|
|
/***
*asincos.c - inverse sin, cos * * Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved. * *Purpose: * *Revision History: * 8-15-91 GDP written * 12-26-91 GDP support IEEE exceptions * 06-23-92 GDP asin(denormal) now raises underflow exception * 02-06-95 JWM Mac merge * 10-07-97 RDL Added IA64. * *******************************************************************************/
#include <math.h>
#include <trans.h>
#if defined(_M_IA64)
#pragma function(asin, acos)
#endif
static double _asincos(double x, int flag); static double const a[2] = { 0.0, 0.78539816339744830962 };
static double const b[2] = { 1.57079632679489661923, 0.78539816339744830962 };
static double const EPS = 1.05367121277235079465e-8; /* 2^(-53/2) */
/* constants for the rational approximation */ static double const p1 = -0.27368494524164255994e+2; static double const p2 = 0.57208227877891731407e+2; static double const p3 = -0.39688862997504877339e+2; static double const p4 = 0.10152522233806463645e+2; static double const p5 = -0.69674573447350646411e+0; static double const q0 = -0.16421096714498560795e+3; static double const q1 = 0.41714430248260412556e+3; static double const q2 = -0.38186303361750149284e+3; static double const q3 = 0.15095270841030604719e+3; static double const q4 = -0.23823859153670238830e+2; /* q5 = 1 is not needed (avoid myltiplying by 1) */
#define Q(g) (((((g + q4) * g + q3) * g + q2) * g + q1) * g + q0)
#define R(g) (((((p5 * g + p4) * g + p3) * g + p2) * g + p1) * g) / Q(g)
/***
*double asin(double x) - inverse sin *double acos(double x) - inverse cos * *Purpose: * Compute arc sin, arc cos. * The algorithm (reduction / rational approximation) is * taken from Cody & Waite. * *Entry: * *Exit: * *Exceptions: * P, I * (denormals are accepted) *******************************************************************************/ double asin(double x) { return _asincos(x,0); }
double acos(double x) { return _asincos(x,1); }
static double _asincos(double x, int flag) { uintptr_t savedcw; double qnan; int who; double y,result; double g; int i;
/* save user fp control word */ savedcw = _maskfp();
if (flag) { who = OP_ACOS; qnan = QNAN_ACOS; } else { who = OP_ASIN; qnan = QNAN_ASIN; }
/* check for infinity or NAN */ if (IS_D_SPECIAL(x)){ switch(_sptype(x)) { case T_PINF: case T_NINF: return _except1(FP_I,who,x,qnan,savedcw); case T_QNAN: return _handle_qnan1(who,x,savedcw); default: //T_SNAN
return _except1(FP_I,who,x,_s2qnan(x),savedcw); } }
// do test for zero after making sure that x is not special
// because the compiler does not handle NaNs for the time
if (x == 0.0 && !flag) { RETURN(savedcw, x); }
y = ABS(x); if (y < EPS) { i = flag; result = y; if (IS_D_DENORM(result)) { // this should only happen for sin(denorm). Use x as a result
return _except1(FP_U | FP_P,who,x,_add_exp(x, IEEE_ADJUST),savedcw); } } else { if (y > .5) { i = 1-flag; if (y > 1.0) { return _except1(FP_I,who,x,qnan,savedcw); } else if (y == 1.0) { /* separate case to avoid domain error in sqrt */ if (flag && x >= 0.0) { //
// acos(1.0) is exactly computed as 0.0
//
RETURN(savedcw, 0.0); } y = 0.0; g = 0.0;
} else { /* now even if y is as close to 1 as possible,
* 1-y is still not a denormal. * e.g. for y=3fefffffffffffff, 1-y is about 10^(-16) * So we can speed up division */ g = _add_exp(1.0 - y,-1); /* g and sqrt(g) are not denomrals either,
* even in the worst case * So we can speed up multiplication */ y = _add_exp(-_fsqrt(g),1); } } else { /* y <= .5 */ i = flag; g = y*y; } result = y + y * R(g); }
if (flag == 0) { /* compute asin */ if (i) { /* a[i] is non zero if i is nonzero */ result = (a[i] + result) + a[i]; } if (x < 0) result = -result; } else { /* compute acos */ if (x < 0) result = (b[i] + result) + b[i]; else result = (a[i] - result) + a[i]; }
RETURN_INEXACT1 (who,x,result,savedcw); }
|