|
|
/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
btree.c
Abstract:
Implementation of red-black binary tree insertion, deletion, and search. This algorithm efficiently guarantees that the tree depth will never exceed 2*Lg(N), so a one million node tree would have a worst case depth of 40. This insertion implementation is non-recursive and very efficient (the average insertion speed is less than twice the average search speed).
Author:
Tom McGuire (tommcg) 1-Jan-1998 Wesley Witt (wesw) 18-Dec-1998
Revision History:
Tom McGuire (tommcg) 13-Apr-2000 fixed hash collision search bug
--*/
#include "sfcp.h"
#pragma hdrstop
//
// Rather than storing NULL links as NULL, we point NULL links to a special
// "Empty" node which is always black and its children links point to itself.
// We do this to simplify the color testing for children and grandchildren
// such that any link can be dereferenced and even double-dereferenced without
// explicitly checking for NULL. The empty node must be colored black.
//
const NAME_NODE NameRbEmptyNode = { RBNIL, RBNIL }; const DWORD_NODE EmptyNode = { NODE_NIL, NODE_NIL };
VOID BtreeInit( IN OUT PNAME_TREE Tree ) { Tree->Root = RBNIL; }
PNAME_NODE BtreeFind( IN PNAME_TREE Tree, IN LPCWSTR Name, IN DWORD NameLength ) { PNAME_NODE Node; ULONG Hash;
HASH_DYN_CONVERT_KEY( Name, (NameLength/sizeof(WCHAR)), &Hash );
Node = Tree->Root;
while ( Node != RBNIL ) {
if ( Hash < Node->Hash ) { Node = Node->Left; } else if ( Hash > Node->Hash ) { Node = Node->Right; } else { // hashes equal, compare lengths
if ( NameLength < Node->NameLength ) { Node = Node->Left; } else if ( NameLength > Node->NameLength ) { Node = Node->Right; } else { // hashes and lengths equal, compare strings
int Compare = memcmp( Name, Node->Name, NameLength );
if ( Compare == 0 ) { return Node; } else if ( Compare < 0 ) { Node = Node->Left; } else { Node = Node->Right; } } } }
return NULL; }
PNAME_NODE BtreeInsert( IN OUT PNAME_TREE Tree, IN LPCWSTR Name, IN DWORD NameLength ) { PNAME_NODE * Stack[ MAX_DEPTH ]; PNAME_NODE **StackPointer = Stack; PNAME_NODE * Link; PNAME_NODE Node; PNAME_NODE Sibling; PNAME_NODE Parent; PNAME_NODE Child; PNAME_NODE NewNode; ULONG Hash;
HASH_DYN_CONVERT_KEY( Name, (NameLength/sizeof(WCHAR)), &Hash );
*StackPointer++ = &Tree->Root;
Node = Tree->Root;
//
// Walk down the tree to find either an existing node with the same key
// (in which case we simply return) or the insertion point for the new
// node. At each traversal we need to store the address of the link to
// the next node so we can retrace the traversal path for balancing.
// The speed of insertion is highly dependent on traversing the tree
// quickly, so all balancing operations are deferred until after the
// traversal is complete.
//
// Implementation Note: The compiler is smart enough to collapse each
// of the three following "go left" and "go right" clauses into single
// "go left" and "go right" instruction sequences, so the code remains
// verbose for clarity.
//
while ( Node != RBNIL ) {
if ( Hash < Node->Hash ) { *StackPointer++ = &Node->Left; Node = Node->Left; } else if ( Hash > Node->Hash ) { *StackPointer++ = &Node->Right; Node = Node->Right; } else { // hashes equal, compare lengths
if ( NameLength < Node->NameLength ) { *StackPointer++ = &Node->Left; Node = Node->Left; } else if ( NameLength > Node->NameLength ) { *StackPointer++ = &Node->Right; Node = Node->Right; } else { // lengths equal, compare strings
int Compare = memcmp( Name, Node->Name, NameLength );
if ( Compare == 0 ) { return Node; } else if ( Compare < 0 ) { *StackPointer++ = &Node->Left; Node = Node->Left; } else { *StackPointer++ = &Node->Right; Node = Node->Right; } } } }
//
// Didn't find a matching entry, so allocate a new node and add it
// to the tree. Note that we're not allocating space for a terminator
// for the name data since we store the length of the name in the node.
//
NewNode = MemAlloc( sizeof(NAME_NODE)+NameLength );
if ( NewNode == NULL ) { return NULL; }
NewNode->Left = RBNIL; NewNode->Right = RBNIL; NewNode->Hash = Hash; NewNode->NameLengthAndColorBit = NameLength | 0x80000000; // MARK_RED
memcpy( NewNode->Name, Name, NameLength );
//
// Insert new node under last link we traversed. The top of the stack
// contains the address of the last link we traversed.
//
Link = *( --StackPointer ); *Link = NewNode;
//
// Now walk back up the traversal chain to see if any balancing is
// needed. This terminates in one of three ways: we walk all the way
// up to the root (StackPointer == Stack), or find a black node that
// we don't need to change (no balancing needs to be done above a
// black node), or we perform a balancing rotation (only one necessary).
//
Node = NewNode; Child = RBNIL;
while ( StackPointer > Stack ) {
Link = *( --StackPointer ); Parent = *Link;
//
// Node is always red here.
//
if ( IS_BLACK( Parent )) {
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
if ( IS_RED( Sibling )) {
//
// Both Node and its Sibling are red, so change them both to
// black and make the Parent red. This essentially moves the
// red link up the tree so balancing can be performed at a
// higher level.
//
// Pb Pr
// / \ ----> / \ // Cr Sr Cb Sb
//
MARK_BLACK( Sibling ); MARK_BLACK( Node ); MARK_RED( Parent ); }
else {
//
// This is a terminal case. The Parent is black, and it's
// not going to be changed to red. If the Node's child is
// red, we perform an appropriate rotation to balance the
// tree. If the Node's child is black, we're done.
//
if ( IS_RED( Child )) {
if ( Node->Left == Child ) {
if ( Parent->Left == Node ) {
//
// Pb Nb
// / \ / \ // Nr Z to Cr Pr
// / \ / \ // Cr Y Y Z
//
MARK_RED( Parent ); Parent->Left = Node->Right; Node->Right = Parent; MARK_BLACK( Node ); *Link = Node; }
else {
//
// Pb Cb
// / \ / \ // W Nr to Pr Nr
// / \ / \ / \ // Cr Z W X Y Z
// / \ // X Y
//
MARK_RED( Parent ); Parent->Right = Child->Left; Child->Left = Parent; Node->Left = Child->Right; Child->Right = Node; MARK_BLACK( Child ); *Link = Child; } }
else {
if ( Parent->Right == Node ) {
MARK_RED( Parent ); Parent->Right = Node->Left; Node->Left = Parent; MARK_BLACK( Node ); *Link = Node; }
else {
MARK_RED( Parent ); Parent->Left = Child->Right; Child->Right = Parent; Node->Right = Child->Left; Child->Left = Node; MARK_BLACK( Child ); *Link = Child; } } }
return NewNode; } }
Child = Node; Node = Parent; }
//
// We bubbled red up to the root -- restore it to black.
//
MARK_BLACK( Tree->Root ); return NewNode; }
VOID TreeInit( OUT PDWORD_TREE Tree ) { Tree->Root = NODE_NIL; }
DWORD_CONTEXT TreeFind( IN PDWORD_TREE Tree, IN ULONG Key ) { PDWORD_NODE Node;
ASSERT(Tree != NULL); ASSERT(Key < (1 << 31));
Node = Tree->Root;
while ( Node != NODE_NIL ) {
if ( Key < Node->Key ) { Node = Node->Left; } else if ( Key > Node->Key ) { Node = Node->Right; } else { return (DWORD_CONTEXT) Node->Context; } }
return NULL; }
DWORD_CONTEXT TreeInsert( IN OUT PDWORD_TREE Tree, IN ULONG Key, IN DWORD_CONTEXT Context, IN ULONG ContextSize ) { PDWORD_NODE * Stack[ MAX_DEPTH ]; PDWORD_NODE **StackPointer = Stack; PDWORD_NODE * Link; PDWORD_NODE Node; PDWORD_NODE Sibling; PDWORD_NODE Parent; PDWORD_NODE Child; PDWORD_NODE NewNode;
ASSERT(Tree != NULL && Context != NULL && ContextSize != 0); ASSERT(Key < (1 << 31));
*StackPointer++ = &Tree->Root; Node = Tree->Root;
//
// Walk down the tree to find either an existing node with the same key
// (in which case we simply return) or the insertion point for the new
// node. At each traversal we need to store the address of the link to
// the next node so we can retrace the traversal path for balancing.
// The speed of insertion is highly dependent on traversing the tree
// quickly, so all balancing operations are deferred until after the
// traversal is complete.
//
// Implementation Note: The compiler is smart enough to collapse each
// of the three following "go left" and "go right" clauses into single
// "go left" and "go right" instruction sequences, so the code remains
// verbose for clarity.
//
while ( Node != NODE_NIL ) {
if ( Key < Node->Key ) { *StackPointer++ = &Node->Left; Node = Node->Left; } else if ( Key > Node->Key ) { *StackPointer++ = &Node->Right; Node = Node->Right; } else { return (DWORD_CONTEXT) Node->Context; } }
//
// Didn't find a matching entry, so allocate a new node and add it
// to the tree. Note that we're not allocating space for a terminator
// for the name data since we store the length of the name in the node.
//
NewNode = MemAlloc( sizeof(DWORD_NODE) + ContextSize);
if ( NewNode == NULL ) { return NULL; }
NewNode->Left = NODE_NIL; NewNode->Right = NODE_NIL; NewNode->Key = Key; MARK_RED(NewNode); memcpy( NewNode->Context, Context, ContextSize );
//
// Insert new node under last link we traversed. The top of the stack
// contains the address of the last link we traversed.
//
Link = *( --StackPointer ); *Link = NewNode;
//
// Now walk back up the traversal chain to see if any balancing is
// needed. This terminates in one of three ways: we walk all the way
// up to the root (StackPointer == Stack), or find a black node that
// we don't need to change (no balancing needs to be done above a
// black node), or we perform a balancing rotation (only one necessary).
//
Node = NewNode; Child = NODE_NIL;
while ( StackPointer > Stack ) {
Link = *( --StackPointer ); Parent = *Link;
//
// Node is always red here.
//
if ( IS_BLACK( Parent )) {
Sibling = ( Parent->Left == Node ) ? Parent->Right : Parent->Left;
if ( IS_RED( Sibling )) {
//
// Both Node and its Sibling are red, so change them both to
// black and make the Parent red. This essentially moves the
// red link up the tree so balancing can be performed at a
// higher level.
//
// Pb Pr
// / \ ----> / \ // Cr Sr Cb Sb
//
MARK_BLACK( Sibling ); MARK_BLACK( Node ); MARK_RED( Parent ); }
else {
//
// This is a terminal case. The Parent is black, and it's
// not going to be changed to red. If the Node's child is
// red, we perform an appropriate rotation to balance the
// tree. If the Node's child is black, we're done.
//
if ( IS_RED( Child )) {
if ( Node->Left == Child ) {
if ( Parent->Left == Node ) {
//
// Pb Nb
// / \ / \ // Nr Z to Cr Pr
// / \ / \ // Cr Y Y Z
//
MARK_RED( Parent ); Parent->Left = Node->Right; Node->Right = Parent; MARK_BLACK( Node ); *Link = Node; }
else {
//
// Pb Cb
// / \ / \ // W Nr to Pr Nr
// / \ / \ / \ // Cr Z W X Y Z
// / \ // X Y
//
MARK_RED( Parent ); Parent->Right = Child->Left; Child->Left = Parent; Node->Left = Child->Right; Child->Right = Node; MARK_BLACK( Child ); *Link = Child; } }
else {
if ( Parent->Right == Node ) {
MARK_RED( Parent ); Parent->Right = Node->Left; Node->Left = Parent; MARK_BLACK( Node ); *Link = Node; }
else {
MARK_RED( Parent ); Parent->Left = Child->Right; Child->Right = Parent; Node->Right = Child->Left; Child->Left = Node; MARK_BLACK( Child ); *Link = Child; } } }
return (DWORD_CONTEXT) NewNode->Context; } }
Child = Node; Node = Parent; }
//
// We bubbled red up to the root -- restore it to black.
//
MARK_BLACK( Tree->Root ); return (DWORD_CONTEXT) NewNode->Context; }
VOID TreeDestroy( IN OUT PDWORD_TREE Tree ) //
// We walk the tree left first, then right, until we find a leaf. We delete the leaf and continue
// our walking to the right of the parent since we must've been to the parent's left before
//
{ PDWORD_NODE * Stack[ MAX_DEPTH ]; PDWORD_NODE **StackPointer; PDWORD_NODE Node;
if(NODE_NIL == Tree->Root) return;
StackPointer = Stack; *StackPointer = &Tree->Root;
lTryLeft: Node = **StackPointer;
if(Node->Left != NODE_NIL) { *++StackPointer = &Node->Left; goto lTryLeft; }
lTryRight: if(Node->Right != NODE_NIL) { *++StackPointer = &Node->Right; goto lTryLeft; }
MemFree(Node); **StackPointer = NODE_NIL;
if(StackPointer > Stack) // this is true if the current node is not the root
{ Node = **--StackPointer; goto lTryRight; } }
|