|
|
#include "pch.h"
VOID PptDellNationalPC87364WorkAround( PUCHAR EcpController ) { PUCHAR ecr = EcpController+2; // generic chipset Extended Control Register
PUCHAR eir = EcpController+3; // PC87364 chipset Extended Index Register
PUCHAR edr = EcpController+4; // PC87364 chipset Extended Data Register
ULONG delay = 5; // in microseconds (arbitrary - this seems to work)
KIRQL oldIrql;
//
// Raise IRQL to prevent BIOS from touching the registers at the
// same time that we're updating them. This is a complete hack
// since according to PnP we own the registers, but do it anyway
// since we know that BIOS touches these same registers.
//
KeRaiseIrql( HIGH_LEVEL, &oldIrql );
KeStallExecutionProcessor( delay ); P5WritePortUchar( ecr, 0x15 ); KeStallExecutionProcessor( delay ); P5WritePortUchar( eir, 0x02 ); KeStallExecutionProcessor( delay ); P5WritePortUchar( edr, 0x90 ); KeStallExecutionProcessor( delay );
KeLowerIrql( oldIrql ); }
NTSTATUS PptFdoStartDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_START IRPs.
- Wait for the bus driver and any drivers beneath us in the driver stack to handle this first. - Get, validate, and save the resources given to us by PnP. - Assign IDs to and get a count of 1284.3 daisy chain devices connected to the port. - Determine the capabilities of the chipset (BYTE, EPP, ECP). - Set our PnP device interface state to trigger an interface arrival callback to anyone listening on our GUID.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
STATUS_SUCCESS - on success, an appropriate error status - otherwise
--*/ { PFDO_EXTENSION fdx = DeviceObject->DeviceExtension; NTSTATUS status; BOOLEAN foundPort = FALSE; BOOLEAN foundIrq = FALSE; BOOLEAN foundDma = FALSE;
//
// This IRP must be handled first by the parent bus driver
// and then by each higher driver in the device stack.
//
status = PptPnpBounceAndCatchPnpIrp(fdx, Irp); if( !NT_SUCCESS( status ) && ( status != STATUS_NOT_SUPPORTED ) ) { // Someone below us in the driver stack explicitly failed the START.
goto targetExit; }
//
// Extract resources from CM_RESOURCE_LIST and save them in our extension.
//
status = PptPnpStartScanCmResourceList(fdx, Irp, &foundPort, &foundIrq, &foundDma); if( !NT_SUCCESS( status ) ) { goto targetExit; }
//
// Do our resources appear to be valid?
//
status = PptPnpStartValidateResources(DeviceObject, foundPort, foundIrq, foundDma); if( !NT_SUCCESS( status ) ) { goto targetExit; }
//
// Check if ACPI set a flag for us based on entries in
// BIOSINFO.INF to indicate that we are running on a Dell machine
// with an incorrectly programmed National PC87364 SuperIO
// chipset. If so try to work around the problem here so that the
// user doesn't need to flash the BIOS to get the parallel port to
// work.
//
// Symptoms of the problem are that the parallel port Data Lines
// are wedged to all zeros regardless of the setting of the bits
// in the parallel port data register or the Direction bit in the
// control register.
//
// If the port base address is 0x3BC then this won't work and the
// user will need to go to Device Manager and change the LPT port
// resource settings to either 0x378 or 0x278 for the base
// register address. We believe that ACPI defaults to a port base
// address of 0x378 so this workaround should generally work.
//
{ ULONG DellNationalPC87364 = 0;
//
// Check registry to see if ACPI set the flag based on
// BIOSINFO.INF to indicate that we should try the workaround.
//
PptRegGetDword( RTL_REGISTRY_SERVICES, L"Parport\\Parameters", L"DellNationalPC87364", &DellNationalPC87364 );
if( DellNationalPC87364 ) {
//
// we have a Dell machine with a National PC87364 chipset
// and a version of BIOS that we believe doesn't
// initialize the parallel port so that it works under
// Win2k or WinXP.
//
if( fdx->PnpInfo.SpanOfEcpController > 4 ) {
//
// We have the extra Ecp registers needed to try the
// workaround without stepping on I/O register space
// owned by someone else.
//
if( ( (PUCHAR)0x678 == fdx->PnpInfo.EcpController ) || ( (PUCHAR)0x778 == fdx->PnpInfo.EcpController ) ) {
//
// The parallel port base register and ECP
// registers are located at one of the two
// traditional address ranges: ECP at 0x400 offset
// from base register address of 0x278 or 0x378,
// so let's try the workaround to try to unwedge
// the port data lines.
//
PptDellNationalPC87364WorkAround( fdx->PnpInfo.EcpController ); } } }
} // end new block scope for Dell/National chipset workaround
//
// Initialize the IEEE 1284.3 "bus" by assigning IDs [0..3] to
// the 1284.3 daisy chain devices connected to the port. This
// function also gives us a count of the number of such
// devices connected to the port.
//
fdx->PnpInfo.Ieee1284_3DeviceCount = PptInitiate1284_3( fdx ); //
// Determine the hardware modes supported (BYTE, ECP, EPP) by
// the parallel port chipset and save this information in our extension.
//
// Check to see if the filter parchip is there and use the modes it can set
status = PptDetectChipFilter( fdx );
// if filter driver was not found use our own generic port detection
if ( !NT_SUCCESS( status ) ) { PptDetectPortType( fdx ); }
//
// Register w/WMI
//
status = PptWmiInitWmi( DeviceObject ); if( !NT_SUCCESS( status ) ) { goto targetExit; }
//
// Signal those who registered for PnP interface change notification
// on our GUID that we have STARTED (trigger an INTERFACE_ARRIVAL
// PnP callback).
//
status = IoSetDeviceInterfaceState( &fdx->DeviceInterface, TRUE ); if( !NT_SUCCESS(status) ) { status = STATUS_NOT_SUPPORTED; } else { fdx->DeviceInterfaceState = TRUE; }
targetExit:
if( NT_SUCCESS( status ) ) {
//
// Note in our extension that we have successfully STARTED.
//
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); PptSetFlags( fdx->PnpState, PPT_DEVICE_STARTED ); ExReleaseFastMutex( &fdx->ExtensionFastMutex );
// create warm poll thread to poll for printer arrivals
if( NULL == fdx->ThreadObjectPointer ) {
ULONG DisableWarmPoll;
fdx->PollingFailureCounter = 0; // reset counter
// check for registry flag to disable "polling for printers"
DisableWarmPoll = 0; // if non-zero then do not poll for printer arrivals
PptRegGetDword( RTL_REGISTRY_SERVICES, L"Parport\\Parameters", L"DisableWarmPoll", &DisableWarmPoll );
if( 0 == DisableWarmPoll ) {
// how frequently should we check for printer arrivals? (in seconds)
// (WarmPollPeriod is a driver global)
PptRegGetDword( RTL_REGISTRY_SERVICES, L"Parport\\Parameters", L"WarmPollPeriod", &WarmPollPeriod ); if( WarmPollPeriod < 5 ) { WarmPollPeriod = 5; } else { if( WarmPollPeriod > 20 ) { WarmPollPeriod = 20; } } DD((PCE)fdx,DDT,"P5FdoThread - WarmPollPeriod = %d seconds\n",WarmPollPeriod); // side effect: set fdx->ThreadObjectPointer on SUCCESS
P5FdoCreateThread( fdx ); }
}
}
P4CompleteRequest( Irp, status, 0 );
PptReleaseRemoveLock( &fdx->RemoveLock, Irp );
return status; }
NTSTATUS PptFdoQueryRemove( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_QUERY_REMOVE_DEVICE.
FAIL the request if there are open handles, SUCCEED otherwise. This function is identical to PptPnpQueryStopDevice() except for the flag that gets set in fdx->PnpState.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
STATUS_SUCCESS - No open handles - SUCCEED IRP STATUS_DEVICE_BUSY - Open handles - FAIL IRP
--*/ { //
// Always succeed query - PnP will veto Query Remove on our behalf if
// there are open handles
//
PFDO_EXTENSION fdx = DeviceObject->DeviceExtension;
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); PptSetFlags( fdx->PnpState, ( PPT_DEVICE_REMOVE_PENDING | PPT_DEVICE_PAUSED ) ); ExReleaseFastMutex( &fdx->ExtensionFastMutex );
Irp->IoStatus.Status = STATUS_SUCCESS;
return PptPnpPassThroughPnpIrpAndReleaseRemoveLock( fdx, Irp ); }
NTSTATUS PptFdoRemoveDevice( IN PDEVICE_OBJECT Fdo, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_REMOVE_DEVICE.
Notify those listening on our device interface GUID that we have gone away, wait until all other IRPs that the device is processing have drained, and clean up.
Arguments:
Fdo - The target device for the IRP Irp - The IRP
Return Value:
Status returned from IoCallDriver.
--*/ { PFDO_EXTENSION fdx = Fdo->DeviceExtension; NTSTATUS status;
//
// clean up any child PDOs that are still here
//
if( fdx->RawPortPdo ) { PDEVICE_OBJECT pdo = fdx->RawPortPdo; DD((PCE)fdx,DDT,"PptFdoRemoveDevice - have RawPortPdo - cleaning up\n"); P4DestroyPdo( pdo ); fdx->RawPortPdo = NULL; }
if( fdx->EndOfChainPdo ) { PDEVICE_OBJECT pdo = fdx->EndOfChainPdo; DD((PCE)fdx,DDT,"PptFdoRemoveDevice - have EndOfChainPdo - cleaning up\n"); P4DestroyPdo( pdo ); fdx->EndOfChainPdo = NULL; }
{ LONG daisyChainId; const LONG daisyChainMaxId = 1;
for( daisyChainId = 0 ; daisyChainId <= daisyChainMaxId ; ++daisyChainId ) {
if( fdx->DaisyChainPdo[ daisyChainId ] ) { PDEVICE_OBJECT pdo = fdx->DaisyChainPdo[ daisyChainId ]; DD((PCE)fdx,DDT,"PptFdoRemoveDevice - have DaisyChainPdo[%d] - cleaning up\n",daisyChainId); P4DestroyPdo( pdo ); fdx->DaisyChainPdo[ daisyChainId ] = NULL; } } }
//
// RMT - if fdx->DevDeletionListHead non-empty - clean it up?
//
PptAssert( IsListEmpty( &fdx->DevDeletionListHead) );
//
// Set flags in our extension to indicate that we have received
// IRP_MN_REMOVE_DEVICE so that we can fail new requests as appropriate.
//
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); PptSetFlags( fdx->PnpState, PPT_DEVICE_REMOVED ); ExReleaseFastMutex( &fdx->ExtensionFastMutex );
//
// if we still have a worker thread, kill it
//
{ PVOID threadObjPointer = InterlockedExchangePointer( &fdx->ThreadObjectPointer, NULL ); if( threadObjPointer ) { // set the flag for the worker thread to kill itself
fdx->TimeToTerminateThread = TRUE; // wake thread so it can kill self
KeSetEvent( &fdx->FdoThreadEvent, 0, TRUE ); // wait for the thread to die
KeWaitForSingleObject( threadObjPointer, Executive, KernelMode, FALSE, NULL ); // allow the system to release the thread object
ObDereferenceObject( threadObjPointer );
} }
//
// Unregister w/WMI
//
IoWMIRegistrationControl(Fdo, WMIREG_ACTION_DEREGISTER);
//
// Tell those listening on our device interface GUID that we have
// gone away. Ignore status from the call since we can do
// nothing on failure.
//
IoSetDeviceInterfaceState( &fdx->DeviceInterface, FALSE ); fdx->DeviceInterfaceState = FALSE;
//
// Pass the IRP down the stack and wait for all other IRPs
// that are being processed by the device to drain.
//
Irp->IoStatus.Status = STATUS_SUCCESS; IoSkipCurrentIrpStackLocation( Irp ); status = IoCallDriver( fdx->ParentDeviceObject, Irp ); PptReleaseRemoveLockAndWait( &fdx->RemoveLock, Irp );
//
// Clean up pool allocations
//
RtlFreeUnicodeString( &fdx->DeviceName); RtlFreeUnicodeString( &fdx->DeviceInterface ); if( fdx->PnpInfo.PortName ) { ExFreePool( fdx->PnpInfo.PortName ); fdx->PnpInfo.PortName = NULL; } if( fdx->Location ) { ExFreePool( fdx->Location ); fdx->Location = NULL; }
//
// Detach and delete our device object.
//
IoDetachDevice( fdx->ParentDeviceObject ); IoDeleteDevice( Fdo ); return status; }
NTSTATUS PptFdoCancelRemove( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_CANCEL_REMOVE_DEVICE.
If we previously SUCCEEDed a QUERY_REMOVE (PPT_DEVICE_REMOVE_PENDING flag is set) then we reset the appropriate device state flags and resume normal operation. Otherwise treat this as an informational message.
This function is identical to PptPnpCancelStopDevice() except for the fdx->PnpState.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
Status returned from IoCallDriver.
--*/ { PFDO_EXTENSION fdx = DeviceObject->DeviceExtension;
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); if( fdx->PnpState & PPT_DEVICE_REMOVE_PENDING ) { PptClearFlags( fdx->PnpState, ( PPT_DEVICE_REMOVE_PENDING | PPT_DEVICE_PAUSED ) ); } ExReleaseFastMutex( &fdx->ExtensionFastMutex );
Irp->IoStatus.Status = STATUS_SUCCESS; return PptPnpPassThroughPnpIrpAndReleaseRemoveLock( fdx, Irp ); }
NTSTATUS PptFdoStopDevice( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_STOP_DEVICE.
We previously SUCCEEDed QUERY_STOP. Set flags to indicate that we are now STOPPED.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
Status returned from IoCallDriver.
--*/ { PFDO_EXTENSION fdx = DeviceObject->DeviceExtension;
ExAcquireFastMutex( &fdx->ExtensionFastMutex );
//
// Assert that we are in a STOP_PENDING state.
//
ASSERT( fdx->PnpState & PPT_DEVICE_STOP_PENDING ); ASSERT( fdx->PnpState & PPT_DEVICE_PAUSED );
//
// PPT_DEVICE_PAUSED remains set
//
PptSetFlags( fdx->PnpState, PPT_DEVICE_STOPPED ); PptClearFlags( fdx->PnpState, ( PPT_DEVICE_STOP_PENDING | PPT_DEVICE_STARTED ) );
ExReleaseFastMutex( &fdx->ExtensionFastMutex );
Irp->IoStatus.Status = STATUS_SUCCESS; return PptPnpPassThroughPnpIrpAndReleaseRemoveLock(fdx, Irp); }
NTSTATUS PptFdoQueryStop( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_QUERY_STOP_DEVICE.
FAIL the request if there are open handles, SUCCEED otherwise. Other drivers may cache pointers to the parallel port registers that they obtained via IOCTL_INTERNAL_GET_PARALLEL_PORT_INFO and there is currently no mechanism to find and inform all such drivers that the parallel port registers have changed and their their cached pointers are now invalid without breaking legacy drivers.
This function is identical to PptPnpQueryStopDevice() except for the flag that gets set in fdx->PnpState.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
STATUS_SUCCESS - No open handles - SUCCEED IRP STATUS_DEVICE_BUSY - Open handles - FAIL IRP
--*/ { NTSTATUS status = STATUS_SUCCESS; PFDO_EXTENSION fdx = DeviceObject->DeviceExtension; BOOLEAN handlesOpen;
//
// RMT - dvdf - race condition - small timing window - sequence:
// 1. Test indicates no open handles - decide to SUCCEED QUERY_STOP
// 2. CREATE arrives and is SUCCEEDED - open handle
// 3. We SUCCEED QUERY_STOP
// 4. Client obtains register addresses via IOCTL
// 5. PnP Rebalances us - registers change
// 6. Client acquires port via IOCTL
// 7. Client tries to access registers at pre-rebalance location
// 8. BOOM!!!
//
ExAcquireFastMutex( &fdx->OpenCloseMutex ); handlesOpen = (BOOLEAN)( fdx->OpenCloseRefCount > 0 ); ExReleaseFastMutex( &fdx->OpenCloseMutex );
if( handlesOpen ) { status = STATUS_DEVICE_BUSY; P4CompleteRequest( Irp, status, Irp->IoStatus.Information ); PptReleaseRemoveLock( &fdx->RemoveLock, Irp );
} else {
Irp->IoStatus.Status = STATUS_SUCCESS; status = PptPnpPassThroughPnpIrpAndReleaseRemoveLock( fdx, Irp );
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); PptSetFlags( fdx->PnpState, ( PPT_DEVICE_STOP_PENDING | PPT_DEVICE_PAUSED ) ); ExReleaseFastMutex( &fdx->ExtensionFastMutex ); } return status; }
NTSTATUS PptFdoCancelStop( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_CANCEL_STOP_DEVICE.
If we previously SUCCEEDed a QUERY_STOP (PPT_DEVICE_STOP_PENDING flag is set) then we reset the appropriate device state flags and resume normal operation. Otherwise treat this as an informational message.
This function is identical to PptPnpCancelRemoveDevice() except for the fdx->PnpState.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
Status returned from IoCallDriver.
--*/ { PFDO_EXTENSION fdx = DeviceObject->DeviceExtension;
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); if( fdx->PnpState & PPT_DEVICE_STOP_PENDING ) { PptClearFlags( fdx->PnpState, ( PPT_DEVICE_STOP_PENDING | PPT_DEVICE_PAUSED ) ); } ExReleaseFastMutex( &fdx->ExtensionFastMutex );
Irp->IoStatus.Status = STATUS_SUCCESS; return PptPnpPassThroughPnpIrpAndReleaseRemoveLock( fdx, Irp ); }
NTSTATUS PptFdoQueryDeviceRelations( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp )
/*++
Routine Description:
This function handles PnP IRP_MN_QUERY_DEVICE_RELATIONS.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
STATUS_SUCCESS - on success, an appropriate error status - otherwise
--*/ { PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation( Irp ); DEVICE_RELATION_TYPE type = irpSp->Parameters.QueryDeviceRelations.Type;
if( BusRelations == type ) { return PptFdoHandleBusRelations( DeviceObject, Irp ); } else { return PptPnpPassThroughPnpIrpAndReleaseRemoveLock(DeviceObject->DeviceExtension, Irp); } }
NTSTATUS PptFdoFilterResourceRequirements( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function handles PnP IRP_MN_FILTER_RESOURCE_REQUIREMENTS IRPs.
- Wait for the bus driver and any drivers beneath us in the driver stack to handle this first. - Query the registry to find the type of filtering desired. - Filter out IRQ resources as specified by the registry setting.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
STATUS_SUCCESS - on success, an appropriate error status - otherwise
--*/ { PFDO_EXTENSION fdx = DeviceObject->DeviceExtension; ULONG filterResourceMethod = PPT_FORCE_USE_NO_IRQ; PIO_RESOURCE_REQUIREMENTS_LIST pResourceRequirementsIn; NTSTATUS status;
//
// DDK Rule: Add on the way down, modify on the way up. We are modifying
// the resource list so let the drivers beneath us handle this IRP first.
//
status = PptPnpBounceAndCatchPnpIrp(fdx, Irp); if( !NT_SUCCESS(status) && (status != STATUS_NOT_SUPPORTED) ) { // Someone below us in the driver stack explicitly failed the IRP.
goto targetExit; }
//
// Find the "real" resource requirments list, either the PnP list
// or the list created by another driver in the stack.
//
if ( Irp->IoStatus.Information == 0 ) { //
// No one else has created a new resource list. Use the original
// list from the PnP Manager.
//
PIO_STACK_LOCATION IrpStack = IoGetCurrentIrpStackLocation( Irp ); pResourceRequirementsIn = IrpStack->Parameters.FilterResourceRequirements.IoResourceRequirementList;
if (pResourceRequirementsIn == NULL) { //
// NULL list, nothing to do.
//
goto targetExit; }
} else { //
// Another driver has created a new resource list. Use the list that they created.
//
pResourceRequirementsIn = (PIO_RESOURCE_REQUIREMENTS_LIST)Irp->IoStatus.Information; }
//
// Check the registry to find out the desired type of resource filtering.
//
// The following call sets the default value for filterResourceMethod
// if the registry query fails.
//
PptRegGetDeviceParameterDword( fdx->PhysicalDeviceObject, (PWSTR)L"FilterResourceMethod", &filterResourceMethod );
DD((PCE)fdx,DDT,"filterResourceMethod=%x\n",filterResourceMethod);
//
// Do filtering based on registry setting.
//
switch( filterResourceMethod ) {
case PPT_FORCE_USE_NO_IRQ: //
// Registry setting dictates that we should refuse to accept IRQ resources.
//
// * This is the default behavior which means that we make the IRQ available
// for legacy net and sound cards that may not work if they cannot get
// the IRQ.
//
// - If we find a resource alternative that does not contain an IRQ resource
// then we remove those resource alternatives that do contain IRQ
// resources from the list of alternatives.
//
// - Otherwise we have to play hardball. Since all resource alternatives
// contain IRQ resources we simply "nuke" the IRQ resource descriptors
// by changing their resource Type from CmResourceTypeInterrupt to
// CmResourceTypeNull.
//
DD((PCE)fdx,DDT,"PPT_FORCE_USE_NO_IRQ\n");
if( PptPnpFilterExistsNonIrqResourceList( pResourceRequirementsIn ) ) {
DD((PCE)fdx,DDT,"Found Resource List with No IRQ - Filtering\n"); PptPnpFilterRemoveIrqResourceLists( pResourceRequirementsIn );
} else {
DD((PCE)fdx,DDT,"Did not find Resource List with No IRQ - Nuking IRQ resource descriptors\n"); PptPnpFilterNukeIrqResourceDescriptorsFromAllLists( pResourceRequirementsIn );
}
break;
case PPT_TRY_USE_NO_IRQ: //
// Registry setting dictates that we should TRY to give up IRQ resources.
//
// - If we find a resource alternative that does not contain an IRQ resource
// then we remove those resource alternatives that do contain IRQ
// resources from the list of alternatives.
//
// - Otherwise we do nothing.
//
DD((PCE)fdx,DDT,"PPT_TRY_USE_NO_IRQ\n"); if( PptPnpFilterExistsNonIrqResourceList(pResourceRequirementsIn) ) {
DD((PCE)fdx,DDT,"Found Resource List with No IRQ - Filtering\n"); PptPnpFilterRemoveIrqResourceLists(pResourceRequirementsIn);
} else {
// leave the IO resource list as is
DD((PCE)fdx,DDT,"Did not find Resource List with No IRQ - Do nothing\n");
} break;
case PPT_ACCEPT_IRQ: //
// Registry setting dictates that we should NOT filter out IRQ resources.
//
// - Do nothing.
//
DD((PCE)fdx,DDT,"PPT_ACCEPT_IRQ\n"); break;
default: //
// Invalid registry setting.
//
// - Do nothing.
//
// RMT dvdf - May be desirable to write an error log entry here.
//
DD((PCE)fdx,DDE,"ERROR:IGNORED: bad filterResourceMethod=%x\n", filterResourceMethod); }
targetExit:
//
// Preserve Irp->IoStatus.Information because it may point to a
// buffer and we don't want to cause a memory leak.
//
P4CompleteRequest( Irp, status, Irp->IoStatus.Information );
PptReleaseRemoveLock(&fdx->RemoveLock, Irp);
return status; }
NTSTATUS PptFdoSurpriseRemoval( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf6
Routine Description:
This function handles PnP IRP_MN_SURPRISE_REMOVAL.
Set flags accordingly in our extension, notify those listening on our device interface GUID that we have gone away, and pass the IRP down the driver stack.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
Status returned from IoCallDriver.
--*/ { PFDO_EXTENSION fdx = DeviceObject->DeviceExtension;
//
// Set flags in our extension to indicate that we have received
// IRP_MN_SURPRISE_REMOVAL so that we can fail new requests
// as appropriate.
//
ExAcquireFastMutex( &fdx->ExtensionFastMutex ); PptSetFlags( fdx->PnpState, PPT_DEVICE_SURPRISE_REMOVED ); ExReleaseFastMutex( &fdx->ExtensionFastMutex );
//
// Fail outstanding allocate/select requests for the port
//
{ PIRP nextIrp; KIRQL cancelIrql; IoAcquireCancelSpinLock(&cancelIrql); while( !IsListEmpty( &fdx->WorkQueue ) ) { nextIrp = CONTAINING_RECORD( fdx->WorkQueue.Blink, IRP, Tail.Overlay.ListEntry ); nextIrp->Cancel = TRUE; nextIrp->CancelIrql = cancelIrql; nextIrp->CancelRoutine = NULL; PptCancelRoutine( DeviceObject, nextIrp ); // PptCancelRoutine() releases the cancel SpinLock so we need to reaquire
IoAcquireCancelSpinLock( &cancelIrql ); } IoReleaseCancelSpinLock( cancelIrql ); }
//
// Tell those listening on our device interface GUID that we have
// gone away. Ignore status from the call since we can do
// nothing on failure.
//
IoSetDeviceInterfaceState( &fdx->DeviceInterface, FALSE ); fdx->DeviceInterfaceState = FALSE;
//
// Succeed, pass the IRP down the stack, and release the RemoveLock.
//
Irp->IoStatus.Status = STATUS_SUCCESS; return PptPnpPassThroughPnpIrpAndReleaseRemoveLock( fdx, Irp ); }
NTSTATUS PptFdoDefaultPnpHandler( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ) /*++dvdf8
Routine Description:
This function is the default handler for PnP IRPs. All PnP IRPs that are not explicitly handled by another routine (via an entry in the PptPnpDispatchFunctionTable[]) are handled by this routine.
- Pass the IRP down the stack to the device below us in the driver stack and release our device RemoveLock.
Arguments:
DeviceObject - The target device for the IRP Irp - The IRP
Return Value:
STATUS_SUCCESS - on success, an appropriate error status - otherwise
--*/ { return PptPnpPassThroughPnpIrpAndReleaseRemoveLock(DeviceObject->DeviceExtension, Irp); }
PDRIVER_DISPATCH PptFdoPnpDispatchTable[] = { PptFdoStartDevice, // IRP_MN_START_DEVICE 0x00
PptFdoQueryRemove, // IRP_MN_QUERY_REMOVE_DEVICE 0x01
PptFdoRemoveDevice, // IRP_MN_REMOVE_DEVICE 0x02
PptFdoCancelRemove, // IRP_MN_CANCEL_REMOVE_DEVICE 0x03
PptFdoStopDevice, // IRP_MN_STOP_DEVICE 0x04
PptFdoQueryStop, // IRP_MN_QUERY_STOP_DEVICE 0x05
PptFdoCancelStop, // IRP_MN_CANCEL_STOP_DEVICE 0x06
PptFdoQueryDeviceRelations, // IRP_MN_QUERY_DEVICE_RELATIONS 0x07
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_INTERFACE 0x08
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_CAPABILITIES 0x09
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_RESOURCES 0x0A
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_RESOURCE_REQUIREMENTS 0x0B
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_DEVICE_TEXT 0x0C
PptFdoFilterResourceRequirements, // IRP_MN_FILTER_RESOURCE_REQUIREMENTS 0x0D
PptFdoDefaultPnpHandler, // no such PnP request 0x0E
PptFdoDefaultPnpHandler, // IRP_MN_READ_CONFIG 0x0F
PptFdoDefaultPnpHandler, // IRP_MN_WRITE_CONFIG 0x10
PptFdoDefaultPnpHandler, // IRP_MN_EJECT 0x11
PptFdoDefaultPnpHandler, // IRP_MN_SET_LOCK 0x12
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_ID 0x13
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_PNP_DEVICE_STATE 0x14
PptFdoDefaultPnpHandler, // IRP_MN_QUERY_BUS_INFORMATION 0x15
PptFdoDefaultPnpHandler, // IRP_MN_DEVICE_USAGE_NOTIFICATION 0x16
PptFdoSurpriseRemoval, // IRP_MN_SURPRISE_REMOVAL 0x17
PptFdoDefaultPnpHandler // IRP_MN_QUERY_LEGACY_BUS_INFORMATION 0x18
};
NTSTATUS PptFdoPnp( IN PDEVICE_OBJECT Fdo, IN PIRP Irp ) { PFDO_EXTENSION fdx = Fdo->DeviceExtension; PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation( Irp ); NTSTATUS status;
// diagnostic
PptFdoDumpPnpIrpInfo( Fdo, Irp );
//
// Acquire RemoveLock to prevent DeviceObject from being REMOVED
// while we are using it. If we are unable to acquire the RemoveLock
// then the DeviceObject has already been REMOVED.
//
status = PptAcquireRemoveLock( &fdx->RemoveLock, Irp); if( STATUS_SUCCESS != status ) { return P4CompleteRequest( Irp, STATUS_DELETE_PENDING, Irp->IoStatus.Information ); }
//
// RemoveLock is held. Forward the request to the appropriate handler.
//
// Note that the handler must release the RemoveLock prior to returning
// control to this function.
//
if( irpSp->MinorFunction < arraysize(PptFdoPnpDispatchTable) ) { return PptFdoPnpDispatchTable[ irpSp->MinorFunction ]( Fdo, Irp ); } else { return PptFdoDefaultPnpHandler( Fdo, Irp ); } }
|