|
|
/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
miamd.h
Abstract:
This module contains the private data structures and procedure prototypes for the hardware dependent portion of the memory management system.
This module is specifically tailored for the AMD 64-bit processor.
Author:
Landy Wang (landyw) 08-Apr-2000
Revision History:
--*/
/*++
Virtual Memory Layout on the AMD64 is:
+------------------------------------+ 0000000000000000 | User mode addresses - 8tb minus 64k| | | | | 000007FFFFFEFFFF | | MM_HIGHEST_USER_ADDRESS +------------------------------------+ 000007FFFFFF0000 | 64k No Access Region | MM_USER_PROBE_ADDRESS 000007FFFFFFFFFF | | +------------------------------------+
. +------------------------------------+ FFFF080000000000 | Start of System space | MM_SYSTEM_RANGE_START +------------------------------------+ FFFFF68000000000 | 512gb four level page table map. | PTE_BASE +------------------------------------+ FFFFF70000000000 | HyperSpace - working set lists | HYPER_SPACE | and per process memory management | | structures mapped in this 512gb | | region. | HYPER_SPACE_END +------------------------------------+ MM_WORKING_SET_END FFFFF78000000000 | Shared system page | KI_USER_SHARED_DATA +------------------------------------+ FFFFF78000001000 | The system cache working set | MM_SYSTEM_CACHE_WORKING_SET | information resides in this | | 512gb-4k region. | | | +------------------------------------+ . . Note the ranges below are sign extended for > 43 bits and therefore can be used with interlocked slists. The system address space above is NOT. . . +------------------------------------+ FFFFF80000000000 | Start of 1tb of | MM_KSEG0_BASE | physically addressable memory. | MM_KSEG2_BASE +------------------------------------+ FFFFF90000000000 | win32k.sys | | | | Hydra configurations have session | | data structures here. | | | | This is a 512gb region. | +------------------------------------+ | | MM_SYSTEM_SPACE_START FFFFF98000000000 | System cache resides here. | MM_SYSTEM_CACHE_START | Kernel mode access only. | | 1tb. | | | MM_SYSTEM_CACHE_END +------------------------------------+ FFFFFA8000000000 | Start of paged system area. | MM_PAGED_POOL_START | Kernel mode access only. | | 128gb. | +------------------------------------+ | System mapped views start just | | after paged pool. Default is | | 104MB, can be registry-overridden. | | 8GB maximum. | | | +------------------------------------+ FFFFFAA000000000 | System PTE pool. | MM_LOWEST_NONPAGED_SYSTEM_START | Kernel mode access only. | | 128gb. | +------------------------------------+ FFFFFAC000000000 | NonPaged pool. | MM_NON_PAGED_POOL_START | Kernel mode access only. | | 128gb. | | | FFFFFADFFFFFFFFF | NonPaged System area | MM_NONPAGED_POOL_END +------------------------------------+ . . . . +------------------------------------+ FFFFFFFF80000000 | | | Reserved for the HAL. 2gb. | FFFFFFFFFFFFFFFF | | MM_SYSTEM_SPACE_END +------------------------------------+
--*/
#define _MI_PAGING_LEVELS 4
#define _MI_MORE_THAN_4GB_ 1
#define IMAGE_FILE_MACHINE_NATIVE IMAGE_FILE_MACHINE_AMD64
//
// Top level PXE mapping allocations:
//
// 0x0->0xF: 0x10 user entries
// 0x1ed: 0x1 for selfmaps
// 0x1ee: 0x1 hyperspace entry
// 0x1ef: 0x1 entry for syscache WSL & shared user data
// 0x1f0->0x1ff: 0x10 kernel entries
//
//
// Define empty list markers.
//
#define MM_EMPTY_LIST ((ULONG_PTR)-1) //
#define MM_EMPTY_PTE_LIST 0xFFFFFFFFUI64 // N.B. tied to MMPTE definition
#define MI_PTE_BASE_FOR_LOWEST_KERNEL_ADDRESS (MiGetPteAddress (MM_KSEG0_BASE))
#define MI_PTE_BASE_FOR_LOWEST_SESSION_ADDRESS (MiGetPteAddress (MM_SESSION_SPACE_DEFAULT))
//
// This is the size of the region used by the loader.
//
extern ULONG_PTR MmBootImageSize;
//
// PAGE_SIZE for AMD64 is 4k, virtual page is 36 bits with a PAGE_SHIFT
// byte offset.
//
#define MM_VIRTUAL_PAGE_FILLER 0
#define MM_VIRTUAL_PAGE_SIZE (48 - 12)
//
// Address space layout definitions.
//
#define MM_KSEG0_BASE 0xFFFFF80000000000UI64
#define MM_KSEG2_BASE 0xFFFFF90000000000UI64
#define MM_PAGES_IN_KSEG0 ((MM_KSEG2_BASE - MM_KSEG0_BASE) >> PAGE_SHIFT)
#define MM_SYSTEM_SPACE_START 0xFFFFF98000000000UI64
#define MM_SYSTEM_SPACE_END 0xFFFFFFFFFFFFFFFFUI64
#define MM_USER_ADDRESS_RANGE_LIMIT 0xFFFFFFFFFFFFFFFF // user address range limit
#define MM_MAXIMUM_ZERO_BITS 53 // maximum number of zero bits
//
// Define the start and maximum size for the system cache.
//
#define MM_SYSTEM_CACHE_START 0xFFFFF98000000000UI64
#define MM_SYSTEM_CACHE_END 0xFFFFFA8000000000UI64
#define MM_MAXIMUM_SYSTEM_CACHE_SIZE \
((MM_SYSTEM_CACHE_END - MM_SYSTEM_CACHE_START) >> PAGE_SHIFT)
#define MM_SYSTEM_CACHE_WORKING_SET 0xFFFFF78000001000UI64
//
// Define area for mapping views into system space.
//
#define MM_SESSION_SPACE_DEFAULT 0xFFFFF90000000000UI64
#define MM_SESSION_SPACE_DEFAULT_END 0xFFFFF98000000000UI64
#define MM_SYSTEM_VIEW_SIZE (104 * 1024 * 1024)
//
// Various system resource locations.
//
#define MM_PAGED_POOL_START ((PVOID)0xFFFFFA8000000000)
#define MM_LOWEST_NONPAGED_SYSTEM_START ((PVOID)0xFFFFFAA000000000)
#define MM_NONPAGED_POOL_END ((PVOID)(0xFFFFFAE000000000 - (16 * PAGE_SIZE)))
extern PVOID MmDebugVa; #define MM_DEBUG_VA MmDebugVa
extern PVOID MmCrashDumpVa; #define MM_CRASH_DUMP_VA MmCrashDumpVa
#define NON_PAGED_SYSTEM_END ((PVOID)0xFFFFFFFFFFFFFFF0)
extern BOOLEAN MiWriteCombiningPtes;
//
// Define absolute minimum and maximum count for system PTEs.
//
#define MM_MINIMUM_SYSTEM_PTES 7000
#define MM_MAXIMUM_SYSTEM_PTES (16*1024*1024)
#define MM_DEFAULT_SYSTEM_PTES 11000
//
// Pool limits.
//
// The maximum amount of nonpaged pool that can be initially created.
//
#define MM_MAX_INITIAL_NONPAGED_POOL (128 * 1024 * 1024)
//
// The total amount of nonpaged pool (initial pool + expansion).
//
#define MM_MAX_ADDITIONAL_NONPAGED_POOL (((SIZE_T)128 * 1024 * 1024 * 1024) - 16)
//
// The maximum amount of paged pool that can be created.
//
#define MM_MAX_PAGED_POOL ((SIZE_T)128 * 1024 * 1024 * 1024)
#define MM_MAX_DEFAULT_NONPAGED_POOL ((SIZE_T)8 * 1024 * 1024 * 1024)
//
// Structure layout definitions.
//
#define MM_PROTO_PTE_ALIGNMENT ((ULONG)MM_MAXIMUM_NUMBER_OF_COLORS * (ULONG)PAGE_SIZE)
//
// Define the address bits mapped by one PXE/PPE/PDE/PTE entry.
//
#define MM_VA_MAPPED_BY_PTE ((ULONG_PTR)PAGE_SIZE)
#define MM_VA_MAPPED_BY_PDE (PTE_PER_PAGE * MM_VA_MAPPED_BY_PTE)
#define MM_VA_MAPPED_BY_PPE (PDE_PER_PAGE * MM_VA_MAPPED_BY_PDE)
#define MM_VA_MAPPED_BY_PXE (PPE_PER_PAGE * MM_VA_MAPPED_BY_PPE)
//
// Define the address bits mapped by PPE and PDE entries.
//
// A PXE entry maps 9+9+9+12 = 39 bits of address space.
// A PPE entry maps 9+9+12 = 30 bits of address space.
// A PDE entry maps 9+12 = 21 bits of address space.
//
#define PAGE_DIRECTORY0_MASK (MM_VA_MAPPED_BY_PXE - 1)
#define PAGE_DIRECTORY1_MASK (MM_VA_MAPPED_BY_PPE - 1)
#define PAGE_DIRECTORY2_MASK (MM_VA_MAPPED_BY_PDE - 1)
#define PTE_SHIFT 3
//
// The number of bits in a virtual address.
//
#define VIRTUAL_ADDRESS_BITS 48
#define VIRTUAL_ADDRESS_MASK ((((ULONG_PTR)1) << VIRTUAL_ADDRESS_BITS) - 1)
//
// The number of bits in a physical address.
//
#define PHYSICAL_ADDRESS_BITS 40
#define MM_MAXIMUM_NUMBER_OF_COLORS (1)
//
// AMD64 does not require support for colored pages.
//
#define MM_NUMBER_OF_COLORS (1)
//
// Mask for obtaining color from a physical page number.
//
#define MM_COLOR_MASK (0)
//
// Boundary for aligned pages of like color upon.
//
#define MM_COLOR_ALIGNMENT (0)
//
// Mask for isolating color from virtual address.
//
#define MM_COLOR_MASK_VIRTUAL (0)
//
// Define 256k worth of secondary colors.
//
#define MM_SECONDARY_COLORS_DEFAULT (64)
#define MM_SECONDARY_COLORS_MIN (2)
#define MM_SECONDARY_COLORS_MAX (1024)
//
// Maximum number of paging files.
//
#define MAX_PAGE_FILES 16
//
// Hyper space definitions.
//
#define HYPER_SPACE ((PVOID)0xFFFFF70000000000)
#define HYPER_SPACE_END 0xFFFFF77FFFFFFFFFUI64
#define FIRST_MAPPING_PTE 0xFFFFF70000000000
#define NUMBER_OF_MAPPING_PTES 126
#define LAST_MAPPING_PTE \
(FIRST_MAPPING_PTE + (NUMBER_OF_MAPPING_PTES * PAGE_SIZE))
#define COMPRESSION_MAPPING_PTE ((PMMPTE)((ULONG_PTR)LAST_MAPPING_PTE + PAGE_SIZE))
#define IMAGE_MAPPING_PTE ((PMMPTE)((ULONG_PTR)COMPRESSION_MAPPING_PTE + PAGE_SIZE))
#define NUMBER_OF_ZEROING_PTES 256
#define VAD_BITMAP_SPACE ((PVOID)((ULONG_PTR)IMAGE_MAPPING_PTE + PAGE_SIZE))
#define WORKING_SET_LIST ((PVOID)((ULONG_PTR)VAD_BITMAP_SPACE + PAGE_SIZE))
#define MM_MAXIMUM_WORKING_SET \
((((ULONG_PTR)8 * 1024 * 1024 * 1024 * 1024) - (64 * 1024 * 1024)) >> PAGE_SHIFT) //8Tb-64Mb
#define MmWorkingSetList ((PMMWSL)WORKING_SET_LIST)
#define MmWsle ((PMMWSLE)((PUCHAR)WORKING_SET_LIST + sizeof(MMWSL)))
#define MM_WORKING_SET_END (HYPER_SPACE_END + 1)
//
// Define masks for fields within the PTE.
//
#define MM_PTE_VALID_MASK 0x1
#if defined(NT_UP)
#define MM_PTE_WRITE_MASK 0x2
#else
#define MM_PTE_WRITE_MASK 0x800
#endif
#define MM_PTE_OWNER_MASK 0x4
#define MM_PTE_WRITE_THROUGH_MASK 0x8
#define MM_PTE_CACHE_DISABLE_MASK 0x10
#define MM_PTE_ACCESS_MASK 0x20
#if defined(NT_UP)
#define MM_PTE_DIRTY_MASK 0x40
#else
#define MM_PTE_DIRTY_MASK 0x42
#endif
#define MM_PTE_LARGE_PAGE_MASK 0x80
#define MM_PTE_GLOBAL_MASK 0x100
#define MM_PTE_COPY_ON_WRITE_MASK 0x200
#define MM_PTE_PROTOTYPE_MASK 0x400
#define MM_PTE_TRANSITION_MASK 0x800
//
// Bit fields to or into PTE to make a PTE valid based on the
// protection field of the invalid PTE.
//
#define MM_PTE_NOACCESS 0x0 // not expressable on AMD64
#define MM_PTE_READONLY 0x0
#define MM_PTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_WRITECOPY 0x200 // read-only copy on write bit set.
#define MM_PTE_EXECUTE 0x0 // read-only on AMD64
#define MM_PTE_EXECUTE_READ 0x0
#define MM_PTE_EXECUTE_READWRITE MM_PTE_WRITE_MASK
#define MM_PTE_EXECUTE_WRITECOPY 0x200 // read-only copy on write bit set.
#define MM_PTE_NOCACHE 0x010
#define MM_PTE_GUARD 0x0 // not expressable on AMD64
#define MM_PTE_CACHE 0x0
#define MM_PROTECT_FIELD_SHIFT 5
//
// Bits available for the software working set index within the hardware PTE.
//
#define MI_MAXIMUM_PTE_WORKING_SET_INDEX (1 << _HARDWARE_PTE_WORKING_SET_BITS)
//
// Zero PTE
//
#define MM_ZERO_PTE 0
//
// Zero Kernel PTE
//
#define MM_ZERO_KERNEL_PTE 0
//
// A demand zero PTE with a protection or PAGE_READWRITE.
//
#define MM_DEMAND_ZERO_WRITE_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
//
// A demand zero PTE with a protection or PAGE_READWRITE for system space.
//
#define MM_KERNEL_DEMAND_ZERO_PTE (MM_READWRITE << MM_PROTECT_FIELD_SHIFT)
//
// A no access PTE for system space.
//
#define MM_KERNEL_NOACCESS_PTE (MM_NOACCESS << MM_PROTECT_FIELD_SHIFT)
//
// Kernel stack alignment requirements.
//
#define MM_STACK_ALIGNMENT 0x0
#define MM_STACK_OFFSET 0x0
//
// System process definitions
//
#define PXE_PER_PAGE 512
#define PPE_PER_PAGE 512
#define PDE_PER_PAGE 512
#define PTE_PER_PAGE 512
#define PTE_PER_PAGE_BITS 10 // This handles the case where the page is full
#if PTE_PER_PAGE_BITS > 32
error - too many bits to fit into MMPTE_SOFTWARE or MMPFN.u1 #endif
//
// Number of page table pages for user addresses.
//
#define MM_USER_PXES (0x10)
#define MM_USER_PAGE_TABLE_PAGES ((ULONG_PTR)PDE_PER_PAGE * PPE_PER_PAGE * MM_USER_PXES)
#define MM_USER_PAGE_DIRECTORY_PAGES (PPE_PER_PAGE * MM_USER_PXES)
#define MM_USER_PAGE_DIRECTORY_PARENT_PAGES (MM_USER_PXES)
//++
//VOID
//MI_MAKE_VALID_PTE (
// OUT OUTPTE,
// IN FRAME,
// IN PMASK,
// IN PPTE
// );
//
// Routine Description:
//
// This macro makes a valid PTE from a page frame number, protection mask,
// and owner.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the transition PTE.
//
// FRAME - Supplies the page frame number for the PTE.
//
// PMASK - Supplies the protection to set in the transition PTE.
//
// PPTE - Supplies a pointer to the PTE which is being made valid.
// For prototype PTEs NULL should be specified.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE(OUTPTE, FRAME, PMASK, PPTE) { \
(OUTPTE).u.Long = MmProtectToPteMask[PMASK] | MM_PTE_VALID_MASK; \ (OUTPTE).u.Hard.PageFrameNumber = (FRAME); \ (OUTPTE).u.Hard.Accessed = 1; \ if (MI_DETERMINE_OWNER(PPTE)) { \ (OUTPTE).u.Long |= MM_PTE_OWNER_MASK; \ } \ if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \ (OUTPTE).u.Hard.Global = 1; \ } \ }
//++
//VOID
//MI_MAKE_VALID_PTE_TRANSITION (
// IN OUT OUTPTE
// IN PROTECT
// );
//
// Routine Description:
//
// This macro takes a valid pte and turns it into a transition PTE.
//
// Arguments
//
// OUTPTE - Supplies the current valid PTE. This PTE is then
// modified to become a transition PTE.
//
// PROTECT - Supplies the protection to set in the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_VALID_PTE_TRANSITION(OUTPTE,PROTECT) \
(OUTPTE).u.Soft.Transition = 1; \ (OUTPTE).u.Soft.Valid = 0; \ (OUTPTE).u.Soft.Prototype = 0; \ (OUTPTE).u.Soft.Protection = PROTECT;
//++
//VOID
//MI_MAKE_TRANSITION_PTE (
// OUT OUTPTE,
// IN PAGE,
// IN PROTECT,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a valid pte and turns it into a transition PTE.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the transition PTE.
//
// PAGE - Supplies the page frame number for the PTE.
//
// PROTECT - Supplies the protection to set in the transition PTE.
//
// PPTE - Supplies a pointer to the PTE, this is used to determine
// the owner of the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PTE(OUTPTE,PAGE,PROTECT,PPTE) \
(OUTPTE).u.Long = 0; \ (OUTPTE).u.Trans.PageFrameNumber = PAGE; \ (OUTPTE).u.Trans.Transition = 1; \ (OUTPTE).u.Trans.Protection = PROTECT; \ (OUTPTE).u.Trans.Owner = MI_DETERMINE_OWNER(PPTE);
//++
//VOID
//MI_MAKE_TRANSITION_PTE_VALID (
// OUT OUTPTE,
// IN PPTE
// );
//
// Routine Description:
//
// This macro takes a transition pte and makes it a valid PTE.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to build the valid PTE.
//
// PPTE - Supplies a pointer to the transition PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKE_TRANSITION_PTE_VALID(OUTPTE,PPTE) \
ASSERT (((PPTE)->u.Hard.Valid == 0) && \ ((PPTE)->u.Trans.Prototype == 0) && \ ((PPTE)->u.Trans.Transition == 1)); \ (OUTPTE).u.Long = MmProtectToPteMask[(PPTE)->u.Trans.Protection] | MM_PTE_VALID_MASK; \ (OUTPTE).u.Hard.PageFrameNumber = (PPTE)->u.Hard.PageFrameNumber; \ if (MI_DETERMINE_OWNER(PPTE)) { \ (OUTPTE).u.Long |= MM_PTE_OWNER_MASK; \ } \ if (((PMMPTE)PPTE) >= MiGetPteAddress(MM_SYSTEM_SPACE_START)) { \ (OUTPTE).u.Hard.Global = 1; \ } \
#define MI_FAULT_STATUS_INDICATES_EXECUTION(_FaultStatus) (_FaultStatus & 0x10)
#define MI_FAULT_STATUS_INDICATES_WRITE(_FaultStatus) (_FaultStatus & 0x1)
#define MI_CLEAR_FAULT_STATUS(_FaultStatus) (_FaultStatus = 0)
#define MI_IS_PTE_EXECUTABLE(_TempPte) ((_TempPte)->u.Hard.NoExecute == 0)
//++
//VOID
//MI_SET_PTE_IN_WORKING_SET (
// OUT PMMPTE PTE,
// IN ULONG WSINDEX
// );
//
// Routine Description:
//
// This macro inserts the specified working set index into the argument PTE.
//
// No TB invalidation is needed for other processors (or this one) even
// though the entry may already be in a TB - it's just a software field
// update and doesn't affect miss resolution.
//
// Arguments
//
// PTE - Supplies the PTE in which to insert the working set index.
//
// WSINDEX - Supplies the working set index for the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_IN_WORKING_SET(PTE, WSINDEX) { \
MMPTE _TempPte; \ _TempPte = *(PTE); \ _TempPte.u.Hard.SoftwareWsIndex = (WSINDEX); \ ASSERT (_TempPte.u.Long != 0); \ *(PTE) = _TempPte; \ }
//++
//ULONG WsIndex
//MI_GET_WORKING_SET_FROM_PTE(
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro returns the working set index from the argument PTE.
// Since the AMD64 PTE has no free bits nothing needs to be done on this
// architecture.
//
// Arguments
//
// PTE - Supplies the PTE to extract the working set index from.
//
// Return Value:
//
// This macro returns the working set index for the argument PTE.
//
//--
#define MI_GET_WORKING_SET_FROM_PTE(PTE) (ULONG)(PTE)->u.Hard.SoftwareWsIndex
//++
//VOID
//MI_SET_PTE_WRITE_COMBINE (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and enables WriteCombining as the
// caching state. Note that the PTE bits may only be set this way
// if the Page Attribute Table is present and the PAT has been
// initialized to provide Write Combining.
//
// If either of the above conditions is not satisfied, then
// the macro enables WEAK UC (PCD = 1, PWT = 0) in the PTE.
//
// Arguments
//
// PTE - Supplies a valid PTE.
//
// Return Value:
//
// None.
//
//--
//
#define MI_SET_PTE_WRITE_COMBINE(PTE) \
{ \ if (MiWriteCombiningPtes == TRUE) { \ ((PTE).u.Hard.CacheDisable = 0); \ ((PTE).u.Hard.WriteThrough = 1); \ } else { \ ((PTE).u.Hard.CacheDisable = 1); \ ((PTE).u.Hard.WriteThrough = 0); \ } \ }
//++
//VOID
//MI_PREPARE_FOR_NONCACHED (
// IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute
// );
//
// Routine Description:
//
// This macro prepares the system prior to noncached PTEs being created.
//
// Arguments
//
// CacheAttribute - Supplies the cache attribute the PTEs will be filled
// with.
//
// Return Value:
//
// None.
//
//--
#define MI_PREPARE_FOR_NONCACHED(_CacheAttribute) \
if (_CacheAttribute != MiCached) { \ KeFlushEntireTb (FALSE, TRUE); \ KeInvalidateAllCaches (TRUE); \ }
//++
//VOID
//MI_SWEEP_CACHE (
// IN MI_PFN_CACHE_ATTRIBUTE CacheAttribute,
// IN PVOID StartVa,
// IN ULONG NumberOfBytes
// );
//
// Routine Description:
//
// This macro prepares the system prior to noncached PTEs being created.
// This does nothing on AMD64.
//
// Arguments
//
// CacheAttribute - Supplies the cache attribute the PTEs were filled with.
//
// StartVa - Supplies the starting address that's been mapped.
//
// NumberOfBytes - Supplies the number of bytes that have been mapped.
//
// Return Value:
//
// None.
//
//--
#define MI_SWEEP_CACHE(_CacheType,_StartVa,_NumberOfBytes)
LOGICAL MiMustFrameBeCached ( IN PFN_NUMBER PageFrameIndex );
typedef struct _MI_LARGE_PAGE_RANGES { PFN_NUMBER StartFrame; PFN_NUMBER LastFrame; } MI_LARGE_PAGE_RANGES, *PMI_LARGE_PAGE_RANGES;
#define MI_MAX_LARGE_PAGE_RANGES 4
extern MI_LARGE_PAGE_RANGES MiLargePageRanges[];
#define MI_PAGE_FRAME_INDEX_MUST_BE_CACHED(PageFrameIndex) \
MiMustFrameBeCached(PageFrameIndex)
//++
//VOID
//MI_SET_PTE_DIRTY (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro sets the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set dirty.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_DIRTY(PTE) (PTE).u.Long |= HARDWARE_PTE_DIRTY_MASK
//++
//VOID
//MI_SET_PTE_CLEAN (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro clears the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to set clear.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PTE_CLEAN(PTE) (PTE).u.Long &= ~HARDWARE_PTE_DIRTY_MASK
//++
//VOID
//MI_IS_PTE_DIRTY (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro checks the dirty bit(s) in the specified PTE.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if the page is dirty (modified), FALSE otherwise.
//
//--
#define MI_IS_PTE_DIRTY(PTE) ((PTE).u.Hard.Dirty != 0)
//++
//VOID
//MI_SET_GLOBAL_STATE (
// IN MMPTE PTE,
// IN ULONG STATE
// );
//
// Routine Description:
//
// This macro sets the global bit in the PTE. if the pointer PTE is within
//
// Arguments
//
// PTE - Supplies the PTE to set global state into.
//
// STATE - Supplies 1 if global, 0 if not.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_GLOBAL_STATE(PTE, STATE) (PTE).u.Hard.Global = STATE;
//++
//VOID
//MI_ENABLE_CACHING (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and sets the caching state to be
// enabled. This is performed by clearing the PCD and PWT bits in the PTE.
//
// Semantics of the overlap between PCD, PWT, and the
// USWC memory type in the MTRR are:
//
// PCD PWT Mtrr Mem Type Effective Memory Type
// 1 0 USWC USWC
// 1 1 USWC UC
//
// Arguments
//
// PTE - Supplies a valid PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_ENABLE_CACHING(PTE) \
{ \ ((PTE).u.Hard.CacheDisable = 0); \ ((PTE).u.Hard.WriteThrough = 0); \ }
//++
//VOID
//MI_DISABLE_CACHING (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and sets the caching state to be
// disabled. This is performed by setting the PCD and PWT bits in the PTE.
//
// Semantics of the overlap between PCD, PWT, and the
// USWC memory type in the MTRR are:
//
// PCD PWT Mtrr Mem Type Effective Memory Type
// 1 0 USWC USWC
// 1 1 USWC UC
//
// Since an effective memory type of UC is desired here,
// the WT bit is set.
//
// Arguments
//
// PTE - Supplies a pointer to the valid PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_DISABLE_CACHING(PTE) \
{ \ ((PTE).u.Hard.CacheDisable = 1); \ ((PTE).u.Hard.WriteThrough = 1); \ }
//++
//BOOLEAN
//MI_IS_CACHING_DISABLED (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro takes a valid PTE and returns TRUE if caching is
// disabled.
//
// Arguments
//
// PPTE - Supplies a pointer to the valid PTE.
//
// Return Value:
//
// TRUE if caching is disabled, FALSE if it is enabled.
//
//--
#define MI_IS_CACHING_DISABLED(PPTE) \
((PPTE)->u.Hard.CacheDisable == 1)
//++
//VOID
//MI_SET_PFN_DELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a PFN element and indicates that
// the PFN is no longer in use.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// none.
//
//--
#define MI_SET_PFN_DELETED(PPFN) \
(PPFN)->PteAddress = (PMMPTE)((ULONG_PTR)PPFN->PteAddress | 0x1);
//++
//VOID
//MI_MARK_PFN_UNDELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a deleted PFN element and mark that
// the PFN is not deleted.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// none.
//
//--
#define MI_MARK_PFN_UNDELETED(PPFN) \
PPFN->PteAddress = (PMMPTE)((ULONG_PTR)PPFN->PteAddress & ~0x1);
//++
//BOOLEAN
//MI_IS_PFN_DELETED (
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro takes a pointer to a PFN element and determines if
// the PFN is no longer in use.
//
// Arguments
//
// PPTE - Supplies a pointer to the PFN element.
//
// Return Value:
//
// TRUE if PFN is no longer used, FALSE if it is still being used.
//
//--
#define MI_IS_PFN_DELETED(PPFN) \
((ULONG_PTR)(PPFN)->PteAddress & 0x1)
//++
//VOID
//MI_CHECK_PAGE_ALIGNMENT (
// IN ULONG PAGE,
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro takes a PFN element number (Page) and checks to see
// if the virtual alignment for the previous address of the page
// is compatible with the new address of the page. If they are
// not compatible, the D cache is flushed.
//
// Arguments
//
// PAGE - Supplies the PFN element.
// PPTE - Supplies a pointer to the new PTE which will contain the page.
//
// Return Value:
//
// none.
//
//--
// does nothing on AMD64.
#define MI_CHECK_PAGE_ALIGNMENT(PAGE,PPTE)
//++
//VOID
//MI_INITIALIZE_HYPERSPACE_MAP (
// VOID
// );
//
// Routine Description:
//
// This macro initializes the PTEs reserved for double mapping within
// hyperspace.
//
// Arguments
//
// None.
//
// Return Value:
//
// None.
//
//--
// does nothing on AMD64.
#define MI_INITIALIZE_HYPERSPACE_MAP(INDEX)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_PTE (
// IN PMMPTE PTEADDRESS
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// PTEADDRESS - Supplies the PTE address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_PTE(PTEADDRESS) \
(((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask)) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_VA (
// IN PVOID ADDRESS
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// ADDRESS - Supplies the address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_VA(ADDRESS) \
(((ULONG)((MI_SYSTEM_PAGE_COLOR++) & MmSecondaryColorMask)) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_GET_PAGE_COLOR_FROM_SESSION (
// IN PMM_SESSION_SPACE SessionSpace
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// SessionSpace - Supplies the session space the page will be mapped into.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_GET_PAGE_COLOR_FROM_SESSION(_SessionSpace) \
(((ULONG)((_SessionSpace->Color++) & MmSecondaryColorMask)) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_PAGE_COLOR_PTE_PROCESS (
// IN PCHAR COLOR,
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
//
// Return Value:
//
// The page's color.
//
//--
#define MI_PAGE_COLOR_PTE_PROCESS(PTE,COLOR) \
(((ULONG)((*(COLOR))++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_PAGE_COLOR_VA_PROCESS (
// IN PVOID ADDRESS,
// IN PEPROCESS COLOR
// );
//
// Routine Description:
//
// This macro determines the page's color based on the PTE address
// that maps the page.
//
// Arguments
//
// ADDRESS - Supplies the address the page is (or was) mapped at.
//
// Return Value:
//
// The page's color.
//
//--
#define MI_PAGE_COLOR_VA_PROCESS(ADDRESS,COLOR) \
(((ULONG)((*(COLOR))++) & MmSecondaryColorMask) | MI_CURRENT_NODE_COLOR)
//++
//ULONG
//MI_GET_NEXT_COLOR (
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the next color in the sequence.
//
// Arguments
//
// COLOR - Supplies the color to return the next of.
//
// Return Value:
//
// Next color in sequence.
//
//--
#define MI_GET_NEXT_COLOR(COLOR) ((COLOR + 1) & MM_COLOR_MASK)
//++
//ULONG
//MI_GET_PREVIOUS_COLOR (
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the previous color in the sequence.
//
// Arguments
//
// COLOR - Supplies the color to return the previous of.
//
// Return Value:
//
// Previous color in sequence.
//
//--
#define MI_GET_PREVIOUS_COLOR(COLOR) (0)
#define MI_GET_SECONDARY_COLOR(PAGE,PFN) ((ULONG)(PAGE & MmSecondaryColorMask))
#define MI_GET_COLOR_FROM_SECONDARY(SECONDARY_COLOR) (0)
//++
//VOID
//MI_GET_MODIFIED_PAGE_BY_COLOR (
// OUT ULONG PAGE,
// IN ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the first page destined for a paging
// file with the desired color. It does NOT remove the page
// from its list.
//
// Arguments
//
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
//
// COLOR - Supplies the color of page to locate.
//
// Return Value:
//
// none.
//
//--
#define MI_GET_MODIFIED_PAGE_BY_COLOR(PAGE,COLOR) \
PAGE = MmModifiedPageListByColor[COLOR].Flink
//++
//VOID
//MI_GET_MODIFIED_PAGE_ANY_COLOR (
// OUT ULONG PAGE,
// IN OUT ULONG COLOR
// );
//
// Routine Description:
//
// This macro returns the first page destined for a paging
// file with the desired color. If not page of the desired
// color exists, all colored lists are searched for a page.
// It does NOT remove the page from its list.
//
// Arguments
//
// PAGE - Returns the page located, the value MM_EMPTY_LIST is
// returned if there is no page of the specified color.
//
// COLOR - Supplies the color of page to locate and returns the
// color of the page located.
//
// Return Value:
//
// none.
//
//--
#define MI_GET_MODIFIED_PAGE_ANY_COLOR(PAGE,COLOR) \
{ \ if (MmTotalPagesForPagingFile == 0) { \ PAGE = MM_EMPTY_LIST; \ } else { \ PAGE = MmModifiedPageListByColor[COLOR].Flink; \ } \ }
//++
//VOID
//MI_MAKE_VALID_PTE_WRITE_COPY (
// IN OUT PMMPTE PTE
// );
//
// Routine Description:
//
// This macro checks to see if the PTE indicates that the
// page is writable and if so it clears the write bit and
// sets the copy-on-write bit.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \ (PPTE)->u.Hard.CopyOnWrite = 1; \ (PPTE)->u.Hard.Write = 0; \ } #else
#define MI_MAKE_VALID_PTE_WRITE_COPY(PPTE) \
if ((PPTE)->u.Hard.Write == 1) { \ (PPTE)->u.Hard.CopyOnWrite = 1; \ (PPTE)->u.Hard.Write = 0; \ (PPTE)->u.Hard.Writable = 0; \ } #endif
//++
//ULONG
//MI_DETERMINE_OWNER (
// IN MMPTE PPTE
// );
//
// Routine Description:
//
// This macro examines the virtual address of the PTE and determines
// if the PTE resides in system space or user space.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// 1 if the owner is USER_MODE, 0 if the owner is KERNEL_MODE.
//
//--
#define MI_DETERMINE_OWNER(PPTE) \
((((PPTE) <= MiHighestUserPte) || \ ((PPTE) >= MiGetPdeAddress(NULL) && ((PPTE) <= MiHighestUserPde)) || \ ((PPTE) >= MiGetPpeAddress(NULL) && ((PPTE) <= MiHighestUserPpe)) || \ ((PPTE) >= MiGetPxeAddress(NULL) && ((PPTE) <= MiHighestUserPxe))) \ ? 1 : 0)
//++
//VOID
//MI_SET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro sets the ACCESSED field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None
//
//--
#define MI_SET_ACCESSED_IN_PTE(PPTE,ACCESSED) \
((PPTE)->u.Hard.Accessed = ACCESSED)
//++
//ULONG
//MI_GET_ACCESSED_IN_PTE (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro returns the state of the ACCESSED field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The state of the ACCESSED field.
//
//--
#define MI_GET_ACCESSED_IN_PTE(PPTE) ((PPTE)->u.Hard.Accessed)
//++
//VOID
//MI_SET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// IN ULONG OWNER
// );
//
// Routine Description:
//
// This macro sets the owner field in the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_OWNER_IN_PTE(PPTE,OWNER) ((PPTE)->u.Hard.Owner = OWNER)
//++
//ULONG
//MI_GET_OWNER_IN_PTE (
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// This macro gets the owner field from the PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The state of the OWNER field.
//
//--
#define MI_GET_OWNER_IN_PTE(PPTE) ((PPTE)->u.Hard.Owner)
//
// Mask to clear all fields but protection in a PTE to or in paging file
// location.
//
#define CLEAR_FOR_PAGE_FILE 0x000003E0
//++
//VOID
//MI_SET_PAGING_FILE_INFO (
// OUT MMPTE OUTPTE,
// IN MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
//
// Arguments
//
// OUTPTE - Supplies the PTE in which to store the result.
//
// PTE - Supplies the PTE to operate upon.
//
// FILEINFO - Supplies the number of the paging file.
//
// OFFSET - Supplies the offset into the paging file.
//
// Return Value:
//
// None.
//
//--
#define MI_SET_PAGING_FILE_INFO(OUTPTE,PPTE,FILEINFO,OFFSET) \
(OUTPTE).u.Long = (PPTE).u.Long; \ (OUTPTE).u.Long &= CLEAR_FOR_PAGE_FILE; \ (OUTPTE).u.Long |= (FILEINFO << 1); \ (OUTPTE).u.Soft.PageFileHigh = (OFFSET);
//++
//PMMPTE
//MiPteToProto (
// IN OUT MMPTE PPTE,
// IN ULONG FILEINFO,
// IN ULONG OFFSET
// );
//
// Routine Description:
//
// This macro returns the address of the corresponding prototype which
// was encoded earlier into the supplied PTE.
//
// Arguments
//
// lpte - Supplies the PTE to operate upon.
//
// Return Value:
//
// Pointer to the prototype PTE that backs this PTE.
//
//--
#define MiPteToProto(lpte) \
((PMMPTE)((lpte)->u.Proto.ProtoAddress))
//++
//ULONG
//MiProtoAddressForPte (
// IN PMMPTE proto_va
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
//
// Arguments
//
// proto_va - Supplies the address of the prototype PTE.
//
// Return Value:
//
// Mask to set into the PTE.
//
//--
#define MiProtoAddressForPte(proto_va) \
(((ULONG_PTR)proto_va << 16) | MM_PTE_PROTOTYPE_MASK)
//++
//ULONG
//MiProtoAddressForKernelPte (
// IN PMMPTE proto_va
// );
//
// Routine Description:
//
// This macro sets into the specified PTE the supplied information
// to indicate where the backing store for the page is located.
// MiProtoAddressForPte returns the bit field to OR into the PTE to
// reference a prototype PTE. And set the protoPTE bit,
// MM_PTE_PROTOTYPE_MASK.
//
// This macro also sets any other information (such as global bits)
// required for kernel mode PTEs.
//
// Arguments
//
// proto_va - Supplies the address of the prototype PTE.
//
// Return Value:
//
// Mask to set into the PTE.
//
//--
// not different on AMD64.
#define MiProtoAddressForKernelPte(proto_va) MiProtoAddressForPte(proto_va)
//++
//PSUBSECTION
//MiGetSubsectionAddress (
// IN PMMPTE lpte
// );
//
// Routine Description:
//
// This macro takes a PTE and returns the address of the subsection that
// the PTE refers to. Subsections are quadword structures allocated
// from nonpaged pool.
//
// Arguments
//
// lpte - Supplies the PTE to operate upon.
//
// Return Value:
//
// A pointer to the subsection referred to by the supplied PTE.
//
//--
#define MiGetSubsectionAddress(lpte) \
((PSUBSECTION)((lpte)->u.Subsect.SubsectionAddress))
//++
//ULONG
//MiGetSubsectionAddressForPte (
// IN PSUBSECTION VA
// );
//
// Routine Description:
//
// This macro takes the address of a subsection and encodes it for use
// in a PTE.
//
// Arguments
//
// VA - Supplies a pointer to the subsection to encode.
//
// Return Value:
//
// The mask to set into the PTE to make it reference the supplied
// subsection.
//
//--
#define MiGetSubsectionAddressForPte(VA) ((ULONGLONG)VA << 16)
//++
//PMMPTE
//MiGetPxeAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPxeAddress returns the address of the extended page directory parent
// entry which maps the given virtual address. This is one level above the
// page parent directory.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PXE for.
//
// Return Value:
//
// The address of the PXE.
//
//--
#define MiGetPxeAddress(va) ((PMMPTE)PXE_BASE + MiGetPxeOffset(va))
//++
//PMMPTE
//MiGetPpeAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPpeAddress returns the address of the page directory parent entry
// which maps the given virtual address. This is one level above the
// page directory.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PPE for.
//
// Return Value:
//
// The address of the PPE.
//
//--
#define MiGetPpeAddress(va) \
((PMMPTE)(((((ULONG_PTR)(va) & VIRTUAL_ADDRESS_MASK) >> PPI_SHIFT) << PTE_SHIFT) + PPE_BASE))
//++
//PMMPTE
//MiGetPdeAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeAddress returns the address of the PDE which maps the
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PDE for.
//
// Return Value:
//
// The address of the PDE.
//
//--
#define MiGetPdeAddress(va) \
((PMMPTE)(((((ULONG_PTR)(va) & VIRTUAL_ADDRESS_MASK) >> PDI_SHIFT) << PTE_SHIFT) + PDE_BASE))
//++
//PMMPTE
//MiGetPteAddress (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPteAddress returns the address of the PTE which maps the
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the PTE for.
//
// Return Value:
//
// The address of the PTE.
//
//--
#define MiGetPteAddress(va) \
((PMMPTE)(((((ULONG_PTR)(va) & VIRTUAL_ADDRESS_MASK) >> PTI_SHIFT) << PTE_SHIFT) + PTE_BASE))
//++
//ULONG
//MiGetPxeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPxeOffset returns the offset into an extended page directory parent
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the extended parent page directory table the corresponding
// PXE is at.
//
//--
#define MiGetPxeOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PXI_SHIFT) & PXI_MASK))
//++
//ULONG
//MiGetPxeIndex (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPxeIndex returns the extended page directory parent index
// for a given virtual address.
//
// N.B. This does not mask off PXE bits.
//
// Arguments
//
// Va - Supplies the virtual address to locate the index for.
//
// Return Value:
//
// The index into the extended page directory parent - ie: the virtual page
// directory parent number. This is different from the extended page
// directory parent offset because this spans extended page directory
// parents on supported platforms.
//
//--
#define MiGetPxeIndex(va) ((ULONG)((ULONG_PTR)(va) >> PXI_SHIFT))
//++
//ULONG
//MiGetPpeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPpeOffset returns the offset into a page directory parent for a
// given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the parent page directory table the corresponding
// PPE is at.
//
//--
#define MiGetPpeOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PPI_SHIFT) & PPI_MASK))
//++
//ULONG
//MiGetPpeIndex (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPpeIndex returns the page directory parent index
// for a given virtual address.
//
// N.B. This does not mask off PXE bits.
//
// Arguments
//
// Va - Supplies the virtual address to locate the index for.
//
// Return Value:
//
// The index into the page directory parent - ie: the virtual page directory
// number. This is different from the page directory parent offset because
// this spans page directory parents on supported platforms.
//
//--
#define MiGetPpeIndex(va) ((ULONG)((ULONG_PTR)(va) >> PPI_SHIFT))
//++
//ULONG
//MiGetPdeOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeOffset returns the offset into a page directory
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page directory table the corresponding PDE is at.
//
//--
#define MiGetPdeOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PDI_SHIFT) & PDI_MASK))
//++
//ULONG
//MiGetPdeIndex (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPdeIndex returns the page directory index
// for a given virtual address.
//
// N.B. This does not mask off PPE or PXE bits.
//
// Arguments
//
// Va - Supplies the virtual address to locate the index for.
//
// Return Value:
//
// The index into the page directory - ie: the virtual page table number.
// This is different from the page directory offset because this spans
// page directories on supported platforms.
//
//--
#define MiGetPdeIndex(va) ((ULONG)((ULONG_PTR)(va) >> PDI_SHIFT))
//++
//ULONG
//MiGetPteOffset (
// IN PVOID va
// );
//
// Routine Description:
//
// MiGetPteOffset returns the offset into a page table page
// for a given virtual address.
//
// Arguments
//
// Va - Supplies the virtual address to locate the offset for.
//
// Return Value:
//
// The offset into the page table page table the corresponding PTE is at.
//
//--
#define MiGetPteOffset(va) ((ULONG)(((ULONG_PTR)(va) >> PTI_SHIFT) & PTI_MASK))
//++
//PVOID
//MiGetVirtualAddressMappedByPxe (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPxe returns the virtual address
// which is mapped by a given PXE address.
//
// Arguments
//
// PXE - Supplies the PXE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PXE.
//
//--
#define MiGetVirtualAddressMappedByPxe(PXE) \
MiGetVirtualAddressMappedByPde(MiGetVirtualAddressMappedByPde(PXE))
//++
//PVOID
//MiGetVirtualAddressMappedByPpe (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPpe returns the virtual address
// which is mapped by a given PPE address.
//
// Arguments
//
// PPE - Supplies the PPE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PPE.
//
//--
#define MiGetVirtualAddressMappedByPpe(PPE) \
MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPde(PPE))
//++
//PVOID
//MiGetVirtualAddressMappedByPde (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPde returns the virtual address
// which is mapped by a given PDE address.
//
// Arguments
//
// PDE - Supplies the PDE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PDE.
//
//--
#define MiGetVirtualAddressMappedByPde(PDE) \
MiGetVirtualAddressMappedByPte(MiGetVirtualAddressMappedByPte(PDE))
//++
//PVOID
//MiGetVirtualAddressMappedByPte (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// MiGetVirtualAddressMappedByPte returns the virtual address
// which is mapped by a given PTE address.
//
// Arguments
//
// PTE - Supplies the PTE to get the virtual address for.
//
// Return Value:
//
// Virtual address mapped by the PTE.
//
//--
#define VA_SHIFT (63 - 47) // address sign extend shift count
#define MiGetVirtualAddressMappedByPte(PTE) \
((PVOID)((LONG_PTR)(((LONG_PTR)(PTE) - PTE_BASE) << (PAGE_SHIFT + VA_SHIFT - PTE_SHIFT)) >> VA_SHIFT))
//++
//LOGICAL
//MiIsVirtualAddressOnPxeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPxeBoundary returns TRUE if the virtual address is
// on an extended page directory parent entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPxeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY0_MASK) == 0)
//++
//LOGICAL
//MiIsVirtualAddressOnPpeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPpeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPpeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY1_MASK) == 0)
//++
//LOGICAL
//MiIsVirtualAddressOnPdeBoundary (
// IN PVOID VA
// );
//
// Routine Description:
//
// MiIsVirtualAddressOnPdeBoundary returns TRUE if the virtual address is
// on a page directory entry boundary.
//
// Arguments
//
// VA - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if on a 2MB PDE boundary, FALSE if not.
//
//--
#define MiIsVirtualAddressOnPdeBoundary(VA) (((ULONG_PTR)(VA) & PAGE_DIRECTORY2_MASK) == 0)
//++
//LOGICAL
//MiIsPteOnPxeBoundary (
// IN PVOID PTE
// );
//
// Routine Description:
//
// MiIsPteOnPxeBoundary returns TRUE if the PTE is
// on an extended page directory parent entry boundary.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if on a boundary, FALSE if not.
//
//--
#define MiIsPteOnPxeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_DIRECTORY1_MASK)) == 0)
//++
//LOGICAL
//MiIsPteOnPpeBoundary (
// IN PVOID PTE
// );
//
// Routine Description:
//
// MiIsPteOnPpeBoundary returns TRUE if the PTE is
// on a page directory parent entry boundary.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if on a boundary, FALSE if not.
//
//--
#define MiIsPteOnPpeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_DIRECTORY2_MASK)) == 0)
//++
//LOGICAL
//MiIsPteOnPdeBoundary (
// IN PVOID PTE
// );
//
// Routine Description:
//
// MiIsPteOnPdeBoundary returns TRUE if the PTE is
// on a page directory entry boundary.
//
// Arguments
//
// PTE - Supplies the PTE to check.
//
// Return Value:
//
// TRUE if on a 2MB PDE boundary, FALSE if not.
//
//--
#define MiIsPteOnPdeBoundary(PTE) (((ULONG_PTR)(PTE) & (PAGE_SIZE - 1)) == 0)
//++
//ULONG
//GET_PAGING_FILE_NUMBER (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro extracts the paging file number from a PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The paging file number.
//
//--
#define GET_PAGING_FILE_NUMBER(PTE) ((ULONG)(((PTE).u.Soft.PageFileLow)))
//++
//ULONG
//GET_PAGING_FILE_OFFSET (
// IN MMPTE PTE
// );
//
// Routine Description:
//
// This macro extracts the offset into the paging file from a PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// The paging file offset.
//
//--
#define GET_PAGING_FILE_OFFSET(PTE) ((ULONG)((PTE).u.Soft.PageFileHigh))
//++
//ULONG
//IS_PTE_NOT_DEMAND_ZERO (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro checks to see if a given PTE is NOT a demand zero PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// Returns 0 if the PTE is demand zero, non-zero otherwise.
//
//--
#define IS_PTE_NOT_DEMAND_ZERO(PTE) \
((PTE).u.Long & ((ULONG_PTR)0xFFFFFFFFFFFFF000 | \ MM_PTE_VALID_MASK | \ MM_PTE_PROTOTYPE_MASK | \ MM_PTE_TRANSITION_MASK))
//++
//VOID
//MI_MAKING_VALID_PTE_INVALID(
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// Prepare to make a single valid PTE invalid.
// No action is required on AMD64.
//
// Arguments
//
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKING_VALID_PTE_INVALID(SYSTEM_WIDE)
//++
//VOID
//MI_MAKING_VALID_MULTIPLE_PTES_INVALID(
// IN PMMPTE PPTE
// );
//
// Routine Description:
//
// Prepare to make multiple valid PTEs invalid.
// No action is required on AMD64.
//
// Arguments
//
// SYSTEM_WIDE - Supplies TRUE if this will happen on all processors.
//
// Return Value:
//
// None.
//
//--
#define MI_MAKING_MULTIPLE_PTES_INVALID(SYSTEM_WIDE)
//++
//VOID
//MI_MAKE_PROTECT_WRITE_COPY (
// IN OUT MMPTE PPTE
// );
//
// Routine Description:
//
// This macro makes a writable PTE a writable-copy PTE.
//
// Arguments
//
// PTE - Supplies the PTE to operate upon.
//
// Return Value:
//
// NONE
//
//--
#define MI_MAKE_PROTECT_WRITE_COPY(PTE) \
if ((PTE).u.Soft.Protection & MM_PROTECTION_WRITE_MASK) { \ (PTE).u.Long |= MM_PROTECTION_COPY_MASK << MM_PROTECT_FIELD_SHIFT; \ }
//++
//VOID
//MI_SET_PAGE_DIRTY(
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
//
// Routine Description:
//
// This macro sets the dirty bit (and release page file space).
//
// Arguments
//
// TEMP - Supplies a temporary for usage.
//
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
//
// VA - Supplies a the virtual address of the page fault.
//
// PFNHELD - Supplies TRUE if the PFN lock is held.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD)
#else
#define MI_SET_PAGE_DIRTY(PPTE,VA,PFNHELD) \
if ((PPTE)->u.Hard.Dirty == 1) { \ MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \ } #endif
//++
//VOID
//MI_NO_FAULT_FOUND(
// IN FAULTSTATUS,
// IN PMMPTE PPTE,
// IN PVOID VA,
// IN PVOID PFNHELD
// );
//
// Routine Description:
//
// This macro handles the case when a page fault is taken and no
// PTE with the valid bit clear is found.
//
// Arguments
//
// FAULTSTATUS - Supplies the fault status.
//
// PPTE - Supplies a pointer to the PTE that corresponds to VA.
//
// VA - Supplies a the virtual address of the page fault.
//
// PFNHELD - Supplies TRUE if the PFN lock is held.
//
// Return Value:
//
// None.
//
//--
#if defined(NT_UP)
#define MI_NO_FAULT_FOUND(FAULTSTATUS,PPTE,VA,PFNHELD)
#else
#define MI_NO_FAULT_FOUND(FAULTSTATUS,PPTE,VA,PFNHELD) \
if ((MI_FAULT_STATUS_INDICATES_WRITE(FAULTSTATUS)) && ((PPTE)->u.Hard.Dirty == 0)) { \ MiSetDirtyBit ((VA),(PPTE),(PFNHELD)); \ } #endif
//++
//ULONG
//MI_CAPTURE_DIRTY_BIT_TO_PFN (
// IN PMMPTE PPTE,
// IN PMMPFN PPFN
// );
//
// Routine Description:
//
// This macro gets captures the state of the dirty bit to the PFN
// and frees any associated page file space if the PTE has been
// modified element.
//
// NOTE - THE PFN LOCK MUST BE HELD!
//
// Arguments
//
// PPTE - Supplies the PTE to operate upon.
//
// PPFN - Supplies a pointer to the PFN database element that corresponds
// to the page mapped by the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_CAPTURE_DIRTY_BIT_TO_PFN(PPTE,PPFN) \
ASSERT (KeGetCurrentIrql() > APC_LEVEL); \ if (((PPFN)->u3.e1.Modified == 0) && \ ((PPTE)->u.Hard.Dirty != 0)) { \ MI_SET_MODIFIED (PPFN, 1, 0x18); \ if (((PPFN)->OriginalPte.u.Soft.Prototype == 0) && \ ((PPFN)->u3.e1.WriteInProgress == 0)) { \ MiReleasePageFileSpace ((PPFN)->OriginalPte); \ (PPFN)->OriginalPte.u.Soft.PageFileHigh = 0; \ } \ }
//++
//BOOLEAN
//MI_IS_PHYSICAL_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro determines if a given virtual address is really a
// physical address.
//
// Arguments
//
// VA - Supplies the virtual address.
//
// Return Value:
//
// FALSE if it is not a physical address, TRUE if it is.
//
//--
#define MI_IS_PHYSICAL_ADDRESS(Va) \
((MiGetPxeAddress(Va)->u.Hard.Valid == 1) && \ (MiGetPpeAddress(Va)->u.Hard.Valid == 1) && \ ((MiGetPdeAddress(Va)->u.Long & 0x81) == 0x81))
//++
//ULONG
//MI_CONVERT_PHYSICAL_TO_PFN (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro converts a physical address (see MI_IS_PHYSICAL_ADDRESS)
// to its corresponding physical frame number.
//
// Arguments
//
// VA - Supplies a pointer to the physical address.
//
// Return Value:
//
// Returns the PFN for the page.
//
//--
#define MI_CONVERT_PHYSICAL_TO_PFN(Va) \
((PFN_NUMBER)(MiGetPdeAddress(Va)->u.Hard.PageFrameNumber) + (MiGetPteOffset((ULONG_PTR)Va)))
typedef struct _MMCOLOR_TABLES { PFN_NUMBER Flink; PVOID Blink; PFN_NUMBER Count; } MMCOLOR_TABLES, *PMMCOLOR_TABLES;
extern PMMCOLOR_TABLES MmFreePagesByColor[2];
extern PFN_NUMBER MmTotalPagesForPagingFile;
//
// A VALID Page Table Entry on an AMD64 has the following definition.
//
#define MI_MAXIMUM_PAGEFILE_SIZE (((UINT64)4 * 1024 * 1024 * 1024 - 1) * PAGE_SIZE)
#define MI_PTE_LOOKUP_NEEDED ((ULONG64)0xffffffff)
typedef struct _MMPTE_SOFTWARE { ULONGLONG Valid : 1; ULONGLONG PageFileLow : 4; ULONGLONG Protection : 5; ULONGLONG Prototype : 1; ULONGLONG Transition : 1; ULONGLONG UsedPageTableEntries : PTE_PER_PAGE_BITS; ULONGLONG Reserved : 20 - PTE_PER_PAGE_BITS; ULONGLONG PageFileHigh : 32; } MMPTE_SOFTWARE;
typedef struct _MMPTE_TRANSITION { ULONGLONG Valid : 1; ULONGLONG Write : 1; ULONGLONG Owner : 1; ULONGLONG WriteThrough : 1; ULONGLONG CacheDisable : 1; ULONGLONG Protection : 5; ULONGLONG Prototype : 1; ULONGLONG Transition : 1; ULONGLONG PageFrameNumber : 28; ULONGLONG Unused : 24; } MMPTE_TRANSITION;
typedef struct _MMPTE_PROTOTYPE { ULONGLONG Valid : 1; ULONGLONG Unused0: 7; ULONGLONG ReadOnly : 1; ULONGLONG Unused1: 1; ULONGLONG Prototype : 1; ULONGLONG Protection : 5; LONGLONG ProtoAddress: 48; } MMPTE_PROTOTYPE;
typedef struct _MMPTE_SUBSECTION { ULONGLONG Valid : 1; ULONGLONG Unused0 : 4; ULONGLONG Protection : 5; ULONGLONG Prototype : 1; ULONGLONG Unused1 : 5; LONGLONG SubsectionAddress : 48; } MMPTE_SUBSECTION;
typedef struct _MMPTE_LIST { ULONGLONG Valid : 1; ULONGLONG OneEntry : 1; ULONGLONG filler0 : 3;
//
// Note the Prototype bit must not be used for lists like freed nonpaged
// pool because lookaside pops can legitimately reference bogus addresses
// (since the pop is unsynchronized) and the fault handler must be able to
// distinguish lists from protos so a retry status can be returned (vs a
// fatal bugcheck).
//
// The same caveat applies to both the Transition and the Protection
// fields as they are similarly examined in the fault handler and would
// be misinterpreted if ever nonzero in the freed nonpaged pool chains.
//
ULONGLONG Protection : 5; ULONGLONG Prototype : 1; // MUST BE ZERO as per above comment.
ULONGLONG Transition : 1;
ULONGLONG filler1 : 20; ULONGLONG NextEntry : 32; } MMPTE_LIST;
typedef struct _MMPTE_HIGHLOW { ULONG LowPart; ULONG HighPart; } MMPTE_HIGHLOW;
typedef struct _MMPTE_HARDWARE_LARGEPAGE { ULONGLONG Valid : 1; ULONGLONG Write : 1; ULONGLONG Owner : 1; ULONGLONG WriteThrough : 1; ULONGLONG CacheDisable : 1; ULONGLONG Accessed : 1; ULONGLONG Dirty : 1; ULONGLONG LargePage : 1; ULONGLONG Global : 1; ULONGLONG CopyOnWrite : 1; // software field
ULONGLONG Prototype : 1; // software field
ULONGLONG reserved0 : 1; // software field
ULONGLONG PAT : 1; ULONGLONG reserved1 : 8; // software field
ULONGLONG PageFrameNumber : 19; ULONGLONG reserved2 : 24; // software field
} MMPTE_HARDWARE_LARGEPAGE, *PMMPTE_HARDWARE_LARGEPAGE;
//
// A Page Table Entry on AMD64 has the following definition.
// Note the MP version is to avoid stalls when flushing TBs across processors.
//
//
// Uniprocessor version.
//
typedef struct _MMPTE_HARDWARE { ULONGLONG Valid : 1; #if defined(NT_UP)
ULONGLONG Write : 1; // UP version
#else
ULONGLONG Writable : 1; // changed for MP version
#endif
ULONGLONG Owner : 1; ULONGLONG WriteThrough : 1; ULONGLONG CacheDisable : 1; ULONGLONG Accessed : 1; ULONGLONG Dirty : 1; ULONGLONG LargePage : 1; ULONGLONG Global : 1; ULONGLONG CopyOnWrite : 1; // software field
ULONGLONG Prototype : 1; // software field
#if defined(NT_UP)
ULONGLONG reserved0 : 1; // software field
#else
ULONGLONG Write : 1; // software field - MP change
#endif
ULONGLONG PageFrameNumber : 28; ULONG64 reserved1 : 24 - (_HARDWARE_PTE_WORKING_SET_BITS+1); ULONGLONG SoftwareWsIndex : _HARDWARE_PTE_WORKING_SET_BITS; ULONG64 NoExecute : 1; } MMPTE_HARDWARE, *PMMPTE_HARDWARE;
#if defined(NT_UP)
#define HARDWARE_PTE_DIRTY_MASK 0x40
#else
#define HARDWARE_PTE_DIRTY_MASK 0x42
#endif
#define MI_GET_PAGE_FRAME_FROM_PTE(PTE) ((PTE)->u.Hard.PageFrameNumber)
#define MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(PTE) ((PTE)->u.Trans.PageFrameNumber)
#define MI_GET_PROTECTION_FROM_SOFT_PTE(PTE) ((ULONG)(PTE)->u.Soft.Protection)
#define MI_GET_PROTECTION_FROM_TRANSITION_PTE(PTE) ((ULONG)(PTE)->u.Trans.Protection)
typedef struct _MMPTE { union { ULONG_PTR Long; MMPTE_HARDWARE Hard; MMPTE_HARDWARE_LARGEPAGE HardLarge; HARDWARE_PTE Flush; MMPTE_PROTOTYPE Proto; MMPTE_SOFTWARE Soft; MMPTE_TRANSITION Trans; MMPTE_SUBSECTION Subsect; MMPTE_LIST List; } u; } MMPTE;
typedef MMPTE *PMMPTE;
extern PMMPTE MiFirstReservedZeroingPte;
#define InterlockedCompareExchangePte(_PointerPte, _NewContents, _OldContents) \
InterlockedCompareExchange64 ((PLONGLONG)(_PointerPte), (LONGLONG)(_NewContents), (LONGLONG)(_OldContents))
//++
//VOID
//MI_WRITE_VALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE fills in the specified PTE making it valid with the
// specified contents.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//++
//VOID
//MI_WRITE_INVALID_PTE (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_INVALID_PTE fills in the specified PTE making it invalid with the
// specified contents.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_INVALID_PTE(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//++
//VOID
//MI_WRITE_VALID_PTE_NEW_PROTECTION (
// IN PMMPTE PointerPte,
// IN MMPTE PteContents
// );
//
// Routine Description:
//
// MI_WRITE_VALID_PTE_NEW_PROTECTION fills in the specified PTE (which was
// already valid) changing only the protection or the dirty bit.
//
// Arguments
//
// PointerPte - Supplies a PTE to fill.
//
// PteContents - Supplies the contents to put in the PTE.
//
// Return Value:
//
// None.
//
//--
#define MI_WRITE_VALID_PTE_NEW_PROTECTION(_PointerPte, _PteContents) \
(*(_PointerPte) = (_PteContents))
//++
//VOID
//MiFillMemoryPte (
// IN PMMPTE Destination,
// IN ULONG Length,
// IN MMPTE Pattern,
// };
//
// Routine Description:
//
// This function fills memory with the specified PTE pattern.
//
// Arguments
//
// Destination - Supplies a pointer to the memory to fill.
//
// Length - Supplies the length, in bytes, of the memory to be
// filled.
//
// Pattern - Supplies the PTE fill pattern.
//
// Return Value:
//
// None.
//
//--
#define MiFillMemoryPte(Destination, Length, Pattern) \
RtlFillMemoryUlonglong ((Destination), (Length), (Pattern))
ULONG FASTCALL MiDetermineUserGlobalPteMask ( IN PMMPTE Pte );
//++
//BOOLEAN
//MI_IS_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page table address, FALSE if not.
//
//--
#define MI_IS_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)PTE_TOP)
//++
//BOOLEAN
//MI_IS_KERNEL_PAGE_TABLE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page table address for a kernel address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a kernel page table address, FALSE if not.
//
//--
#define MI_IS_KERNEL_PAGE_TABLE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)MiGetPteAddress(MM_SYSTEM_RANGE_START) && (PVOID)(VA) <= (PVOID)PTE_TOP)
//++
//BOOLEAN
//MI_IS_PAGE_DIRECTORY_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a page directory address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a page directory address, FALSE if not.
//
//--
#define MI_IS_PAGE_DIRECTORY_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)PDE_BASE && (PVOID)(VA) <= (PVOID)PDE_TOP)
//++
//BOOLEAN
//MI_IS_HYPER_SPACE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a hyper space address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a hyper space address, FALSE if not.
//
//--
#define MI_IS_HYPER_SPACE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)HYPER_SPACE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END)
//++
//BOOLEAN
//MI_IS_PROCESS_SPACE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a process-specific address. This is an address in user space
// or page table pages or hyper space.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is a process-specific address, FALSE if not.
//
//--
#define MI_IS_PROCESS_SPACE_ADDRESS(VA) \
(((PVOID)(VA) <= (PVOID)MM_HIGHEST_USER_ADDRESS) || \ ((PVOID)(VA) >= (PVOID)PTE_BASE && (PVOID)(VA) <= (PVOID)HYPER_SPACE_END))
//++
//BOOLEAN
//MI_IS_PTE_PROTOTYPE (
// IN PMMPTE PTE
// );
//
// Routine Description:
//
// This macro takes a PTE address and determines if it is a prototype PTE.
//
// Arguments
//
// PTE - Supplies the virtual address of the PTE to check.
//
// Return Value:
//
// TRUE if the PTE is in a segment (ie, a prototype PTE), FALSE if not.
//
//--
#define MI_IS_PTE_PROTOTYPE(PTE) \
((PTE) > (PMMPTE)PTE_TOP)
//++
//BOOLEAN
//MI_IS_SYSTEM_CACHE_ADDRESS (
// IN PVOID VA
// );
//
// Routine Description:
//
// This macro takes a virtual address and determines if
// it is a system cache address.
//
// Arguments
//
// VA - Supplies a virtual address.
//
// Return Value:
//
// TRUE if the address is in the system cache, FALSE if not.
//
//--
#define MI_IS_SYSTEM_CACHE_ADDRESS(VA) \
((PVOID)(VA) >= (PVOID)MmSystemCacheStart && \ (PVOID)(VA) <= (PVOID)MmSystemCacheEnd)
//++
//VOID
//MI_BARRIER_SYNCHRONIZE (
// IN ULONG TimeStamp
// );
//
// Routine Description:
//
// MI_BARRIER_SYNCHRONIZE compares the argument timestamp against the
// current IPI barrier sequence stamp. When equal, all processors will
// issue memory barriers to ensure that newly created pages remain coherent.
//
// When a page is put in the zeroed or free page list the current
// barrier sequence stamp is read (interlocked - this is necessary
// to get the correct value - memory barriers won't do the trick)
// and stored in the pfn entry for the page. The current barrier
// sequence stamp is maintained by the IPI send logic and is
// incremented (interlocked) when the target set of an IPI send
// includes all processors, but the one doing the send. When a page
// is needed its sequence number is compared against the current
// barrier sequence number. If it is equal, then the contents of
// the page may not be coherent on all processors, and an IPI must
// be sent to all processors to ensure a memory barrier is
// executed (generic call can be used for this). Sending the IPI
// automatically updates the barrier sequence number. The compare
// is for equality as this is the only value that requires the IPI
// (i.e., the sequence number wraps, values in both directions are
// older). When a page is removed in this fashion and either found
// to be coherent or made coherent, it cannot be modified between
// that time and writing the PTE. If the page is modified between
// these times, then an IPI must be sent.
//
// Arguments
//
// TimeStamp - Supplies the timestamp at the time when the page was zeroed.
//
// Return Value:
//
// None.
//
//--
// does nothing on AMD64.
#define MI_BARRIER_SYNCHRONIZE(TimeStamp)
//++
//VOID
//MI_BARRIER_STAMP_ZEROED_PAGE (
// IN PULONG PointerTimeStamp
// );
//
// Routine Description:
//
// MI_BARRIER_STAMP_ZEROED_PAGE issues an interlocked read to get the
// current IPI barrier sequence stamp. This is called AFTER a page is
// zeroed.
//
// Arguments
//
// PointerTimeStamp - Supplies a timestamp pointer to fill with the
// current IPI barrier sequence stamp.
//
// Return Value:
//
// None.
//
//--
// does nothing on AMD64.
#define MI_BARRIER_STAMP_ZEROED_PAGE(PointerTimeStamp)
//++
//VOID
//MI_FLUSH_SINGLE_SESSION_TB (
// IN PVOID Virtual,
// IN ULONG Invalid,
// IN LOGICAL AllProcessors,
// IN PMMPTE PtePointer,
// IN MMPTE PteValue,
// IN MMPTE PreviousPte
// );
//
// Routine Description:
//
// MI_FLUSH_SINGLE_SESSION_TB flushes the requested single address
// translation from the TB.
//
// Since there are no ASNs on the AMD64, this routine becomes a single
// TB invalidate.
//
// Arguments
//
// Virtual - Supplies the virtual address to invalidate.
//
// Invalid - TRUE if invalidating.
//
// AllProcessors - TRUE if all processors need to be IPI'd.
//
// PtePointer - Supplies the PTE to invalidate.
//
// PteValue - Supplies the new PTE value.
//
// PreviousPte - The previous PTE value is returned here.
//
// Return Value:
//
// None.
//
//--
#define MI_FLUSH_SINGLE_SESSION_TB(Virtual, Invalid, AllProcessors, PtePointer, PteValue, PreviousPte) \
PreviousPte.u.Flush = KeFlushSingleTb (Virtual, \ TRUE, \ TRUE, \ PtePointer, \ PteValue);
//++
//VOID
//MI_FLUSH_ENTIRE_SESSION_TB (
// IN ULONG Invalid,
// IN LOGICAL AllProcessors
// );
//
// Routine Description:
//
// MI_FLUSH_ENTIRE_SESSION_TB flushes the entire TB on processors which
// support ASNs.
//
// Since there are no ASNs on the AMD64, this routine does nothing.
//
// Arguments
//
// Invalid - TRUE if invalidating.
//
// AllProcessors - TRUE if all processors need to be IPI'd.
//
// Return Value:
//
// None.
//
#define MI_FLUSH_ENTIRE_SESSION_TB(Invalid, AllProcessors) \
NOTHING;
//
//++
//LOGICAL
//MI_RESERVED_BITS_CANONICAL (
// IN PVOID VirtualAddress
// );
//
// Routine Description:
//
// This routine checks whether all of the reserved bits are correct.
//
// The processor implements at 48 bits of VA and memory management
// uses them all so the VA is checked against 48 bits to prevent
// reserved bit faults as our caller is not going to be expecting them.
//
// Arguments
//
// VirtualAddress - Supplies the virtual address to check.
//
// Return Value:
//
// TRUE if the address is ok, FALSE if not.
//
LOGICAL __inline MI_RESERVED_BITS_CANONICAL ( IN PVOID VirtualAddress ) { LONG_PTR ReservedBits; ULONG_PTR ImplVirtualMsb;
ImplVirtualMsb = 48;
ReservedBits = (LONG_PTR) VirtualAddress; ReservedBits >>= (ImplVirtualMsb + 1);
if ((ULONG_PTR)VirtualAddress & ((ULONG_PTR)1 << ImplVirtualMsb)) {
//
// All the reserved bits (not including the VRN) must also be set.
//
if (ReservedBits != (LONG_PTR)-1) { } } else {
//
// All the reserved bits (not including the VRN) must also be clear.
//
if (ReservedBits != 0) { return FALSE; } } return TRUE; }
//++
//VOID
//MI_DISPLAY_TRAP_INFORMATION (
// IN PVOID TrapInformation
// );
//
// Routine Description:
//
// Display any relevant trap information to aid debugging.
//
// Arguments
//
// TrapInformation - Supplies a pointer to a trap frame.
//
// Return Value:
//
// None.
//
#define MI_DISPLAY_TRAP_INFORMATION(TrapInformation) \
KdPrint(("MM:***RIP %p, EFL %p\n", \ ((PKTRAP_FRAME) (TrapInformation))->Rip, \ ((PKTRAP_FRAME) (TrapInformation))->EFlags)); \ KdPrint(("MM:***RAX %p, RCX %p RDX %p\n", \ ((PKTRAP_FRAME) (TrapInformation))->Rax, \ ((PKTRAP_FRAME) (TrapInformation))->Rcx, \ ((PKTRAP_FRAME) (TrapInformation))->Rdx)); \ KdPrint(("MM:***RBX %p, RSI %p RDI %p\n", \ ((PKTRAP_FRAME) (TrapInformation))->Rbx, \ ((PKTRAP_FRAME) (TrapInformation))->Rsi, \ ((PKTRAP_FRAME) (TrapInformation))->Rdi));
|