|
|
//
// Utilities
//
#ifndef _H_UT
#define _H_UT
//
// Data types stored in the profile information.
//
#define COM_PROFTYPE_STRING 1L
#define COM_PROFTYPE_INT 2L
#define COM_PROFTYPE_BOOL 3L
#define COM_PROFTYPE_UNKNOWN 4L
#define COM_MAX_SUBKEY 256
#define COM_MAX_BOOL_STRING 5
//
//
// TYPEDEFS
//
//
//
// Priorities for UT_RegisterEventProc()
//
// Event procedures are registered with a priority that affects the order
// that the event procedures are called in.
//
// All event procedures of a given priority are called before event
// procedures of a numerically lower priority.
//
// The priority can be any number between 0 and UT_MAX_PRIORITY
//
// The following values have been defined for specific uses:
// UT_PRIORITY_OBMAN : Used by OBMAN so its client event procedures
// are called before those of the client
// UT_PRIORITY_APPSHARE : Used by the DCShare Core to ensure it sees
// events before 'Normal' event procs.
// UT_PRIORITY_NORMAL : For all cases where the order of callling is
// not important.
// UT_PRIORITY_NETWORK : Used by the Network Layer to free any
// unprocessed network buffers.
// UT_PRIORITY_LAST : Used by the Utility Services to get the
// default event procedure called last
//
//
typedef enum { UT_PRIORITY_LAST = 0, UT_PRIORITY_NETWORK, UT_PRIORITY_NORMAL, UT_PRIORITY_APPSHARING, UT_PRIORITY_OBMAN, UT_PRIORITY_MAX } UT_PRIORITY; typedef UT_PRIORITY * PUT_PRIORITY;
//
// SYSTEM LIMITS
//
//
// Maximum number of event handlers for each task
//
#define UTEVENT_HANDLERS_MAX 4
//
// Maximum number of exit procedures
//
#define UTEXIT_PROCS_MAX 4
//
// The groupware critsects, identified by constant
//
#define UTLOCK_FIRST 0
typedef enum { UTLOCK_UT = UTLOCK_FIRST, UTLOCK_OM, // obman
UTLOCK_AL, // app loader
UTLOCK_T120, // gcc/mcs
UTLOCK_AS, // app sharing
UTLOCK_MAX } UTLOCK;
// Event message
#define WM_UTTRIGGER_MSG (WM_APP)
//
// BASEDLIST
//
// This is a list structure with based offsets
//
// next : the next item in the list
// prev : the previous item in the list
//
//
typedef struct tagBASEDLIST { DWORD next; DWORD prev; } BASEDLIST; typedef BASEDLIST FAR * PBASEDLIST;
typedef struct { BASEDLIST chain; void FAR *pData; } SIMPLE_LIST, FAR * PSIMPLE_LIST;
//
//
// MACROS
//
//
//
// List handling
// =============
// The common functions support the concept of a doubly linked list of
// objects. Objects can be inserted and removed from specified locations
// in the list.
//
// At start of day the calling application must call COM_BasedListInit with a
// pointer to a private piece of memory for a BASEDLIST structure. The list
// handling will initialise this structure. The application must not
// release this memory while the list is active. (Nor must it release any
// object while it is in a list!)
//
// The list functions can only manage a single list, however the app
// can load objects with multiple lists. Each call to the common list
// functions takes a BASEDLIST pointer as the object handle and if the
// application defines multiple BASEDLIST structures within an object then it
// may manage them through the list functions.
//
//
// List chaining
// =============
// For normal list chaining, we have something like
//
// while (pointer != NULL)
// {
// do something;
// pointer = pointer->next;
// }
//
// When using lists whose elements contain offsets (in this case, relative
// offsets) to the next element, we have to cast to a 32-bit integer before
// we can add the offset. This macro encapsulates this, and the example
// above would be modified as follows to use it:
//
// while (pointer != NULL)
// {
// do something;
// pointer = (TYPE) COM_BasedNextListField(pointer);
// }
//
// Note also that the value returned by the macro is a pointer to a generic
// list object i.e. a PBASEDLIST, and so must be cast back to the
// appropriate type.
//
//
//
// List traversing macros
// ======================
// These macros make use of DC_NEXT and DC_PREV, but also take the type of
// list being traversed in order to return the start pointer of the chained
// structure.
//
// The LIST_FIND macro supports the searching of a list, matching a key
// value to a selected structure element.
//
// The parameters to the macros are as follows:
//
// pHead (type: PBASEDLIST)
// -----
// a pointer the root of the list
//
// pEntry (type: STRUCT FAR * FAR *)
// ------
// a pointer to pointer to structure to chain from
//
// STRUCT (a type name)
// ------
// the type of **pEntry
//
// chain (a field name)
// -----
// the text name of the field in STRUCT which is the link along which
// you wish to traverse
//
// field (a field name)
// -----
// when FINDing, the text name of the field in STRUCT against which
// you wish to match
//
// key (a value, of the same type as STRUCT.field)
// ---
// when FINDing, the value to match against STRUCT.field against
//
//
//
// Offset arithmetic
// =================
// Using offsets within memory blocks, rather than pointers, to refer to
// objects in shared memory (as necessitated by the DC-Groupware shared
// memory architecture) presents certain difficulties. Pointer arithmetic
// in C assumes that addition/subtraction operations involve objects of the
// same type and the offsets are presented as number of units of that
// particular type, rather than number of bytes.
//
// Therefore, pointers must be cast to integers before performing
// arithmetic on them (note that casting the pointers to byte pointers is
// not enough since on segmented architectures C performs bounds checking
// when doing pointer arithmetic which we don't want).
//
// Since this would make for cumbersome code if repeated everywhere, we
// define some useful macros to convert
//
// - an (offset, base) pair to a pointer (OFFSETBASE_TO_PTR)
//
// - a (pointer, base) pair to an offset (PTRBASE_TO_OFFSET)
//
// - a NULL pointer value to an offset(NULLBASE_TO_OFFSET)
//
// The offset calculated is the offset of the first parameter from the
// second. As described above, the pointers passed in must be cast to
// 32-bit unsigned integers first, subtracted to get the offset, and then
// cast to 32-bit signed.
//
// The NULLBASE_TO_OFFSET value gives an offset that after translation back
// to a pointer gives a NULL. This is NOT the same as a NULL offset, since
// this translates back to the base pointer (which is a perfectly valid
// address).
//
//
#define PTRBASE_TO_OFFSET(pObject, pBase) \
(LONG)(((DWORD_PTR)(pObject)) - ((DWORD_PTR)(pBase)))
#define OFFSETBASE_TO_PTR(offset, pBase) \
((void FAR *) ((DWORD_PTR)(pBase) + (LONG)(offset)))
#define NULLBASE_TO_OFFSET(pBase) \
((DWORD_PTR) (0L - (LONG_PTR)(pBase)))
__inline BOOL COM_BasedListIsEmpty ( PBASEDLIST pHead ) { ASSERT((pHead->next == 0 && pHead->prev == 0) || (pHead->next != 0 && pHead->prev != 0)); return (pHead->next == 0); }
__inline void FAR * COM_BasedFieldToStruct ( PBASEDLIST pField, UINT nOffset ) { return (void FAR *) ((DWORD_PTR)pField - nOffset); }
__inline PBASEDLIST COM_BasedStructToField ( void FAR * pStruct, UINT nOffset ) { return (PBASEDLIST) ((DWORD_PTR) pStruct + nOffset); }
__inline PBASEDLIST COM_BasedNextListField ( PBASEDLIST p ) { return (PBASEDLIST) OFFSETBASE_TO_PTR(p->next, p); }
__inline PBASEDLIST COM_BasedPrevListField ( PBASEDLIST p ) { return (PBASEDLIST) OFFSETBASE_TO_PTR(p->prev, p); }
void FAR * COM_BasedListNext ( PBASEDLIST pHead, void FAR * pEntry, UINT nOffset ); void FAR * COM_BasedListPrev ( PBASEDLIST pHead, void FAR * pEntry, UINT nOffset ); void FAR * COM_BasedListFirst ( PBASEDLIST pHead, UINT nOffset ); void FAR * COM_BasedListLast ( PBASEDLIST pHead, UINT nOffset );
typedef enum { LIST_FIND_FROM_FIRST, LIST_FIND_FROM_NEXT } LIST_FIND_TYPE;
void COM_BasedListFind ( LIST_FIND_TYPE eType, PBASEDLIST pHead, void FAR * FAR* ppEntry, UINT nOffset, int nOffsetKey, DWORD_PTR Key, int cbKeySize );
PSIMPLE_LIST COM_SimpleListAppend ( PBASEDLIST pHead, void FAR * pData ); void FAR * COM_SimpleListRemoveHead ( PBASEDLIST pHead );
//
//
// FUNCTION PROTOTYPES
//
//
//
// API FUNCTION: COM_Rect16sIntersect(...)
//
// DESCRIPTION:
// ============
// Checks whether two TSHR_RECT16s rectangles intersect. Rectangles are
// defined to be inclusive of all edges.
//
// PARAMETERS:
// ===========
// pRect1 : pointer to a TSHR_RECT16 rectangle.
// pRect2 : pointer to a TSHR_RECT16 rectangle.
//
// RETURNS:
// ========
// TRUE - if the rectangles intersect
// FALSE - otherwise.
//
//
__inline BOOL COM_Rect16sIntersect(LPTSHR_RECT16 pRect1, LPTSHR_RECT16 pRect2) { if ((pRect1->left > pRect2->right) || (pRect1->right < pRect2->left) || (pRect1->top > pRect2->bottom) || (pRect1->bottom < pRect2->top)) { return(FALSE); } else { return(TRUE); } }
//
// API FUNCTION: COM_BasedListInit(...)
//
// DESCRIPTION:
// ============
// Initialise a list root.
//
// PARAMETERS:
// ===========
// pListRoot : pointer to the list root.
//
// RETURNS:
// ========
// Nothing.
//
//
__inline void COM_BasedListInit(PBASEDLIST pListRoot) { //
// The <next> and <prev> items in a list are the offsets, from the list
// item, of the next and previous list items.
//
// In an empty list, the next item after the root is the root itself,
// so the <next> offset is zero. Likewise for <prev>.
//
pListRoot->next = 0; pListRoot->prev = 0; }
//
// API FUNCTION: COM_BasedListInsertBefore(...)
// Inserts an item into a list. To insert an item at the start of a list,
// specify the list root as the <pListLink> parameter.
//
void COM_BasedListInsertBefore(PBASEDLIST pListLink, PBASEDLIST pNewLink);
//
// API FUNCTION: COM_BasedListInsertAfter(...)
// Inserts an item into a list. To insert an item at the start of a list,
// specify the list root as the <pListLink> parameter.
//
//
void COM_BasedListInsertAfter(PBASEDLIST pListLink, PBASEDLIST pNewLink);
//
// API FUNCTION: COM_BasedListRemove(...)
//
// DESCRIPTION:
// ============
// This function removes an item from a list. The item to be removed is
// specified by a pointer to the BASEDLIST structure within the item.
//
// PARAMETERS:
// ===========
// pListLink : pointer to link of the item to be removed.
//
// RETURNS:
// ========
// Nothing.
//
//
void COM_BasedListRemove(PBASEDLIST pListLink);
//
// API FUNCTION: COM_ReadProfInt(...)
//
// DESCRIPTION:
// ============
// This reads a private profile integer from the registry.
//
// PARAMETERS:
// ===========
// pSection : section containing the entry to read.
// pEntry : entry name of integer to retrieve.
// defaultValue : default value to return
// pValue : buffer to return the entry in.
//
// RETURNS:
// ========
// Nothing.
//
//
void COM_ReadProfInt(LPSTR pSection, LPSTR pEntry, int defValue, int * pValue);
//
// API FUNCTION: COM_GetSiteName(...)
//
// DESCRIPTION:
// ============
// Reads the site name out of the system registry.
//
// PARAMETERS:
// ===========
// siteName : pointer to string to fill in with the site name.
// siteNameLen : length of this string.
//
// RETURNS:
// ========
// None
//
//
void COM_GetSiteName(LPSTR siteName, UINT siteNameLen);
#ifndef DLL_DISP
//
// API FUNCTION: DCS_StartThread(...)
//
// DESCRIPTION:
// ============
// Start a new thread of execution
//
// PARAMETERS:
// ===========
// entryFunction : A pointer to the thread entry point.
//
//
BOOL DCS_StartThread(LPTHREAD_START_ROUTINE entryFunction); #endif // DLL_DISP
#ifndef DLL_DISP
BOOL COMReadEntry(HKEY topLevelKey, LPSTR pSection, LPSTR pEntry, LPSTR pBuffer, int bufferSize, ULONG expectedDataType); #endif // DLL_DISP
#define MAKE_SUBALLOC_PTR(pPool, chunkOffset) OFFSETBASE_TO_PTR(chunkOffset, pPool)
#define MAKE_SUBALLOC_OFFSET(pPool, pChunk) PTRBASE_TO_OFFSET(pChunk, pPool)
//
//
// Return codes - all offset from UT_BASE_RC
//
//
enum { UT_RC_OK = UT_BASE_RC, UT_RC_NO_MEM };
//
// The maximum number of UT events which we try to process without yielding
//
#define MAX_EVENTS_TO_PROCESS 10
//
//
// Types
//
//
//
// Utility Functions Interface handle
//
typedef struct tagUT_CLIENT * PUT_CLIENT;
#define UTTASK_FIRST 0
typedef enum { UTTASK_UI = UTTASK_FIRST, UTTASK_CMG, UTTASK_OM, UTTASK_AL, UTTASK_DCS, UTTASK_WB, UTTASK_MAX } UT_TASK;
//
// Event procedure registered by UT_RegisterEvent().
//
// Takes event handler registered data, event number and 2 parameters
// Returns TRUE if event processed
// Returns FALSE if not and event should be passed on to next handler
//
//
typedef BOOL (CALLBACK * UTEVENT_PROC)(LPVOID, UINT, UINT_PTR, UINT_PTR);
//
// Exit procedure
//
typedef void (CALLBACK * UTEXIT_PROC)( LPVOID exitData );
//
// The name of the class used to create UT windows
//
#define UT_WINDOW_CLASS "DCUTWindowClass"
//
// The ID of the timer to use for trigger events.
//
#define UT_DELAYED_TIMER_ID 0x10101010
//
//
// Prototypes
//
//
//
//
// Task routines
//
// UT_WndProc() Subclassing window procedure
// UT_InitTask() Initialise a task
// UT_TermTask() Terminate a task
// UT_RegisterEvent() Register an event handler
// UT_DeregisterEvent() Deregisters an event handler
// UT_RegisterExit() Register an exit routine
// UT_DeregisterExit() Deregister an exit routine
// UT_PostEvent() Send an event to a task
//
//
LRESULT CALLBACK UT_WndProc(HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam);
BOOL UT_InitTask(UT_TASK task, PUT_CLIENT * pputTask);
//
//
// Overview:
// This registers a task and assigns it a handle.
// All other Utility Functions require this handle to be passed to them.
//
// If a task has already been registered with the same process ID, the
// utilities handle that has already been allocated is returned.
// This is to allows the Utility Functions to be used in the context of
// tasks that DC-SHARE has intercepted the graphics calls for.
//
// Each task is identified by a name.
//
// Parameters:
//
// task
// Unique it for identifying task
//
// pUtHandle (returned)
// Utility Services handle to be used for all calls to the Utility
// Services by this task
//
//
void UT_TermTask(PUT_CLIENT * pputTask); //
//
// Overview:
// This de-registers a task
// All task resources are freed and the utHandle is released
//
// Parameters:
//
// utHandle
// Utility Functions Handle
//
void UT_RegisterEvent(PUT_CLIENT putTask, UTEVENT_PROC eventProc, LPVOID eventData, UT_PRIORITY priority);
void UT_DeregisterEvent(PUT_CLIENT putTask, UTEVENT_PROC eventProc, LPVOID eventData);
void UT_PostEvent(PUT_CLIENT putTaskFrom, PUT_CLIENT putTaskTo, UINT delay, UINT eventNo, UINT_PTR param1, UINT_PTR param2);
#define NO_DELAY 0
//
//
// Overview:
// This posts an event to another task.
//
// Parameters:
//
// utHandle
// Utility Functions handle of invoking task
//
// toHandle
// Utility Functions TASK handle of task to post event to
//
// delay
// Delay (in milliseconds) before event is posted
//
// eventNo
// event to be posted (see autevt.h for details of events)
//
// param1
// parameter 1 for event (meaning depends on event)
//
// param2
// parameter 2 for event (meaning depends on event)
//
//
// NOTES:
//
// 1) The delay time is in milliseconds. This may not be supported by
// underlying OS but the setting and checking of the pop time value
// is OS specific.
//
// 2) The posting of events is asynchronous, the delay is simply
// the time before the event is posted. The task the event is
// posted to will receive the event NOT BEFRE this time is up.
//
// 3) If an event is posted with a delay specified, the sending task
// must continue to process messages for the event to be posted
//
void UT_RegisterExit(PUT_CLIENT putTask, UTEXIT_PROC exitProc, LPVOID exitData); void UT_DeregisterExit(PUT_CLIENT putTask, UTEXIT_PROC exitProc, LPVOID exitData);
//
// Memory routines
// UT_MallocRefCount
// UT_BumpUpRefCount
// UT_FreeRefCount
//
void * UT_MallocRefCount(UINT cbSizeMem, BOOL fZeroMem); void UT_BumpUpRefCount(void * pMemory); void UT_FreeRefCount(void ** ppMemory, BOOL fNullOnlyWhenFreed);
// Ref count allocs
typedef struct tagUTREFCOUNTHEADER { STRUCTURE_STAMP UINT refCount; } UTREFCOUNTHEADER; typedef UTREFCOUNTHEADER * PUTREFCOUNTHEADER;
//
// UT_MoveMemory()
// Replacement for CRT memmove(); handles overlapping
//
void * UT_MoveMemory(void * dst, const void * src, size_t count);
//
// Locks
// - UT_Lock() - Locks a lock
// - UT_Unlock() - Unlocks a lock
//
#ifndef DLL_DISP
extern CRITICAL_SECTION g_utLocks[UTLOCK_MAX];
__inline void UT_Lock(UTLOCK lock) { ASSERT(lock >= UTLOCK_FIRST); ASSERT(lock < UTLOCK_MAX);
EnterCriticalSection(&g_utLocks[lock]); }
__inline void UT_Unlock(UTLOCK lock) { ASSERT(lock >= UTLOCK_FIRST); ASSERT(lock < UTLOCK_MAX);
LeaveCriticalSection(&g_utLocks[lock]); }
#endif // DLL_DISP
//
// Tasks
// UT_HandleProcessStart()
// UT_HandleProcessEnd()
// UT_HandleThreadEnd()
//
BOOL UT_HandleProcessStart(HINSTANCE hInstance);
void UT_HandleProcessEnd(void);
void UT_HandleThreadEnd(void);
//
// Structure for holding an event. The first two fields allow the event to
// be held on the delayed event Q to be scheduled later.
//
typedef struct tagUTEVENT_INFO { STRUCTURE_STAMP
BASEDLIST chain;
// Params
UINT event; UINT_PTR param1; UINT_PTR param2;
PUT_CLIENT putTo; UINT popTime; } UTEVENT_INFO; typedef UTEVENT_INFO * PUTEVENT_INFO;
#ifndef DLL_DISP
void __inline ValidateEventInfo(PUTEVENT_INFO pEventInfo) { ASSERT(!IsBadWritePtr(pEventInfo, sizeof(UTEVENT_INFO))); } #endif // DLL_DISP
//
// Information held about each exit procedure
//
typedef struct tagUTEXIT_PROC_INFO { UTEXIT_PROC exitProc; LPVOID exitData; } UTEXIT_PROC_INFO; typedef UTEXIT_PROC_INFO * PUTEXIT_PROC_INFO;
//
// Information held about each event procedure
//
typedef struct tagUTEVENT_PROC_INFO { UTEVENT_PROC eventProc; LPVOID eventData; UT_PRIORITY priority; } UTEVENT_PROC_INFO; typedef UTEVENT_PROC_INFO * PUTEVENT_PROC_INFO;
//
//
// UT_CLIENT
//
// Information stored about each Utilities registered task. A pointer to
// this structure is returned as the UT Handle from UT_InitTask(), and is
// passed in as a parameter to subsequent calls to UT.
//
// This structure is allocated in the shared memory bank.
//
// This should be a multiple of 4 bytes to ensure DWORD alignment of the
// allocated memory
//
//
typedef struct tagUT_CLIENT { DWORD dwThreadId; HWND utHwnd; // Window to post UT events to
UTEXIT_PROC_INFO exitProcs[UTEXIT_PROCS_MAX]; // Exit procedures registered for
// this task.
UTEVENT_PROC_INFO eventHandlers[UTEVENT_HANDLERS_MAX]; // Event procedures registered for
// this task.
BASEDLIST pendingEvents; // List of events for this task
// which are ready to be
// processed.
BASEDLIST delayedEvents; // List of delayed events destined
// for this task.
} UT_CLIENT;
#ifndef DLL_DISP
void __inline ValidateUTClient(PUT_CLIENT putTask) { extern UT_CLIENT g_autTasks[UTTASK_MAX];
ASSERT(putTask >= &(g_autTasks[UTTASK_FIRST])); ASSERT(putTask < &(g_autTasks[UTTASK_MAX])); ASSERT(putTask->dwThreadId); } #endif // DLL_DISP
//
//
// UTTaskEnd(...)
//
// This routine frees all resources associated with the task and
// releases the handle
//
// Parameters:
//
// pTaskData - The Utility Functions handle for the task that is ending
//
//
void UTTaskEnd(PUT_CLIENT putTask);
//
//
// Overview:
// This routine is called to check the status of delayed events and to post
// them to the target process if required.
//
// Parameters:
//
// utHandle
// Utility Functions handle of invoking task
//
// NOTES:
//
// 1) This routine is called periodically or whenever the application
// believes a delayed event has popped.
//
// Return codes: None
//
//
void UTCheckEvents(PUT_CLIENT putTask); void UTCheckDelayedEvents(PUT_CLIENT putTask);
//
//
// UTProcessEvent(...)
//
// Overview:
// This process an event for the current task
//
//
// Parameters:
//
// utHandle
// Utility Functions Handle
//
// event
// The event to process
//
// param1
// The 1st parameter for the event
//
// param2
// The 2nd parameter for the event
//
//
void UTProcessEvent(PUT_CLIENT putTask, UINT event, UINT_PTR param1, UINT_PTR param2);
//
//
// UTProcessDelayedEvent(...)
//
// A delayed event destined for the current task is ready to be processed.
//
// pTaskData - The current tasks data.
// eventOffset - Offset into the shared memory bank at which the event
// is stored.
//
//
void UTProcessDelayedEvent(PUT_CLIENT putTask, DWORD eventOffset);
//
//
// UTPostImmediateEvt(...)
//
// This function adds an event to a task's pending event queue, and posts
// a trigger event if required.
//
// pSrcTaskData - originating tasks data
// pDestTaskData - destination tasks data
// event - event data
// param1 - parm1
// param2 - parm2
//
//
void UTPostImmediateEvt(PUT_CLIENT putTaskFrom, PUT_CLIENT putTaskTo, UINT event, UINT_PTR param1, UINT_PTR param2);
//
//
// UTPostDelayedEvt(...)
//
// This function adds an event to a task's delayed event queue, and starts
// a timer (on the destination's task) to get that task to process the
// event when the timer ticks.
//
// pSrcTaskData - originating tasks data
// pDestTaskData - destination tasks data
// delay - the delay (in milliseconds)
// event - event data
// param1 - parm1
// param2 - parm2
//
//
void UTPostDelayedEvt(PUT_CLIENT putTaskFrom, PUT_CLIENT putTaskTo, UINT delay, UINT event, UINT_PTR param1, UINT_PTR param2);
//
//
// Overview:
// This posts a event to another task
//
// Parameters:
//
// pSrcTaskInfo - task data for the source task
// pDestTaskInfo - task data for the dest task
//
void UTTriggerEvt(PUT_CLIENT putTaskFrom, PUT_CLIENT putTaskTo);
//
//
// Overview:
// This starts a delayed-event timer for a task.
//
// Parameters:
// pTaskData
// The task data for the task
//
// popTime
// The target time for the timer to pop - this is an OS specific value
// in the same format as that returned by UTPopTime().
//
//
void UTStartDelayedEventTimer(PUT_CLIENT putTask, UINT popTime);
#endif // _H_UT
|