pAce, dwTotal);
// Build up the ACE info.
// ======================
m_pAce->Header.AceType = BYTE(dwAceType); m_pAce->Header.AceFlags = BYTE(dwAceFlags); m_pAce->Header.AceSize = WORD(dwTotal); m_pAce->Mask = AccessMask;
BOOL bRes = Sid.CopyTo(PSID(&m_pAce->SidStart));
if (!bRes) { delete m_pAce; m_pAce = 0; m_dwStatus = InvalidAce; return; }
m_dwStatus = NoError; } else m_dwStatus = InternalError; }
//***************************************************************************
//
// CNtAce::CNtAce
//
// Constructor which directly builds the ACE based on a user, access mask
// and flags without a need to build an explicit SID.
//
//
// Parameters:
// <AccessMask> A WINNT ACCESS_MASK which specifies the permissions
// the user should have to the object being secured.
// See ACCESS_MASK in NT SDK documentation.
// <dwAceType> One of the following:
// ACCESS_ALLOWED_ACE_TYPE
// ACCESS_DENIED_ACE_TYPE
// ACCESS_AUDIT_ACE_TYPE
// See ACE_HEADER in NT SDK documentation.
// <dwAceFlags> Of of the ACE propation flags. See ACE_HEADER
// in NT SDK documentation for legal values.
// <pUser> The user or group for which the ACE is being
// created.
// <pMachine> If NULL, the current machine, domain, and trusted
// domains are searched for a match. If not NULL,
// can point to a UNICODE machine name (with or without
// leading backslashes) which contains the account.
//
// After construction, call GetStatus() to verify that the ACE
// is valid. NoError is expected.
//
//***************************************************************************
// ok
CNtAce::CNtAce( ACCESS_MASK AccessMask, DWORD dwAceType, DWORD dwAceFlags, LPWSTR pUser, LPWSTR pMachine ) { m_pAce = 0; m_dwStatus = 0;
// Create the SID of the user.
// ===========================
CNtSid Sid(pUser, pMachine);
// If the SID is invalid, the ACE will be as well.
// ===============================================
if (Sid.GetStatus() != CNtSid::NoError) { m_dwStatus = InvalidAce; return; }
// Compute the size of the ACE.
// ============================
DWORD dwSidLength = Sid.GetSize();
DWORD dwTotal = dwSidLength + sizeof(GENERIC_ACE) - 4;
m_pAce = (PGENERIC_ACE) new BYTE[dwTotal]; if ( m_pAce == NULL ) { m_dwStatus = InternalError; return; } ZeroMemory(m_pAce, dwTotal);
// Build up the ACE info.
// ======================
m_pAce->Header.AceType = BYTE(dwAceType); m_pAce->Header.AceFlags = BYTE(dwAceFlags); m_pAce->Header.AceSize = WORD(dwTotal); m_pAce->Mask = AccessMask;
BOOL bRes = Sid.CopyTo(PSID(&m_pAce->SidStart));
if (!bRes) { delete m_pAce; m_pAce = 0; m_dwStatus = InvalidAce; return; }
m_dwStatus = NoError; }
//***************************************************************************
//
// CNtAce::GetAccessMask
//
// Returns the ACCESS_MASK of the ACe.
//
//***************************************************************************
ACCESS_MASK CNtAce::GetAccessMask() { if (m_pAce == 0) return 0; return m_pAce->Mask; }
//***************************************************************************
//
// CNtAce::GetSerializedSize
//
// Returns the number of bytes needed to store this
//
//***************************************************************************
DWORD CNtAce::GetSerializedSize() { if (m_pAce == 0) return 0; return m_pAce->Header.AceSize; }
//***************************************************************************
//
// CNtAce::DumpAccessMask
//
// A helper function for CNtAce::Dump(). Illustrates the values
// that the ACCESS_MASK for the ACE can take on.
//
//***************************************************************************
// ok
void CNtAce::DumpAccessMask() { if (m_pAce == 0) return;
ACCESS_MASK AccessMask = m_pAce->Mask;
printf("Access Mask = 0x%X\n", AccessMask); printf(" User Portion = 0x%X\n", AccessMask & 0xFFFF);
if (AccessMask & DELETE) printf(" DELETE\n"); if (AccessMask & READ_CONTROL) printf(" READ_CONTROL\n"); if (AccessMask & WRITE_DAC) printf(" WRITE_DAC\n"); if (AccessMask & WRITE_OWNER) printf(" WRITE_OWNER\n"); if (AccessMask & SYNCHRONIZE) printf(" SYNCHRONIZE\n"); if (AccessMask & ACCESS_SYSTEM_SECURITY) printf(" ACCESS_SYSTEM_SECURITY\n"); if (AccessMask & MAXIMUM_ALLOWED) printf(" MAXIMUM_ALLOWED\n"); if (AccessMask & GENERIC_ALL) printf(" GENERIC_ALL\n"); if (AccessMask & GENERIC_EXECUTE) printf(" GENERIC_EXECUTE\n"); if (AccessMask & GENERIC_READ) printf(" GENERIC_READ\n"); if (AccessMask & GENERIC_WRITE) printf(" GENERIC_WRITE\n"); }
//***************************************************************************
//
// CNtAce::GetSid
//
// Returns a copy of the CNtSid object which makes up the ACE.
//
// Return value:
// A newly allocated CNtSid which represents the user or group
// referenced in the ACE. The caller must use operator delete to free
// the memory.
//
//***************************************************************************
// ok
CNtSid* CNtAce::GetSid() { if (m_pAce == 0) return 0;
PSID pSid = 0;
pSid = &m_pAce->SidStart;
if (!IsValidSid(pSid)) return 0;
return new CNtSid(pSid); }
//***************************************************************************
//
// CNtAce::GetSid
//
// Gets the SID in an alternate manner, by assigning to an existing
// object instead of returning a dynamically allocated one.
//
// Parameters:
// <Dest> A reference to a CNtSid to receive the SID.
//
// Return value:
// TRUE on successful assignment, FALSE on failure.
//
//***************************************************************************
BOOL CNtAce::GetSid(CNtSid &Dest) { CNtSid *pSid = GetSid(); if (pSid == 0) return FALSE;
Dest = *pSid; delete pSid; return TRUE; }
//***************************************************************************
//
// CNtAce::Dump
//
// Dumps the current ACE to the console for debugging purposes.
// Illustrates the structure of the ACE and the values the different
// fields can take on.
//
//***************************************************************************
// ok
void CNtAce::Dump(int iAceNum) { if(iAceNum != -1) printf("\n---ACE DUMP FOR ACE #%d---\n", iAceNum); else printf("\n---ACE DUMP---\n");
printf("Ace Type = ");
if (m_pAce == 0) { printf("NULL ACE\n"); return; }
switch (m_pAce->Header.AceType) { case ACCESS_ALLOWED_ACE_TYPE: printf("ACCESS_ALLOWED_ACE_TYPE\n"); break;
case ACCESS_DENIED_ACE_TYPE: printf("ACCESS_DENIED_ACE_TYPE\n"); break;
case SYSTEM_AUDIT_ACE_TYPE: printf("SYSTEM_AUDIT_ACE_TYPE\n"); break;
default: printf("INVALID ACE\n"); break; }
// Dump ACE flags.
// ===============
printf("ACE FLAGS = ");
if (m_pAce->Header.AceFlags & INHERITED_ACE) printf("INHERITED_ACE "); if (m_pAce->Header.AceFlags & CONTAINER_INHERIT_ACE) printf("CONTAINER_INHERIT_ACE "); if (m_pAce->Header.AceFlags & INHERIT_ONLY_ACE) printf("INHERIT_ONLY_ACE "); if (m_pAce->Header.AceFlags & NO_PROPAGATE_INHERIT_ACE) printf("NO_PROPAGATE_INHERIT_ACE "); if (m_pAce->Header.AceFlags & OBJECT_INHERIT_ACE) printf("OBJECT_INHERIT_ACE "); if (m_pAce->Header.AceFlags & FAILED_ACCESS_ACE_FLAG) printf(" FAILED_ACCESS_ACE_FLAG"); if (m_pAce->Header.AceFlags & SUCCESSFUL_ACCESS_ACE_FLAG) printf(" SUCCESSFUL_ACCESS_ACE_FLAG"); printf("\n");
// Dump the SID.
// =============
CNtSid *pSid = GetSid(); if (pSid) { pSid->Dump(); delete pSid; }
DumpAccessMask(); }
//***************************************************************************
//
// CNtAce::CNtAce
//
// Alternate constructor which uses a normal NT ACE as a basis for
// object construction.
//
// Parameters:
// <pAceSrc> A read-only pointer to the source ACE upon which to
// base object construction.
//
// After construction, GetStatus() can be used to determine if the
// object constructed properly. NoError is expected.
//
//***************************************************************************
// ok
CNtAce::CNtAce(PGENERIC_ACE pAceSrc) { m_dwStatus = NoError;
if (pAceSrc == 0) { m_dwStatus = NullAce; m_pAce = 0; }
m_pAce = (PGENERIC_ACE) new BYTE[pAceSrc->Header.AceSize]; if ( m_pAce == NULL ) { m_dwStatus = InternalError; return; } ZeroMemory(m_pAce, pAceSrc->Header.AceSize); memcpy(m_pAce, pAceSrc, pAceSrc->Header.AceSize); }
//***************************************************************************
//
// CNtAce copy constructor.
//
//***************************************************************************
// ok
CNtAce::CNtAce(CNtAce &Src) { m_dwStatus = NoError; m_pAce = 0; *this = Src; }
//***************************************************************************
//
// CNtAce assignment operator.
//
//***************************************************************************
// ok
CNtAce &CNtAce::operator =(CNtAce &Src) { if (m_pAce != 0) delete m_pAce;
if (Src.m_pAce == 0) { m_pAce = 0; m_dwStatus = NullAce; return *this; }
m_pAce = (PGENERIC_ACE) new BYTE[Src.m_pAce->Header.AceSize]; if(m_pAce == NULL) { m_dwStatus = InternalError; } else { ZeroMemory(m_pAce, Src.m_pAce->Header.AceSize); memcpy(m_pAce, Src.m_pAce, Src.m_pAce->Header.AceSize); m_dwStatus = Src.m_dwStatus; } return *this; }
//***************************************************************************
//
// CNtAce destructor
//
//***************************************************************************
// ok
CNtAce::~CNtAce() { if (m_pAce) delete m_pAce; }
//***************************************************************************
//
// CNtAce::GetType
//
// Gets the Ace Type as defined under the NT SDK documentation for
// ACE_HEADER.
//
// Return value:
// Returns ACCESS_ALLOWED_ACE_TYPE, ACCESS_DENIED_ACE_TYPE, or
// SYSTEM_AUDIT_ACE_TYPE. Returns -1 on error, such as a null ACE.
//
// Returning -1 (or an analog) is required as an error code because
// ACCESS_ALLOWED_ACE_TYPE is defined to be zero.
//
//***************************************************************************
// ok
int CNtAce::GetType() { if (m_pAce == 0 || m_dwStatus != NoError) return -1; return m_pAce->Header.AceType; }
//***************************************************************************
//
// CNtAce::GetFlags
//
// Gets the Ace Flag as defined under the NT SDK documentation for
// ACE_HEADER.
//
// Return value:
// Returning -1 if error, other wise the flags.
//
//***************************************************************************
int CNtAce::GetFlags() { if (m_pAce == 0 || m_dwStatus != NoError) return -1; return m_pAce->Header.AceFlags; }
//***************************************************************************
//
// CNtAce::GetFullUserName
//
// Gets the domain\user name.
//
//***************************************************************************
HRESULT CNtAce::GetFullUserName(WCHAR * pBuff, DWORD dwSize) { CNtSid *pSid = GetSid(); if(pSid == NULL) return WBEM_E_OUT_OF_MEMORY; CDeleteMe<CNtSid> d0(pSid); DWORD dwJunk; LPWSTR pRetAccount = NULL, pRetDomain = NULL; pSid->GetInfo(&pRetAccount, &pRetDomain,&dwJunk); CDeleteMe<WCHAR> d1(pRetAccount); CDeleteMe<WCHAR> d2(pRetDomain); WCHAR wTemp[256]; wTemp[0] = 0; if(pRetDomain && wcslen(pRetDomain) > 0) { wcscpy(wTemp, pRetDomain); wcscat(wTemp, L"|"); } wcscat(wTemp, pRetAccount); wcsncpy(pBuff, wTemp, dwSize-1); return S_OK; }
HRESULT CNtAce::GetFullUserName2(WCHAR ** pBuff) { CNtSid *pSid = GetSid(); if(pSid == NULL) return WBEM_E_OUT_OF_MEMORY; CDeleteMe<CNtSid> d0(pSid); DWORD dwJunk; LPWSTR pRetAccount = NULL, pRetDomain = NULL; if(0 != pSid->GetInfo(&pRetAccount, &pRetDomain,&dwJunk)) return WBEM_E_FAILED;
CDeleteMe<WCHAR> d1(pRetAccount); CDeleteMe<WCHAR> d2(pRetDomain);
int iLen = 3; if(pRetAccount) iLen += wcslen(pRetAccount); if(pRetDomain) iLen += wcslen(pRetDomain); (*pBuff) = new WCHAR[iLen]; if((*pBuff) == NULL) return WBEM_E_OUT_OF_MEMORY;
(*pBuff)[0] = 0; if(pRetDomain && wcslen(pRetDomain) > 0) wcscpy(*pBuff, pRetDomain); else wcscpy(*pBuff, L"."); wcscat(*pBuff, L"|"); wcscat(*pBuff, pRetAccount); return S_OK;
} //***************************************************************************
//
// CNtAce::Serialize
//
// Serializes the ace.
//
//***************************************************************************
bool CNtAce::Serialize(BYTE * pData) { if(m_pAce == NULL) return false; DWORD dwSize = m_pAce->Header.AceSize; memcpy((void *)pData, (void *)m_pAce, dwSize); return true; }
//***************************************************************************
//
// CNtAce::Deserialize
//
// Deserializes the ace. Normally this isnt called since the
// CNtAce(PGENERIC_ACE pAceSrc) constructor is fine. However, this is
// used for the case where the db was created on win9x and we are now
// running on nt. In that case, the format is the same as outlined in
// C9XAce::Serialize
//
//***************************************************************************
bool CNtAce::Deserialize(BYTE * pData) { BYTE * pNext; pNext = pData + 2*(wcslen((LPWSTR)pData) + 1); DWORD * pdwData = (DWORD *)pNext; DWORD dwFlags, dwType, dwAccess; dwFlags = *pdwData; pdwData++; dwType = *pdwData; pdwData++; dwAccess = *pdwData; pdwData++; CNtAce temp(dwAccess, dwType, dwFlags, (LPWSTR)pData); *this = temp; return true;
}
//***************************************************************************
//
// CNtAcl::CNtAcl
//
// Constructs an empty ACL with a user-specified size.
//
// Parameters:
// <dwInitialSize> Defaults to 128. Recommended values are 128 or
// higher in powers of two.
//
// After construction, GetStatus() should be called to verify
// the ACL initialized properly. Expected value is NoError.
//
//***************************************************************************
// ok
CNtAcl::CNtAcl(DWORD dwInitialSize) { m_pAcl = (PACL) new BYTE[dwInitialSize]; if ( m_pAcl == NULL ) { m_dwStatus = InternalError; return; } ZeroMemory(m_pAcl, dwInitialSize); BOOL bRes = InitializeAcl(m_pAcl, dwInitialSize, ACL_REVISION);
if (!bRes) { delete m_pAcl; m_pAcl = 0; m_dwStatus = NullAcl; return; }
m_dwStatus = NoError; }
//***************************************************************************
//
// CNtAcl copy constructor.
//
//***************************************************************************
// ok
CNtAcl::CNtAcl(CNtAcl &Src) { m_pAcl = 0; m_dwStatus = NoError;
*this = Src; }
//***************************************************************************
//
// CNtAcl assignment operator
//
//***************************************************************************
// ok
CNtAcl &CNtAcl::operator = (CNtAcl &Src) { if (m_pAcl != 0) delete m_pAcl;
// Default to a NULL ACL.
// ======================
m_pAcl = 0; m_dwStatus = NullAcl;
if (Src.m_pAcl == 0) return *this;
// Now copy the source ACL.
// ========================
DWORD dwSize = Src.m_pAcl->AclSize;
m_pAcl = (PACL) new BYTE[dwSize]; if(m_pAcl == NULL) { m_dwStatus = InternalError; return *this; }
ZeroMemory(m_pAcl, dwSize);
memcpy(m_pAcl, Src.m_pAcl, dwSize);
// Verify it.
// ==========
if (!IsValidAcl(m_pAcl)) { delete m_pAcl; m_pAcl = 0; m_dwStatus = InvalidAcl; return *this; }
m_dwStatus = Src.m_dwStatus; return *this; }
//***************************************************************************
//
// CNtAcl::GetAce
//
// Returns an ACE at the specified index. To enumerate ACEs, the caller
// should determine the number of ACEs using GetNumAces() and then call
// this function with each index starting from 0 to number of ACEs - 1.
//
// Parameters:
// <nIndex> The index of the desired ACE.
//
// Return value:
// A newly allocated CNtAce object which must be deallocated using
// operator delete. This is only a copy. Modifications to the returned
// CNtAce do not affect the ACL from which it came.
//
// Returns NULL on error.
//
//***************************************************************************
// ok
CNtAce *CNtAcl::GetAce(int nIndex) { if (m_pAcl == 0) return 0;
LPVOID pAce = 0;
BOOL bRes = ::GetAce(m_pAcl, (DWORD) nIndex, &pAce);
if (!bRes) return 0;
return new CNtAce(PGENERIC_ACE(pAce)); }
//***************************************************************************
//
// CNtAcl::GetAce
//
// Alternate method to get ACEs to avoid dynamic allocation & cleanup,
// since an auto object can be used as the parameter.
//
// Parameters:
// <Dest> A reference to a CNtAce to receive the ACE value.
//
// Return value:
// TRUE if assigned, FALSE if not.
//
//***************************************************************************
BOOL CNtAcl::GetAce(int nIndex, CNtAce &Dest) { CNtAce *pNew = GetAce(nIndex); if (pNew == 0) return FALSE;
Dest = *pNew; delete pNew; return TRUE; }
//***************************************************************************
//
// CNtAcl::DeleteAce
//
// Removes the specified ACE from the ACL.
//
// Parameters:
// <nIndex> The 0-based index of the ACE which should be removed.
//
// Return value:
// TRUE if the ACE was deleted, FALSE if not.
//
//***************************************************************************
// ok
BOOL CNtAcl::DeleteAce(int nIndex) { if (m_pAcl == 0) return FALSE;
BOOL bRes = ::DeleteAce(m_pAcl, DWORD(nIndex));
return bRes; }
//***************************************************************************
//
// CNtAcl::GetSize()
//
// Return value:
// Returns the size in bytes of the ACL
//
//***************************************************************************
// ok
DWORD CNtAcl::GetSize() { if (m_pAcl == 0 || !IsValidAcl(m_pAcl)) return 0;
return DWORD(m_pAcl->AclSize); }
//***************************************************************************
//
// CNtAcl::GetAclSizeInfo
//
// Gets information about used/unused space in the ACL. This function
// is primarily for internal use.
//
// Parameters:
// <pdwBytesInUse> Points to a DWORD to receive the number of
// bytes in use in the ACL. Can be NULL.
// <pdwBytesFree> Points to a DWORD to receive the number of
// bytes free in the ACL. Can be NULL.
//
// Return value:
// Returns TRUE if the information was retrieved, FALSE if not.
//
//***************************************************************************
// ok
BOOL CNtAcl::GetAclSizeInfo( PDWORD pdwBytesInUse, PDWORD pdwBytesFree ) { if (m_pAcl == 0) return 0;
if (!IsValidAcl(m_pAcl)) return 0;
if (pdwBytesInUse) *pdwBytesInUse = 0; if (pdwBytesFree) *pdwBytesFree = 0;
ACL_SIZE_INFORMATION inf;
BOOL bRes = GetAclInformation( m_pAcl, &inf, sizeof(ACL_SIZE_INFORMATION), AclSizeInformation );
if (!bRes) return FALSE;
if (pdwBytesInUse) *pdwBytesInUse = inf.AclBytesInUse; if (pdwBytesFree) *pdwBytesFree = inf.AclBytesFree;
return bRes; }
//***************************************************************************
//
// CNtAcl::AddAce
//
// Adds an ACE to the ACL.
// Ordering semantics for denial ACEs are handled automatically.
//
// Parameters:
// <pAce> A read-only pointer to the CNtAce to be added.
//
// Return value:
// TRUE on success, FALSE on failure.
//
//***************************************************************************
// ok
BOOL CNtAcl::AddAce(CNtAce *pAce) { // Verify we have an ACL and a valid ACE.
// ======================================
if (m_pAcl == 0 || m_dwStatus != NoError) return FALSE;
if (pAce->GetStatus() != CNtAce::NoError) return FALSE;
// Inherited aces go after non inherited aces
bool bInherited = (pAce->GetFlags() & INHERITED_ACE) != 0; int iFirstInherited = 0;
// inherited aces must go after non inherited. Find out
// the position of the first inherited ace
int iCnt; for(iCnt = 0; iCnt < m_pAcl->AceCount; iCnt++) { CNtAce *pAce2 = GetAce(iCnt); CDeleteMe<CNtAce> dm(pAce2); if (pAce2) if((pAce2->GetFlags() & INHERITED_ACE) != 0) break; } iFirstInherited = iCnt;
// Since we want to add access denial ACEs to the front of the ACL,
// we have to determine the type of ACE.
// ================================================================
DWORD dwIndex;
if (pAce->GetType() == ACCESS_DENIED_ACE_TYPE) dwIndex = (bInherited) ? iFirstInherited : 0; else dwIndex = (bInherited) ? MAXULONG : iFirstInherited;
// Verify that there is enough room in the ACL.
// ============================================
DWORD dwRequiredFree = pAce->GetSize();
DWORD dwFree = 0; DWORD dwUsed = 0; GetAclSizeInfo(&dwUsed, &dwFree);
// If we don't have enough room, resize the ACL.
// =============================================
if (dwFree < dwRequiredFree) { BOOL bRes = Resize(dwUsed + dwRequiredFree);
if (!bRes) return FALSE; }
// Now actually add the ACE.
// =========================
BOOL bRes = ::AddAce( m_pAcl, ACL_REVISION, dwIndex, // Either beginning or end.
pAce->GetPtr(), // Get ptr to ACE.
pAce->GetSize() // One ACE only.
);
return bRes; }
//***************************************************************************
//
// CNtAcl::Resize()
//
// Expands the size of the ACL to hold more info or reduces the size
// of the ACL for maximum efficiency after ACL editing is completed.
//
// Normally, the user should not attempt to resize the ACL to a larger
// size, as this is automatically handled by AddAce. However, shrinking
// the ACL to its minimum size is recommended.
//
// Parameters:
// <dwNewSize> The required new size of the ACL in bytes. If set to
// the class constant MinimumSize (1), then the ACL
// is reduced to its minimum size.
//
// Return value:
// TRUE on success, FALSE on failure.
//
//***************************************************************************
// ok
BOOL CNtAcl::Resize(DWORD dwNewSize) { if (m_pAcl == 0 || m_dwStatus != NoError) return FALSE;
if (!IsValidAcl(m_pAcl)) return FALSE;
// If the ACL cannot be reduced to the requested size,
// return FALSE.
// ===================================================
DWORD dwInUse, dwFree;
if (!GetAclSizeInfo(&dwInUse, &dwFree)) return FALSE;
if (dwNewSize == MinimumSize) // If user is requesting a 'minimize'
dwNewSize = dwInUse;
if (dwNewSize < dwInUse) return FALSE;
// Allocate a new ACL.
// ===================
CNtAcl *pNewAcl = new CNtAcl(dwNewSize);
if (!pNewAcl || pNewAcl->GetStatus() != NoError) { delete pNewAcl; return FALSE; }
// Loop through ACEs and transfer them.
// ====================================
for (int i = 0; i < GetNumAces(); i++) { CNtAce *pAce = GetAce(i);
if (pAce == NULL) { delete pNewAcl; return FALSE; }
BOOL bRes = pNewAcl->AddAce(pAce);
if (!bRes) { DWORD dwLast = GetLastError(); delete pAce; delete pNewAcl; return FALSE; }
delete pAce; }
if (!IsValid()) { delete pNewAcl; return FALSE; }
// Now transfer the ACL.
// =====================
*this = *pNewAcl; delete pNewAcl;
return TRUE; }
//***************************************************************************
//
// CNtAcl::CNtAcl
//
// Alternate constructor which builds the object based on a plain
// NT ACL.
//
// Parameters:
// <pAcl> Pointer to a read-only ACL.
//
//***************************************************************************
// ok
CNtAcl::CNtAcl(PACL pAcl) { m_pAcl = 0; m_dwStatus = NoError;
if (pAcl == 0) { m_dwStatus = NullAcl; return; }
if (!IsValidAcl(pAcl)) { m_dwStatus = InvalidAcl; return; }
m_pAcl = (PACL) new BYTE[pAcl->AclSize]; if(m_pAcl == NULL) { m_dwStatus = InternalError; return; } ZeroMemory(m_pAcl, pAcl->AclSize); memcpy(m_pAcl, pAcl, pAcl->AclSize); }
/*
-------------------------------------------------------------------------- | | Checks to see if the Acl contains an ACE with the specified SID. | The characteristics of the ACE is irrelevant. Only SID comparison applies. | -------------------------------------------------------------------------- */ BOOL CNtAcl::ContainsSid ( CNtSid& sid, BYTE& flags ) { BOOL bContainsSid = FALSE ;
int iNumAces = GetNumAces ( ) ; if ( iNumAces < 0 ) { return FALSE ; }
for ( int i = 0 ; i < iNumAces; i++ ) { CNtAce* pAce = GetAce ( i ) ; CNtSid* pSid = pAce->GetSid ( ) ;
CDeleteMe<CNtAce> AceDelete ( pAce ) ; CDeleteMe<CNtSid> SidDelete ( pSid ) ;
if ( pAce && pSid ) { if ( EqualSid ( sid.GetPtr ( ), pSid->GetPtr ( ) ) == TRUE ) { flags = ( BYTE ) pAce->GetFlags ( ) ; bContainsSid = TRUE ; break ; } } } return bContainsSid ; }
//***************************************************************************
//
// CNtAcl::GetNumAces
//
// Return value:
// Returns the number of ACEs available in the ACL. Zero is a legal return
// value. Returns -1 on error
//
// Aces can be retrieved using GetAce using index values from 0...n-1 where
// n is the value returned from this function.
//
//***************************************************************************
// ok
int CNtAcl::GetNumAces() { if (m_pAcl == 0) return -1;
ACL_SIZE_INFORMATION inf;
BOOL bRes = GetAclInformation( m_pAcl, &inf, sizeof(ACL_SIZE_INFORMATION), AclSizeInformation );
if (!bRes) { return -1; }
return (int) inf.AceCount; }
//***************************************************************************
//
// CNtAcl destructor
//
//***************************************************************************
// ok
CNtAcl::~CNtAcl() { if (m_pAcl) delete m_pAcl; }
//***************************************************************************
//
// CNtAcl::Dump
//
// Dumps the ACL to the console for debugging purposes. Illustrates
// how to traverse the ACL and extract the ACEs.
//
//***************************************************************************
// ok
void CNtAcl::Dump() { printf("---ACL DUMP---\n");
if (m_pAcl == 0) { switch (m_dwStatus) { case NullAcl: printf("NullAcl\n"); break;
case InvalidAcl: printf("InvalidAcl\n"); break;
default: printf("<internal error; unknown status>\n"); } return; }
DWORD InUse, Free; GetAclSizeInfo(&InUse, &Free); printf("%d bytes in use, %d bytes free\n", InUse, Free );
printf("Number of ACEs = %d\n", GetNumAces());
for (int i = 0; i < GetNumAces(); i++) { CNtAce *pAce = GetAce(i); if (pAce) { pAce->Dump(i+1); delete pAce; } }
printf("---END ACL DUMP---\n");
}
//***************************************************************************
//
// CNtSecurityDescriptor::GetDacl
//
// Returns the DACL of the security descriptor.
//
// Return value:
// A newly allocated CNtAcl which contains the DACL. This object
// is a copy of the DACL and modifications made to it do not affect
// the security descriptor. The caller must use operator delete
// to deallocate the CNtAcl.
//
// Returns NULL on error or if no DACL is available.
//
//***************************************************************************
// ok
CNtAcl *CNtSecurityDescriptor::GetDacl() { BOOL bDaclPresent = FALSE; BOOL bDefaulted;
PACL pDacl; BOOL bRes = GetSecurityDescriptorDacl( m_pSD, &bDaclPresent, &pDacl, &bDefaulted );
if (!bRes) { return 0; }
if (!bDaclPresent) // No DACL present
return 0;
CNtAcl *pNewDacl = new CNtAcl(pDacl);
return pNewDacl; }
//***************************************************************************
//
// CNtSecurityDescriptor::GetDacl
//
// An alternate method to returns the DACL of the security descriptor.
// This version uses an existing object instead of returning a
// dynamically allocated object.
//
// Parameters:
// <DestAcl> A object which will receive the DACL.
//
// Return value:
// TRUE on success, FALSE on failure
//
//***************************************************************************
BOOL CNtSecurityDescriptor::GetDacl(CNtAcl &DestAcl) { CNtAcl *pNew = GetDacl(); if (pNew == 0) return FALSE;
DestAcl = *pNew; delete pNew; return TRUE; }
//***************************************************************************
//
// SNtAbsoluteSD
//
// SD Helpers
//
//***************************************************************************
SNtAbsoluteSD::SNtAbsoluteSD() { m_pSD = 0; m_pDacl = 0; m_pSacl = 0; m_pOwner = 0; m_pPrimaryGroup = 0; }
SNtAbsoluteSD::~SNtAbsoluteSD() { if (m_pSD) delete m_pSD; if (m_pDacl) delete m_pDacl; if (m_pSacl) delete m_pSacl; if (m_pOwner) delete m_pOwner; if (m_pPrimaryGroup) delete m_pPrimaryGroup; }
//***************************************************************************
//
// CNtSecurityDescriptor::GetAbsoluteCopy
//
// Returns a copy of the current object's internal SD in absolute format.
// Returns NULL on error. The memory must be freed with LocalFree().
//
//***************************************************************************
// ok
SNtAbsoluteSD* CNtSecurityDescriptor::GetAbsoluteCopy() { if (m_dwStatus != NoError || m_pSD == 0 || !IsValid()) return 0;
// Prepare for conversion.
// =======================
DWORD dwSDSize = 0, dwDaclSize = 0, dwSaclSize = 0, dwOwnerSize = 0, dwPrimaryGroupSize = 0;
SNtAbsoluteSD *pNewSD = new SNtAbsoluteSD; if (!pNewSD) return NULL;
BOOL bRes = MakeAbsoluteSD( m_pSD, pNewSD->m_pSD, &dwSDSize, pNewSD->m_pDacl, &dwDaclSize, pNewSD->m_pSacl, &dwSaclSize, pNewSD->m_pOwner, &dwOwnerSize, pNewSD->m_pPrimaryGroup, &dwPrimaryGroupSize );
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { delete pNewSD; return 0; }
// Allocate the required buffers and convert.
// ==========================================
pNewSD->m_pSD = (PSECURITY_DESCRIPTOR) new BYTE[dwSDSize]; if(pNewSD->m_pSD == NULL) { delete pNewSD; return NULL; } ZeroMemory(pNewSD->m_pSD, dwSDSize);
pNewSD->m_pDacl = (PACL) new BYTE[dwDaclSize]; if(pNewSD->m_pDacl == NULL) { delete pNewSD; return NULL; } ZeroMemory(pNewSD->m_pDacl, dwDaclSize);
pNewSD->m_pSacl = (PACL) new BYTE[dwSaclSize]; if(pNewSD->m_pSacl == NULL) { delete pNewSD; return NULL; } ZeroMemory(pNewSD->m_pSacl, dwSaclSize);
pNewSD->m_pOwner = (PSID) new BYTE[dwOwnerSize]; if(pNewSD->m_pOwner == NULL) { delete pNewSD; return NULL; } ZeroMemory(pNewSD->m_pOwner, dwOwnerSize);
pNewSD->m_pPrimaryGroup = (PSID) new BYTE[dwPrimaryGroupSize]; if(pNewSD->m_pPrimaryGroup == NULL) { delete pNewSD; return NULL; } ZeroMemory(pNewSD->m_pPrimaryGroup, dwPrimaryGroupSize);
bRes = MakeAbsoluteSD( m_pSD, pNewSD->m_pSD, &dwSDSize, pNewSD->m_pDacl, &dwDaclSize, pNewSD->m_pSacl, &dwSaclSize, pNewSD->m_pOwner, &dwOwnerSize, pNewSD->m_pPrimaryGroup, &dwPrimaryGroupSize );
if (!bRes) { delete pNewSD; return 0; }
return pNewSD; }
//***************************************************************************
//
// CNtSecurityDescriptor::SetFromAbsoluteCopy
//
// Replaces the current SD from an absolute copy.
//
// Parameters:
// <pSrcSD> A read-only pointer to the absolute SD used as a source.
//
// Return value:
// TRUE on success, FALSE on failure.
//
//***************************************************************************
// ok
BOOL CNtSecurityDescriptor::SetFromAbsoluteCopy( SNtAbsoluteSD *pSrcSD ) { if (pSrcSD == 0 || !IsValidSecurityDescriptor(pSrcSD->m_pSD)) return FALSE;
// Ensure that SD is self-relative
// ===============================
SECURITY_DESCRIPTOR_CONTROL ctrl; DWORD dwRev;
BOOL bRes = GetSecurityDescriptorControl( pSrcSD->m_pSD, &ctrl, &dwRev );
if (!bRes) return FALSE;
if (ctrl & SE_SELF_RELATIVE) // Source is not absolute!!
return FALSE;
// If here, we are committed to change.
// ====================================
if (m_pSD) { delete m_pSD; } m_pSD = 0; m_dwStatus = NullSD;
DWORD dwRequired = 0;
bRes = MakeSelfRelativeSD( pSrcSD->m_pSD, m_pSD, &dwRequired );
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { m_dwStatus = InvalidSD; return FALSE; }
m_pSD = new BYTE[dwRequired]; if (!m_pSD) { m_dwStatus = InvalidSD; return FALSE; }
ZeroMemory(m_pSD, dwRequired);
bRes = MakeSelfRelativeSD( pSrcSD->m_pSD, m_pSD, &dwRequired );
if (!bRes) { m_dwStatus = InvalidSD; delete m_pSD; m_pSD = 0; return FALSE; }
m_dwStatus = NoError; return TRUE; }
//***************************************************************************
//
// CNtSecurityDescriptor::SetDacl
//
// Sets the DACL of the Security descriptor.
//
// Parameters:
// <pSrc> A read-only pointer to the new DACL to replace the current one.
//
// Return value:
// TRUE on success, FALSE on failure.
//
//***************************************************************************
BOOL CNtSecurityDescriptor::SetDacl(CNtAcl *pSrc) { if (m_dwStatus != NoError || m_pSD == 0) return FALSE;
// Since we cannot alter a self-relative SD, we have to make
// an absolute one, alter it, and then set the current
// SD based on the absolute one (we keep the self-relative form
// internally in the m_pSD variable.
// ============================================================
SNtAbsoluteSD *pTmp = GetAbsoluteCopy();
if (pTmp == 0) return FALSE;
BOOL bRes = ::SetSecurityDescriptorDacl( pTmp->m_pSD, TRUE, pSrc->GetPtr(), FALSE );
if (!bRes) { delete pTmp; return FALSE; }
bRes = SetFromAbsoluteCopy(pTmp); delete pTmp;
return TRUE; }
//***************************************************************************
//
// CNtSecurityDescriptor::Dump
//
// Dumps the contents of the security descriptor to the console
// for debugging purposes.
//
//***************************************************************************
// ?
void CNtSecurityDescriptor::Dump() { SECURITY_DESCRIPTOR_CONTROL Control; DWORD dwRev; BOOL bRes;
printf("--- SECURITY DESCRIPTOR DUMP ---\n");
bRes = GetSecurityDescriptorControl(m_pSD, &Control, &dwRev);
if (!bRes) { printf("SD Dump: Failed to get control info\n"); return; }
printf("Revision : 0x%X\n", dwRev);
printf("Control Info :\n");
if (Control & SE_SELF_RELATIVE) printf(" SE_SELF_RELATIVE\n");
if (Control & SE_OWNER_DEFAULTED) printf(" SE_OWNER_DEFAULTED\n");
if (Control & SE_GROUP_DEFAULTED) printf(" SE_GROUP_DEFAULTED\n");
if (Control & SE_DACL_PRESENT) printf(" SE_DACL_PRESENT\n");
if (Control & SE_DACL_DEFAULTED) printf(" SE_DACL_DEFAULTED\n");
if (Control & SE_SACL_PRESENT) printf(" SE_SACL_PRESENT\n");
if (Control & SE_SACL_DEFAULTED) printf(" SE_SACL_DEFAULTED\n");
if (Control & SE_DACL_PROTECTED) printf(" SE_DACL_PROTECTED\n");
// Get owner.
// =========
CNtSid *pSid = GetOwner();
if (pSid) { printf("Owner : "); pSid->Dump(); delete pSid; }
CNtAcl *pDacl = GetDacl();
if (pDacl == 0) { printf("Unable to locate DACL\n"); return; }
printf("DACL retrieved\n");
pDacl->Dump();
delete pDacl; }
//***************************************************************************
//
// CNtSecurityDescriptor constructor
//
// A default constructor creates a no-access security descriptor.
//
//***************************************************************************
// ok
CNtSecurityDescriptor::CNtSecurityDescriptor() { m_pSD = 0; m_dwStatus = NoError;
PSECURITY_DESCRIPTOR pTmp = new BYTE[SECURITY_DESCRIPTOR_MIN_LENGTH]; if (!pTmp) { delete pTmp; m_dwStatus = InvalidSD; return; } ZeroMemory(pTmp, SECURITY_DESCRIPTOR_MIN_LENGTH);
if (!InitializeSecurityDescriptor(pTmp, SECURITY_DESCRIPTOR_REVISION)) { delete pTmp; m_dwStatus = InvalidSD; return; }
DWORD dwRequired = 0;
BOOL bRes = MakeSelfRelativeSD( pTmp, m_pSD, &dwRequired );
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { m_dwStatus = InvalidSD; delete pTmp; return; }
m_pSD = new BYTE[dwRequired]; if (!m_pSD) { m_dwStatus = InvalidSD; delete pTmp; return; }
ZeroMemory(m_pSD, dwRequired);
bRes = MakeSelfRelativeSD( pTmp, m_pSD, &dwRequired );
if (!bRes) { m_dwStatus = InvalidSD; delete m_pSD; m_pSD = 0; delete pTmp; return; }
delete pTmp; m_dwStatus = NoError; }
//***************************************************************************
//
// CNtSecurityDescriptor::GetSize
//
// Returns the size in bytes of the internal SD.
//
//***************************************************************************
// ok
DWORD CNtSecurityDescriptor::GetSize() { if (m_pSD == 0 || m_dwStatus != NoError) return 0;
return GetSecurityDescriptorLength(m_pSD); }
//***************************************************************************
//
// CNtSecurityDescriptor copy constructor
//
//***************************************************************************
// ok
CNtSecurityDescriptor::CNtSecurityDescriptor(CNtSecurityDescriptor &Src) { m_pSD = 0; m_dwStatus = NoError; *this = Src; }
//***************************************************************************
//
// CNtSecurityDescriptor assignment operator
//
//***************************************************************************
// ok
CNtSecurityDescriptor & CNtSecurityDescriptor::operator=( CNtSecurityDescriptor &Src ) { if (m_pSD) delete m_pSD;
m_dwStatus = Src.m_dwStatus; m_pSD = 0;
if (Src.m_pSD == 0) return *this;
//SIZE_T dwSize = 2*GetSecurityDescriptorLength(Src.m_pSD);
SIZE_T dwSize = GetSecurityDescriptorLength(Src.m_pSD); m_pSD = (PSECURITY_DESCRIPTOR) new BYTE[dwSize]; if(m_pSD == NULL) { m_dwStatus = Failed; } else { ZeroMemory(m_pSD, dwSize); CopyMemory(m_pSD, Src.m_pSD, dwSize); }
return *this; }
//***************************************************************************
//
// CNtSecurityDescriptor destructor.
//
//***************************************************************************
// ok
CNtSecurityDescriptor::~CNtSecurityDescriptor() { if (m_pSD) delete m_pSD; }
//***************************************************************************
//
// CNtSecurityDescriptor::GetSacl
//
// Returns the SACL of the security descriptor.
//
// Return value:
// A newly allocated CNtAcl which contains the SACL. This object
// is a copy of the SACL and modifications made to it do not affect
// the security descriptor. The caller must use operator delete
// to deallocate the CNtAcl.
//
// Returns NULL on error or if no SACL is available.
//
//***************************************************************************
// ok
CNtAcl *CNtSecurityDescriptor::GetSacl() { BOOL bSaclPresent = FALSE; BOOL bDefaulted;
PACL pSacl; BOOL bRes = GetSecurityDescriptorSacl( m_pSD, &bSaclPresent, &pSacl, &bDefaulted );
if (!bRes) { return 0; }
if (!bSaclPresent) // No Sacl present
return 0;
CNtAcl *pNewSacl = new CNtAcl(pSacl);
return pNewSacl; }
//***************************************************************************
//
// CNtSecurityDescriptor::SetSacl
//
// Sets the SACL of the Security descriptor.
//
// Parameters:
// <pSrc> A read-only pointer to the new DACL to replace the current one.
//
// Return value:
// TRUE on success, FALSE on failure.
//
//***************************************************************************
// ok
BOOL CNtSecurityDescriptor::SetSacl(CNtAcl *pSrc) { if (m_dwStatus != NoError || m_pSD == 0) return FALSE;
// Since we cannot alter a self-relative SD, we have to make
// an absolute one, alter it, and then set the current
// SD based on the absolute one (we keep the self-relative form
// internally in the m_pSD variable.
// ============================================================
SNtAbsoluteSD *pTmp = GetAbsoluteCopy();
if (pTmp == 0) return FALSE;
BOOL bRes = ::SetSecurityDescriptorSacl( pTmp->m_pSD, TRUE, pSrc->GetPtr(), FALSE );
if (!bRes) { delete pTmp; return FALSE; }
bRes = SetFromAbsoluteCopy(pTmp); delete pTmp;
return TRUE; }
//***************************************************************************
//
// CNtSecurityDescriptor::GetGroup
//
//***************************************************************************
// ok
CNtSid *CNtSecurityDescriptor::GetGroup() { if (m_pSD == 0 || m_dwStatus != NoError) return 0;
PSID pSid = 0; BOOL bDefaulted;
BOOL bRes = GetSecurityDescriptorGroup(m_pSD, &pSid, &bDefaulted);
// TMP: Check to make sure the group is not NULL!!!!
if ( pSid == NULL ) { // DebugBreak();
ERRORTRACE((LOG_WBEMCORE, "ERROR: Security descriptor has no group\n")); }
if (!bRes || !IsValidSid(pSid)) return 0;
return new CNtSid(pSid);
}
//***************************************************************************
//
// CNtSecurityDescriptor::SetGroup
//
//***************************************************************************
// ok
BOOL CNtSecurityDescriptor::SetGroup(CNtSid *pSid) { if (m_dwStatus != NoError || m_pSD == 0) return FALSE;
// TMP: Check to make sure the group is not NULL!!!!
if ( pSid->GetPtr() == NULL ) { // DebugBreak();
ERRORTRACE((LOG_WBEMCORE, "ERROR: Security descriptor is trying to bland out the group!\n")); }
// Since we cannot alter a self-relative SD, we have to make
// an absolute one, alter it, and then set the current
// SD based on the absolute one (we keep the self-relative form
// internally in the m_pSD variable.
// ============================================================
SNtAbsoluteSD *pTmp = GetAbsoluteCopy();
if (pTmp == 0) return FALSE;
BOOL bRes = ::SetSecurityDescriptorGroup( pTmp->m_pSD, pSid->GetPtr(), FALSE );
if (!bRes) { delete pTmp; return FALSE; }
bRes = SetFromAbsoluteCopy(pTmp); delete pTmp;
return TRUE; }
//***************************************************************************
//
// CNtSecurityDescriptor::HasOwner
//
// Determines if a security descriptor has an owner.
//
// Return values:
// SDNotOwned, SDOwned, Failed
//
//***************************************************************************
// ok
int CNtSecurityDescriptor::HasOwner() { if (m_pSD == 0 || m_dwStatus != NoError) return Failed;
PSID pSid = 0;
BOOL bRes = GetSecurityDescriptorOwner(m_pSD, &pSid, 0);
if (!bRes || !IsValidSid(pSid)) return Failed;
if (pSid == 0) return SDNotOwned;
return SDOwned; }
//***************************************************************************
//
// CNtSecurityDescriptor::GetOwner
//
// Returns the SID of the owner of the Security Descriptor or NULL
// if an error occurred or there is no owner. Use HasOwner() to
// determine this.
//
//***************************************************************************
// ok
CNtSid *CNtSecurityDescriptor::GetOwner() { if (m_pSD == 0 || m_dwStatus != NoError) return 0;
PSID pSid = 0; BOOL bDefaulted;
BOOL bRes = GetSecurityDescriptorOwner(m_pSD, &pSid, &bDefaulted);
// TMP: Check to make sure the owner is not NULL!!!!
if ( pSid == NULL ) { // DebugBreak();
ERRORTRACE((LOG_WBEMCORE, "ERROR: Security descriptor has no owner\n")); }
if (!bRes || !IsValidSid(pSid)) return 0;
return new CNtSid(pSid); }
//***************************************************************************
//
// CNtSecurityDescriptor::SetOwner
//
// Sets the owner of a security descriptor.
//
// Parameters:
// <pSid> The SID of the new owner.
//
// Return Value:
// TRUE if owner was changed, FALSE if not.
//
//***************************************************************************
// ok
BOOL CNtSecurityDescriptor::SetOwner(CNtSid *pSid) { if (m_pSD == 0 || m_dwStatus != NoError) return FALSE;
if (!pSid->IsValid()) return FALSE;
// TMP: Check to make sure the owner is not NULL!!!!
if ( pSid->GetPtr() == NULL ) { ERRORTRACE((LOG_WBEMCORE, "ERROR: Security descriptor is trying to zap the owner!\n")); // DebugBreak();
}
// We must convert to absolute format to make the change.
// =======================================================
SNtAbsoluteSD *pTmp = GetAbsoluteCopy();
if (pTmp == 0) return FALSE;
BOOL bRes = SetSecurityDescriptorOwner(pTmp->m_pSD, pSid->GetPtr(), FALSE);
if (!bRes) { delete pTmp; return FALSE; }
// If here, we have managed the change, so we have to
// convert *this back from the temporary absolute SD.
// ===================================================
bRes = SetFromAbsoluteCopy(pTmp); delete pTmp;
return bRes; }
//***************************************************************************
//
// CNtSecurityDescriptor::CNtSecurityDescriptor
//
//***************************************************************************
// ok
CNtSecurityDescriptor::CNtSecurityDescriptor( PSECURITY_DESCRIPTOR pSD, BOOL bAcquire ) { m_pSD = 0; m_dwStatus = NullSD;
// Ensure that SD is not NULL.
// ===========================
if (pSD == 0) { if (bAcquire) delete pSD; return; }
if (!IsValidSecurityDescriptor(pSD)) { m_dwStatus = InvalidSD; if (bAcquire) delete pSD; return; }
// Ensure that SD is self-relative
// ===============================
SECURITY_DESCRIPTOR_CONTROL ctrl; DWORD dwRev;
BOOL bRes = GetSecurityDescriptorControl( pSD, &ctrl, &dwRev );
if (!bRes) { m_dwStatus = InvalidSD; if (bAcquire) delete pSD; return; }
if ((ctrl & SE_SELF_RELATIVE) == 0) { // If here, we have to conver the SD to self-relative form.
// ========================================================
DWORD dwRequired = 0;
bRes = MakeSelfRelativeSD( pSD, m_pSD, &dwRequired );
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { m_dwStatus = InvalidSD; if (bAcquire) delete pSD; return; }
m_pSD = new BYTE[dwRequired]; if (!m_pSD) { m_dwStatus = InvalidSD; if (bAcquire) delete pSD; return; }
ZeroMemory(m_pSD, dwRequired);
bRes = MakeSelfRelativeSD( pSD, m_pSD, &dwRequired );
if (!bRes) { m_dwStatus = InvalidSD; if (bAcquire) delete pSD; return; }
m_dwStatus = NoError; return; }
// If here, the SD was already self-relative.
// ==========================================
if (bAcquire) m_pSD = pSD; else { DWORD dwRes = GetSecurityDescriptorLength(pSD); m_pSD = new BYTE[dwRes]; if (!m_pSD) { m_dwStatus = InvalidSD; return; }
ZeroMemory(m_pSD, dwRes); memcpy(m_pSD, pSD, dwRes); }
m_dwStatus = NoError; }
//***************************************************************************
//
// CNtSecurity::DumpPrivileges
//
// Dumps current process token privileges to the console.
//
//***************************************************************************
BOOL CNtSecurity::DumpPrivileges() { HANDLE hToken = 0; TOKEN_INFORMATION_CLASS tki; BOOL bRes; LPVOID pTokenInfo = 0; DWORD dwRequiredBytes; BOOL bRetVal = FALSE; TOKEN_PRIVILEGES *pPriv = 0; TCHAR *pName = 0; DWORD dwIndex; DWORD dwLastError;
_tprintf(__TEXT("--- Current Token Privilege Dump ---\n"));
// Starting point: open the process token.
// =======================================
bRes = OpenProcessToken( GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken );
if (!bRes) { _tprintf(__TEXT("Unable to open process token\n")); goto Exit; }
// Query for privileges.
// =====================
tki = TokenPrivileges;
bRes = GetTokenInformation( hToken, tki, pTokenInfo, 0, &dwRequiredBytes );
dwLastError = GetLastError();
if (dwLastError != ERROR_INSUFFICIENT_BUFFER) { printf("Unable to get buffer size for token information\n"); goto Exit; }
pTokenInfo = new BYTE[dwRequiredBytes]; if (!pTokenInfo) goto Exit; ZeroMemory(pTokenInfo, dwRequiredBytes);
bRes = GetTokenInformation( hToken, tki, pTokenInfo, dwRequiredBytes, &dwRequiredBytes );
if (!bRes) { printf("Unable to query token\n"); goto Exit; }
// Loop through the privileges.
// ============================
pPriv = (TOKEN_PRIVILEGES *) pTokenInfo;
for (dwIndex = 0; dwIndex < pPriv->PrivilegeCount; dwIndex++) { pName = 0; dwRequiredBytes = 0;
// Find the buffer size required for the name.
// ===========================================
bRes = LookupPrivilegeName( 0, // System name
&pPriv->Privileges[dwIndex].Luid, pName, &dwRequiredBytes );
dwLastError = GetLastError();
if (dwLastError != ERROR_INSUFFICIENT_BUFFER) { printf("Failed to find privilege name\n"); goto Exit; }
// Allocate enough space to hold the privilege name.
// =================================================
pName = (TCHAR *) new BYTE[dwRequiredBytes]; if(pName == NULL) goto Exit;
ZeroMemory(pName, dwRequiredBytes);
bRes = LookupPrivilegeName( 0, // System name
&pPriv->Privileges[dwIndex].Luid, pName, &dwRequiredBytes );
printf("%s ", pName); delete pName;
// Determine the privilege 'status'.
// =================================
if (pPriv->Privileges[dwIndex].Attributes & SE_PRIVILEGE_ENABLED) printf("<ENABLED> "); if (pPriv->Privileges[dwIndex].Attributes & SE_PRIVILEGE_ENABLED_BY_DEFAULT) printf("<ENABLED BY DEFAULT> "); if (pPriv->Privileges[dwIndex].Attributes & SE_PRIVILEGE_USED_FOR_ACCESS) printf("<USED FOR ACCESS> ");
printf("\n");
pName = 0; }
printf("--- End Privilege Dump ---\n");
bRetVal = TRUE;
Exit: if (pTokenInfo) delete pTokenInfo; if (hToken) CloseHandle(hToken); return bRetVal; }
//***************************************************************************
//
// CNtSecurity::SetPrivilege
//
// Ensures a given privilege is enabled.
//
// Parameters:
//
// <pszPrivilegeName> One of the SE_ constants defined in WINNT.H for
// privilege names. Example: SE_SECURITY_NAME
// <bEnable> If TRUE, the privilege will be enabled. If FALSE,
// the privilege will be disabled.
//
// Return value:
// TRUE if the privilege was enabled, FALSE if not.
//
//***************************************************************************
// ok
BOOL CNtSecurity::SetPrivilege( TCHAR *pszPrivilegeName, // An SE_ value.
BOOL bEnable // TRUE=enable, FALSE=disable
) { HANDLE hToken = 0; TOKEN_PRIVILEGES tkp; LUID priv; BOOL bRes; BOOL bRetVal = FALSE;
bRes = OpenProcessToken( GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken );
if (!bRes) goto Exit;
// Locate the privilege LUID based on the requested name.
// ======================================================
bRes = LookupPrivilegeValue( 0, // system name, 0=local
pszPrivilegeName, &priv );
if (!bRes) goto Exit;
// We now have the LUID. Next, we build up the privilege
// setting based on the user-specified <bEnable>.
// ======================================================
tkp.PrivilegeCount = 1; tkp.Privileges[0].Luid = priv;
if (bEnable) tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; else tkp.Privileges[0].Attributes = 0;
// Do it.
// ======
bRes = AdjustTokenPrivileges( hToken, FALSE, &tkp, sizeof(TOKEN_PRIVILEGES), 0, 0 );
if (!bRes) goto Exit;
bRetVal = TRUE;
Exit: if (hToken) CloseHandle(hToken); return bRetVal; }
//***************************************************************************
//
// CNtSecurity::GetFileSD
//
// Gets the complete security descriptor for file or directory on NT systems.
//
// Parameters:
// <pszFile> The path to the file or directory.
//
// <SecInfo> The information which will be manipulated. See
// SECURITY_INFORMATION in NT SDK documentation.
//
// <pReturnedSD> Receives a pointer to the CNtSecurityDecriptor object
// which represents security on the file. The caller
// becomes onwer of the object, which must be deallocated
// with operator delete.
//
// The returned object which is a copy of the
// underlying security descriptor. Changes to the returned
// object are not propagated to the file. SetFileSD must
// be used to do this.
//
// This will be set to point to NULL on error.
//
// Return value:
// NoError, NotFound, AccessDenied, Failed
//
//***************************************************************************
// ok
int CNtSecurity::GetFileSD( IN TCHAR *pszFile, IN SECURITY_INFORMATION SecInfo, OUT CNtSecurityDescriptor **pReturnedSD ) { // First, verify that the file/dir exists.
// =======================================
#ifdef _UNICODE
int nRes = _waccess(pszFile, 0); #else
int nRes = _access(pszFile, 0); #endif
if (nRes != 0) { if (errno == ENOENT) return NotFound; if (errno == EACCES) return AccessDenied; if (nRes == -1) // Other errors
return Failed; }
// If here, we think we can play with it.
// ======================================
PSECURITY_DESCRIPTOR pSD = 0; DWORD dwRequiredBytes; BOOL bRes; DWORD dwLastError;
*pReturnedSD = 0;
// Call once first to get the required buffer sizes.
// =================================================
bRes = GetFileSecurity( pszFile, SecInfo, pSD, 0, &dwRequiredBytes );
dwLastError = GetLastError();
if (dwLastError != ERROR_INSUFFICIENT_BUFFER) { // Analyze the error
return Failed; }
// Now call again with a buffer large enough to hold the SD.
// =========================================================
pSD = (PSECURITY_DESCRIPTOR) new BYTE[dwRequiredBytes]; if(pSD == NULL) return Failed;
ZeroMemory(pSD, dwRequiredBytes);
bRes = GetFileSecurity( pszFile, SecInfo, pSD, dwRequiredBytes, &dwRequiredBytes );
if (!bRes) { delete pSD; return Failed; }
// If here, we have a security descriptor.
// =======================================
CNtSecurityDescriptor *pNewSD = new CNtSecurityDescriptor(pSD, TRUE); if(pNewSD == NULL) { delete pSD; return Failed; }
*pReturnedSD = pNewSD;
return NoError; }
//***************************************************************************
//
// CNtSecurity::GetRegSD
//
// Retrieves the security descriptor for a registry key.
//
// Parameters:
// <hRoot> The root key (HKEY_LOCAL_MACHINE, etc.)
// <pszSubKey> The subkey under the root key.
// <SecInfo> The information which will be manipulated. See
// SECURITY_INFORMATION in NT SDK documentation.
// <pSD> Receives the pointer to the security descriptor if
// no error occurs. Caller must use operator delete.
//
// Return value:
// NoError, NotFound, AccessDenied, Failed
//
//***************************************************************************
int CNtSecurity::GetRegSD( IN HKEY hRoot, IN TCHAR *pszSubKey, IN SECURITY_INFORMATION SecInfo, OUT CNtSecurityDescriptor **pSD ) { HKEY hKey; *pSD = 0;
ACCESS_MASK amAccess = KEY_ALL_ACCESS; if (SecInfo & SACL_SECURITY_INFORMATION) amAccess |= ACCESS_SYSTEM_SECURITY;
LONG lRes = RegOpenKeyEx(hRoot, pszSubKey, 0, amAccess, &hKey);
if (lRes == ERROR_ACCESS_DENIED) return AccessDenied;
if (lRes != ERROR_SUCCESS) return Failed;
// If here, the key is open. Now we try to get the security descriptor.
// =====================================================================
PSECURITY_DESCRIPTOR pTmpSD = 0; DWORD dwRequired = 0;
// Determine the buffer size required.
// ===================================
lRes = RegGetKeySecurity(hKey, SecInfo, pTmpSD, &dwRequired);
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { RegCloseKey(hKey); return Failed; }
// Allocate room for the SD and get it.
// ====================================
pTmpSD = new BYTE[dwRequired]; if (!pTmpSD) { RegCloseKey(hKey); return Failed; }
ZeroMemory(pTmpSD, dwRequired);
lRes = RegGetKeySecurity(hKey, SecInfo, pTmpSD, &dwRequired);
if (lRes != 0 || !IsValidSecurityDescriptor(pTmpSD)) { delete pTmpSD; RegCloseKey(hKey); return Failed; }
RegCloseKey(hKey); CNtSecurityDescriptor *pNewSD = new CNtSecurityDescriptor(pTmpSD, TRUE); if(pNewSD == NULL) { delete pTmpSD; return Failed; } *pSD = pNewSD;
return NoError; }
//***************************************************************************
//
// CNtSecurity::SetRegSD
//
// Sets the security descriptor for a registry key.
//
// Parameters:
// <hRoot> The root key (HKEY_LOCAL_MACHINE, etc.)
// <pszSubKey> The subkey under the root key.
// <SecInfo> The information which will be manipulated. See
// SECURITY_INFORMATION in NT SDK documentation.
// <pSD> The read-only pointer to the new security descriptor.
//
// Return value:
// NoError, NotFound, AccessDenied, Failed
//
//***************************************************************************
int CNtSecurity::SetRegSD( IN HKEY hRoot, IN TCHAR *pszSubKey, IN SECURITY_INFORMATION SecInfo, IN CNtSecurityDescriptor *pSD ) { HKEY hKey;
if (!pSD->IsValid()) return Failed;
ACCESS_MASK amAccess = KEY_ALL_ACCESS; if (SecInfo & SACL_SECURITY_INFORMATION) amAccess |= ACCESS_SYSTEM_SECURITY;
LONG lRes = RegOpenKeyEx(hRoot, pszSubKey, 0, amAccess, &hKey);
if (lRes == ERROR_ACCESS_DENIED) return AccessDenied;
if (lRes != ERROR_SUCCESS) return Failed;
// If here, the key is open. Now we try to get the security descriptor.
// =====================================================================
PSECURITY_DESCRIPTOR pTmpSD = 0; DWORD dwRequired = 0;
// Determine the buffer size required.
// ===================================
lRes = RegSetKeySecurity(hKey, SecInfo, pSD->GetPtr());
if (lRes != 0) { RegCloseKey(hKey); return Failed; }
RegCloseKey(hKey); return NoError; }
//***************************************************************************
//
// CNtSecurity::SetFileSD
//
// Sets the security descriptor for a file or directory.
//
// Parameters:
// <pszFile> The file/dir for which to set security.
// <SecInfo> The information which will be manipulated. See
// SECURITY_INFORMATION in NT SDK documentation.
// <pSD> Pointer to a valid CNtSecurityDescriptor
//
//***************************************************************************
// ok
BOOL CNtSecurity::SetFileSD( IN TCHAR *pszFile, IN SECURITY_INFORMATION SecInfo, IN CNtSecurityDescriptor *pSD ) { // First, verify that the file/dir exists.
// =======================================
#ifdef _UNICODE
int nRes = _waccess(pszFile, 0); #else
int nRes = _access(pszFile, 0); #endif
if (nRes != 0) return FALSE;
// Verify the SD is good.
// ======================
if (pSD->GetStatus() != NoError) return FALSE;
BOOL bRes = ::SetFileSecurity( pszFile, SecInfo, pSD->GetPtr() );
return bRes; }
//***************************************************************************
//
// CNtSecurity::GetDCName
//
// Determines the domain controller for a given domain name.
//
// Parameters:
// <pszDomain> The domain name for which to find the controller.
// <pszDC> Receives a pointer to the DC name. Deallocate with
// operator delete.
// <pszServer> Optional remote helper server on which to execute
// the query. Defaults to NULL, which typically
// succeeds.
//
// Return value:
// NoError, NotFound, InvalidName
//
//***************************************************************************
/*
int CNtSecurity::GetDCName( IN LPWSTR pszDomain, OUT LPWSTR *pszDC, IN LPWSTR pszServer ) { LPBYTE pBuf; NET_API_STATUS Status;
Status = NetGetDCName(pszServer, pszDomain, &pBuf);
if (Status == NERR_DCNotFound) return NotFound;
if (Status == ERROR_INVALID_NAME) return InvalidName;
LPWSTR pRetStr = new wchar_t[wcslen(LPWSTR(pBuf)) + 1]; wcscpy(pRetStr, LPWSTR(pBuf)); NetApiBufferFree(pBuf);
*pszDC = pRetStr; return NoError; } */ //***************************************************************************
//
// CNtSecurity::IsUserInGroup2
//
// Determines if the use belongs to a particular NTLM group by checking the
// group list in the access token. This may be a better way than the
// current implementation.
//
// Parameters:
// <hToken> The user's access token.
// <Sid> Object containing the sid of the group being tested.
//
// Return value:
// TRUE if the user belongs to the group.
//
//***************************************************************************
/*
BOOL CNtSecurity::IsUserInGroup2( HANDLE hAccessToken, CNtSid & Sid) { if(!IsNT() || hAccessToken == NULL) return FALSE; // No point in further testing
DWORD dwErr;
// Obtain and the groups from token. Start off by determining how much
// memory is required.
TOKEN_GROUPS Groups; DWORD dwLen = 0; GetTokenInformation(hAccessToken, TokenGroups, &Groups, sizeof(Groups), &dwLen); if(dwLen == 0) return FALSE;
// Load up the group list
int BUFFER_SIZE = dwLen; BYTE * byteBuffer = new BYTE[BUFFER_SIZE]; if(byteBuffer == NULL) return FALSE; DWORD dwSizeRequired = 0; BOOL bResult = GetTokenInformation( hAccessToken, TokenGroups, (void *) byteBuffer, BUFFER_SIZE, &dwSizeRequired ); if ( !bResult ) { delete [] byteBuffer; dwErr = GetLastError(); return ( FALSE ); }
// Loop through the group list looking for a match
BOOL bFound = FALSE; PTOKEN_GROUPS pGroups = (PTOKEN_GROUPS) byteBuffer; for ( unsigned i = 0; i < pGroups->GroupCount; i++ ) { CNtSid test(pGroups->Groups[i].Sid); if(test == Sid) { bFound = TRUE; break; } }
delete [] byteBuffer; return bFound; }*/
//***************************************************************************
//
// CNtSecurity::IsUserInGroup
//
// Determines if the use belongs to a particular NTLM group.
//
// Parameters:
// <hToken> The user's access token.
// <Sid> Object containing the sid of the group being tested.
//
// Return value:
// TRUE if the user belongs to the group.
//
//***************************************************************************
BOOL CNtSecurity::IsUserInGroup( HANDLE hAccessToken, CNtSid & Sid) { if(!IsNT() || hAccessToken == NULL) return FALSE; // No point in further testing
// create a security descriptor with a single entry which
// is the group in question.
CNtAce ace(1,ACCESS_ALLOWED_ACE_TYPE,0,Sid); if(ace.GetStatus() != 0) return FALSE;
CNtAcl acl; acl.AddAce(&ace); CNtSecurityDescriptor sd; sd.SetDacl(&acl); sd.SetGroup(&Sid); // Access check doesnt really care what you put, so long as you
// put something for the owner
sd.SetOwner(&Sid);
GENERIC_MAPPING map; map.GenericRead = 1; map.GenericWrite = 0; map.GenericExecute = 0; map.GenericAll = 0; PRIVILEGE_SET ps[10]; DWORD dwSize = 10 * sizeof(PRIVILEGE_SET);
DWORD dwGranted; BOOL bResult;
BOOL bOK = ::AccessCheck(sd.GetPtr(), hAccessToken, 1, &map, ps, &dwSize, &dwGranted, &bResult); DWORD dwErr = GetLastError(); if(bOK && bResult) return TRUE; else return FALSE; } //***************************************************************************
//
// CNtSecurity::DoesGroupExist
//
// Determines if a group exists.
//
// Return value:
// TRUE if the group exists
//
//***************************************************************************
bool CNtSecurity::DoesLocalGroupExist( LPWSTR pwszGroup, LPWSTR pwszMachine) { bool bRet = false; HINSTANCE hAPI = LoadLibraryEx(__TEXT("netapi32"), NULL, 0); if(hAPI) { NET_API_STATUS (NET_API_FUNCTION *pfnGetInfo)(LPWSTR , LPWSTR ,DWORD , LPBYTE *); (FARPROC&)pfnGetInfo = GetProcAddress(hAPI, "NetLocalGroupGetInfo"); long lRes; if(pfnGetInfo) { LOCALGROUP_INFO_1 * info;
lRes = pfnGetInfo(pwszMachine, pwszGroup, 1, (LPBYTE *)&info); if(lRes == NERR_Success) { NET_API_STATUS (NET_API_FUNCTION *pfnBufferFree)(LPVOID); (FARPROC&)pfnBufferFree = GetProcAddress(hAPI, "NetApiBufferFree"); if(pfnBufferFree) pfnBufferFree(info);
bRet = true; } } FreeLibrary(hAPI); } return bRet; }
//***************************************************************************
//
// CNtSecurity::AddLocalGroup
//
// Determines if a group exists.
//
// Return value:
// TRUE if the group exists
//
//***************************************************************************
bool CNtSecurity::AddLocalGroup(LPWSTR pwszGroupName, LPWSTR pwszGroupDescription) { bool bRet = false; HINSTANCE hAPI = LoadLibraryEx(__TEXT("netapi32"), NULL, 0); if(hAPI) { LOCALGROUP_INFO_1 info; info.lgrpi1_name = pwszGroupName; info.lgrpi1_comment = pwszGroupDescription; NET_API_STATUS (*pfnLocalAdd)(LPWSTR ,DWORD , LPBYTE ,LPDWORD);
(FARPROC&)pfnLocalAdd = GetProcAddress(hAPI, "NetLocalGroupAdd"); if(pfnLocalAdd) bRet = (pfnLocalAdd(NULL, 1, (LPBYTE)&info, NULL) == NERR_Success); FreeLibrary(hAPI); } return bRet; }
//***************************************************************************
//
//***************************************************************************
void ChangeSecurity(CNtSecurityDescriptor *pSD) { CNtAcl Acl;
ACCESS_MASK Mask = FULL_CONTROL;
CNtSid Sid(L"Everyone", 0); CNtAce Ace( Mask, ACCESS_ALLOWED_ACE_TYPE, CONTAINER_INHERIT_ACE | OBJECT_INHERIT_ACE, Sid);
if (Ace.GetStatus() != CNtAce::NoError) { printf("Bad ACE\n"); return; }
CNtAce Ace2(Ace); CNtAce Ace3; Ace3 = Ace2;
Acl.AddAce(&Ace3);
CNtAcl Acl2(Acl); CNtAcl Acl3; Acl3 = Acl2;
pSD->SetDacl(&Acl);
CNtSecurityDescriptor SD2(*pSD); CNtSecurityDescriptor SD3; SD3.SetDacl(&Acl3);
SD3 = SD2;
*pSD = SD3;
CNtSid *pOwner = pSD->GetOwner();
if (pOwner) pSD->SetOwner(pOwner); }
//***************************************************************************
//
//***************************************************************************
void SidTest(char *pUser, char *pMachine) { wchar_t User[128], Mach[128];
MultiByteToWideChar(CP_ACP, 0, pUser, -1, User, 128); MultiByteToWideChar(CP_ACP, 0, pMachine, -1, Mach, 128);
printf("------SID TEST----------\n");
LPWSTR pMach2 = 0; if (pMachine) pMach2 = Mach;
CNtSid TseSid(User, pMach2);
printf("TseSid status = %d\n", TseSid.GetStatus());
TseSid.Dump(); }
void TestRegSec() {
CNtSecurityDescriptor *pSD = 0;
int nRes = CNtSecurity::GetRegSD(HKEY_LOCAL_MACHINE,WBEM_REG_WBEM, DACL_SECURITY_INFORMATION, &pSD);
printf("----------------BEGIN SECURITY KEY DUMP-------------\n"); pSD->Dump(); printf("----------------END SECURITY KEY DUMP-------------\n");
if (pSD->IsValid()) nRes = CNtSecurity::SetRegSD(HKEY_LOCAL_MACHINE, WBEM_REG_WBEM, DACL_SECURITY_INFORMATION, pSD); }
/*
void main(int argc, char **argv) { BOOL bRes;
printf("Test\n");
if (argc < 2) return;
bRes = CNtSecurity::SetPrivilege(SE_SECURITY_NAME, TRUE);
CNtSecurity::DumpPrivileges();
CNtSecurityDescriptor *pSD = 0;
int nRes = CNtSecurity::GetFileSD(argv[1], DACL_SECURITY_INFORMATION, &pSD);
if (nRes == CNtSecurity::NotFound) { printf("No such file/dir\n"); return; }
if (nRes != 0) { printf("Cannot get security descriptor. Last=%d\n", GetLastError()); }
pSD->Dump();
delete pSD; } */ //***************************************************************************
//
// FIsRunningAsService
//
// Purpose:
// Determines if the current process is running as a service.
//
// Returns:
// FALSE if running interactively
// TRUE if running as a service.
//
//***************************************************************************
/*BOOL FIsRunningAsService(VOID)
{ HWINSTA hws = GetProcessWindowStation(); if(hws == NULL) return TRUE;
DWORD LengthNeeded;
BOOL bService = FALSE; USEROBJECTFLAGS fl; if(GetUserObjectInformation(hws, UOI_FLAGS, &fl, sizeof(USEROBJECTFLAGS), &LengthNeeded)) if(fl.dwFlags & WSF_VISIBLE) bService = FALSE; else bService = TRUE; CloseWindowStation(hws); return bService; }*/
C9XAce::C9XAce( ACCESS_MASK Mask, DWORD AceType, DWORD dwAceFlags, LPWSTR pUser ) { m_wszFullName = NULL; if(pUser) m_wszFullName = Macro_CloneLPWSTR(pUser); m_dwAccess = Mask; m_iFlags = dwAceFlags; m_iType = AceType; }
C9XAce::~C9XAce() { if(m_wszFullName) delete [] m_wszFullName; }
HRESULT C9XAce::GetFullUserName(WCHAR * pBuff, DWORD dwSize) { if(pBuff && m_wszFullName) { wcsncpy(pBuff, m_wszFullName, dwSize-1); pBuff[dwSize-1] = 0; return S_OK; } return WBEM_E_FAILED; }
HRESULT C9XAce::GetFullUserName2(WCHAR ** pBuff) { if(wcslen(m_wszFullName) < 1) return WBEM_E_FAILED;
int iLen = wcslen(m_wszFullName)+4; *pBuff = new WCHAR[iLen]; if(*pBuff == NULL) return WBEM_E_OUT_OF_MEMORY;
// there are two possible formats, the first is "UserName", and the
// second is "domain\username".
WCHAR * pSlash; for(pSlash = m_wszFullName; *pSlash && *pSlash != L'\\'; pSlash++); // intentional
if(*pSlash && pSlash > m_wszFullName) { // got a domain\user, convert to domain|user
wcscpy(*pBuff, m_wszFullName); for(pSlash = *pBuff; *pSlash; pSlash++) if(*pSlash == L'\\') { *pSlash = L'|'; break; } } else { // got a "user", convert to ".|user"
wcscpy(*pBuff, L".|"); wcscat(*pBuff, m_wszFullName); } return S_OK; }
//***************************************************************************
//
// C9XAce::GetSerializedSize
//
// Returns the number of bytes needed to store this
//
//***************************************************************************
DWORD C9XAce::GetSerializedSize() { if (m_wszFullName == 0 || wcslen(m_wszFullName) == 0) return 0; return 2 * (wcslen(m_wszFullName) + 1) + 12; }
//***************************************************************************
//
// C9XAce::Serialize
//
// Serializes the ace. The serialized version will consist of
// <DOMAIN\USERNAME LPWSTR><FLAGS><TYPE><MASK>
//
// Note that the fields are dwords except for the name.
//
//***************************************************************************
bool C9XAce::Serialize(BYTE * pData) { wcscpy((LPWSTR)pData, m_wszFullName); pData += 2*(wcslen(m_wszFullName) + 1); DWORD * pdwData = (DWORD *)pData; *pdwData = m_iFlags; pdwData++; *pdwData = m_iType; pdwData++; *pdwData = m_dwAccess; pdwData++; return true; }
//***************************************************************************
//
// C9XAce::Deserialize
//
// Deserializes the ace. See the comments for Serialize for comments.
//
//***************************************************************************
bool C9XAce::Deserialize(BYTE * pData) { m_wszFullName = new WCHAR[wcslen((LPWSTR)pData) + 1]; if (!m_wszFullName) return false;
wcscpy(m_wszFullName, (LPWSTR)pData); pData += 2*(wcslen(m_wszFullName) + 1);
DWORD * pdwData = (DWORD *)pData;
m_iFlags = *pdwData; pdwData++; m_iType = *pdwData; pdwData++; m_dwAccess = *pdwData; pdwData++; return true;
}
//***************************************************************************
//
// BOOL SetObjectAccess2
//
// DESCRIPTION:
//
// Adds read/open and set access for the everyone group to an object.
//
// PARAMETERS:
//
// hObj Object to set access on.
//
// RETURN VALUE:
//
// Returns TRUE if OK.
//
//***************************************************************************
BOOL SetObjectAccess2(IN HANDLE hObj) { PSECURITY_DESCRIPTOR pSD = NULL; DWORD dwLastErr = 0; BOOL bRet = FALSE;
// no point if we arnt on nt
if(!IsNT()) { return TRUE; }
// figure out how much space to allocate
DWORD dwSizeNeeded; bRet = GetKernelObjectSecurity( hObj, // handle of object to query
DACL_SECURITY_INFORMATION, // requested information
pSD, // address of security descriptor
0, // size of buffer for security descriptor
&dwSizeNeeded); // address of required size of buffer
if(bRet == TRUE || (ERROR_INSUFFICIENT_BUFFER != GetLastError())) return FALSE;
pSD = new BYTE[dwSizeNeeded]; if(pSD == NULL) return FALSE;
// Get the data
bRet = GetKernelObjectSecurity( hObj, // handle of object to query
DACL_SECURITY_INFORMATION, // requested information
pSD, // address of security descriptor
dwSizeNeeded, // size of buffer for security descriptor
&dwSizeNeeded ); // address of required size of buffer
if(bRet == FALSE) { delete pSD; return FALSE; } // move it into object for
CNtSecurityDescriptor sd(pSD,TRUE); // Acquires ownership of the memory
if(sd.GetStatus() != 0) return FALSE; CNtAcl acl; if(!sd.GetDacl(acl)) return FALSE;
// Create an everyone ace
PSID pRawSid; SID_IDENTIFIER_AUTHORITY id2 = SECURITY_WORLD_SID_AUTHORITY;;
if(AllocateAndInitializeSid( &id2, 1, 0,0,0,0,0,0,0,0,&pRawSid)) { CNtSid SidUsers(pRawSid); FreeSid(pRawSid); CNtAce * pace = new CNtAce(EVENT_MODIFY_STATE | SYNCHRONIZE, ACCESS_ALLOWED_ACE_TYPE, 0 , SidUsers); if(pace == NULL) return FALSE; if( pace->GetStatus() == 0) acl.AddAce(pace); delete pace;
}
if(acl.GetStatus() != 0) return FALSE; sd.SetDacl(&acl); bRet = SetKernelObjectSecurity(hObj, DACL_SECURITY_INFORMATION, sd.GetPtr()); return TRUE; }
//***************************************************************************
//
// IsAdmin
//
// returns TRUE if we are a member of the admin group or running as
// NETWORK_SERVICE or running as LOCAL_SERVICE
//
//***************************************************************************
BOOL IsAdmin(HANDLE hAccess) { BOOL bRet = FALSE; PSID pRawSid; SID_IDENTIFIER_AUTHORITY id = SECURITY_NT_AUTHORITY;
if(AllocateAndInitializeSid( &id, 2, SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_ADMINS, 0,0,0,0,0,0,&pRawSid)) { CNtSid Sid(pRawSid); bRet = CNtSecurity::IsUserInGroup(hAccess, Sid);
// We're done with this
FreeSid( pRawSid ); } // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Lets check for NETWORK_SERVICE and LOCAL_SERVICE since
// they also want full admin rights
// COMMENTED OUT DUE TO: 504554
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//if ( !bRet )
//{
// bRet = IsNetworkService ( hAccess );
// if ( !bRet )
// {
// bRet = IsLocalService ( hAccess );
// }
//}
return bRet; }
//***************************************************************************
//
// IsNetworkService
//
// returns TRUE if we are running as NETWORK_SERVICE
//
//***************************************************************************
BOOL IsNetworkService ( HANDLE hAccess ) { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Construct the NETWORK_SERVICE SID
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SID_IDENTIFIER_AUTHORITY id = SECURITY_NT_AUTHORITY; PSID pSidSystem; BOOL bRes = FALSE; if ( AllocateAndInitializeSid(&id, 1, SECURITY_NETWORK_SERVICE_RID, 0, 0,0,0,0,0,0,&pSidSystem) ) { if ( !CheckTokenMembership ( hAccess, pSidSystem, &bRes ) ) { bRes = FALSE; } FreeSid ( pSidSystem ); }
return bRes; }
//***************************************************************************
//
// IsLocalService
//
// returns TRUE if we are running as LOCAL_SERVICE
//
//***************************************************************************
BOOL IsLocalService ( HANDLE hAccess ) { // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Construct the NETWORK_SERVICE SID
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SID_IDENTIFIER_AUTHORITY id = SECURITY_NT_AUTHORITY; PSID pSidSystem; BOOL bRes = FALSE; if ( AllocateAndInitializeSid(&id, 1, SECURITY_LOCAL_SERVICE_RID, 0, 0,0,0,0,0,0,&pSidSystem) ) { if ( !CheckTokenMembership ( hAccess, pSidSystem, &bRes ) ) { bRes = FALSE; } FreeSid ( pSidSystem ); }
return bRes; }
//***************************************************************************
//
// IsInAdminGroup
//
// returns TRUE if we are a member of the admin group.
//
//***************************************************************************
BOOL IsInAdminGroup() { HANDLE hAccessToken = INVALID_HANDLE_VALUE; if(S_OK != GetAccessToken(hAccessToken)) return TRUE; // Not having a token indicates an internal thread
CCloseHandle cm(hAccessToken);
DWORD dwMask = 0;
if(IsAdmin(hAccessToken)) return TRUE; else return FALSE; }
//***************************************************************************
//
// HRESULT GetAccessToken
//
// Gets the access token and sets it the the reference argument.
//
//***************************************************************************
HRESULT GetAccessToken(HANDLE &hAccessToken) { // Ensures auto release of the mutex if we crash
CAutoSecurityMutex autosm;
bool bIsImpersonating = WbemIsImpersonating();
HRESULT hRes = S_OK; if(bIsImpersonating == false) hRes = WbemCoImpersonateClient(); if(hRes == S_OK) { BOOL bOK = OpenThreadToken(GetCurrentThread(), TOKEN_READ, TRUE, &hAccessToken); if(bOK == FALSE) { hRes = WBEM_E_INVALID_CONTEXT; } else hRes = S_OK; }
if(bIsImpersonating == false) WbemCoRevertToSelf();
// The security mutex will auto release
return hRes; }
|