|
|
/*============================================================================
* * Copyright (C) 1999-2000 Microsoft Corporation. All Rights Reserved. * * File: npatch.cpp * Content: Implementation for N-Patches * ****************************************************************************/
#include "pch.cpp"
#pragma hdrstop
//-----------------------------------------------------------------------------
// RefDev::ProcessTessPrimitive
//-----------------------------------------------------------------------------
HRESULT RefDev::ProcessTessPrimitive( LPD3DHAL_DP2DRAWPRIMITIVE pDP ) { HRESULT hr = S_OK;
if( RDVSD_ISLEGACY( m_CurrentVShaderHandle ) ) { //
// The legacy FVF style: The Zero'th Stream is implied
//
DWORD dwFVF = m_CurrentVShaderHandle; RDVStream& Stream = m_VStream[0]; DWORD dwStride = Stream.m_dwStride; DWORD dwFVFSize = GetFVFVertexSize( dwFVF );
if( Stream.m_pData == NULL || dwStride == 0 ) { DPFERR( "Zero'th stream doesnt have valid VB set" ); return DDERR_INVALIDPARAMS; } if( dwStride < dwFVFSize ) { DPFERR( "The stride set for the vertex stream is less than" " the FVF vertex size" ); return E_FAIL; } }
BYTE *pVerts = 0, *pNorms = 0; unsigned vstride, nstride;
// Figure out where the positions and normals are
RDVDeclaration &Decl = m_pCurrentVShader->m_Declaration; for(unsigned e = 0; e < Decl.m_dwNumElements; ++e) { RDVElement &velem = Decl.m_VertexElements[e]; if(velem.m_dwRegister == D3DVSDE_POSITION) // Position
{ RDVStream &vstream = m_VStream[velem.m_dwStreamIndex]; pVerts = vstream.m_pSavedData + pDP->VStart * vstream.m_dwStride + velem.m_dwOffset; vstride = vstream.m_dwStride; } else if(velem.m_dwRegister == D3DVSDE_NORMAL) // Normal
{ RDVStream &vstream = m_VStream[velem.m_dwStreamIndex]; pNorms = vstream.m_pSavedData + pDP->VStart * vstream.m_dwStride + velem.m_dwOffset; nstride = vstream.m_dwStride; } }
if(pVerts == 0 || pNorms == 0) { DPFERR("This tessellation scheme needs positions and normals explicitely specified"); return DDERR_INVALIDPARAMS; }
switch(pDP->primType) { case D3DPT_TRIANGLELIST: { for(unsigned i = 0; i < pDP->PrimitiveCount; ++i) { FLOAT *pV[3], *pN[3]; unsigned iM[3], iN[3]; pV[0] = (FLOAT*)(pVerts + i * 3 * vstride); pV[1] = (FLOAT*)(pVerts + (i * 3 + 1) * vstride); pV[2] = (FLOAT*)(pVerts + (i * 3 + 2) * vstride); pN[0] = (FLOAT*)(pNorms + i * 3 * nstride); pN[1] = (FLOAT*)(pNorms + (i * 3 + 1) * nstride); pN[2] = (FLOAT*)(pNorms + (i * 3 + 2) * nstride); iM[0] = pDP->VStart + i * 3; iN[0] = 0; iM[1] = pDP->VStart + i * 3 + 1; iN[1] = 0; iM[2] = pDP->VStart + i * 3 + 2; iN[2] = 0;
RDNPatch patch(pV, pN, GetRS()[D3DRS_POSITIONORDER], GetRS()[D3DRS_NORMALORDER]); hr = DrawNPatch(patch, 0, iM, iN, unsigned(GetRSf()[D3DRS_PATCHSEGMENTS])); if(FAILED(hr)) { return hr; } } } break; case D3DPT_TRIANGLEFAN: { for(unsigned i = 0; i < pDP->PrimitiveCount; ++i) { FLOAT *pV[3], *pN[3]; unsigned iM[3], iN[3]; pV[0] = (FLOAT*)(pVerts); pV[1] = (FLOAT*)(pVerts + (i + 1) * vstride); pV[2] = (FLOAT*)(pVerts + (i + 2) * vstride); pN[0] = (FLOAT*)(pNorms); pN[1] = (FLOAT*)(pNorms + (i + 1) * nstride); pN[2] = (FLOAT*)(pNorms + (i + 2) * nstride); iM[0] = pDP->VStart; iN[0] = 0; iM[1] = pDP->VStart + i + 1; iN[1] = 0; iM[2] = pDP->VStart + i + 2; iN[2] = 0; RDNPatch patch(pV, pN, GetRS()[D3DRS_POSITIONORDER], GetRS()[D3DRS_NORMALORDER]);
hr = DrawNPatch(patch, 0, iM, iN, unsigned(GetRSf()[D3DRS_PATCHSEGMENTS])); if(FAILED(hr)) { return hr; } } } break; case D3DPT_TRIANGLESTRIP: { for(unsigned i = 0; i < pDP->PrimitiveCount; ++i) { FLOAT *pV[3], *pN[3]; unsigned iM[3], iN[3];
pV[0] = (FLOAT*)(pVerts + i * vstride); pN[0] = (FLOAT*)(pNorms + i * nstride); iM[0] = pDP->VStart + i; iN[0] = 0; iM[0] = pDP->VStart + i; iN[0] = 0; if((i & 1) != 0) { pV[1] = (FLOAT*)(pVerts + (i + 2) * vstride); pV[2] = (FLOAT*)(pVerts + (i + 1) * vstride); pN[1] = (FLOAT*)(pNorms + (i + 2) * nstride); pN[2] = (FLOAT*)(pNorms + (i + 1) * nstride); iM[1] = pDP->VStart + i + 2; iN[1] = 0; iM[2] = pDP->VStart + i + 1; iN[2] = 0; } else { pV[1] = (FLOAT*)(pVerts + (i + 1) * vstride); pV[2] = (FLOAT*)(pVerts + (i + 2) * vstride); pN[1] = (FLOAT*)(pNorms + (i + 1) * nstride); pN[2] = (FLOAT*)(pNorms + (i + 2) * nstride); iM[1] = pDP->VStart + i + 1; iN[1] = 0; iM[2] = pDP->VStart + i + 2; iN[2] = 0; }
RDNPatch patch(pV, pN, GetRS()[D3DRS_POSITIONORDER], GetRS()[D3DRS_NORMALORDER]);
hr = DrawNPatch(patch, 0, iM, iN, unsigned(GetRSf()[D3DRS_PATCHSEGMENTS])); if(FAILED(hr)) { return hr; } } } break; default: _ASSERT(FALSE, "Unsupported primitive type"); hr = E_FAIL; } return hr; }
//-----------------------------------------------------------------------------
// RefDev::ProcessTessIndexedPrimitive
//-----------------------------------------------------------------------------
HRESULT RefDev::ProcessTessIndexedPrimitive( LPD3DHAL_DP2DRAWINDEXEDPRIMITIVE pDIP ) { HRESULT hr = S_OK;
if( RDVSD_ISLEGACY( m_CurrentVShaderHandle ) ) { //
// The legacy FVF style: The Zero'th Stream is implied
//
DWORD dwFVF = m_CurrentVShaderHandle; RDVStream& Stream = m_VStream[0]; DWORD dwStride = Stream.m_dwStride; DWORD dwFVFSize = GetFVFVertexSize( dwFVF );
if( Stream.m_pData == NULL || dwStride == 0 ) { DPFERR( "Zero'th stream doesnt have valid VB set" ); return DDERR_INVALIDPARAMS; } if( dwStride < dwFVFSize ) { DPFERR( "The stride set for the vertex stream is less than" " the FVF vertex size" ); return E_FAIL; } if( m_IndexStream.m_pData == NULL ) { DPFERR( "Indices are not available" ); return E_FAIL; } }
BYTE *pVerts = 0, *pNorms = 0; unsigned vstride, nstride;
// Figure out where the positions and normals are
RDVDeclaration &Decl = m_pCurrentVShader->m_Declaration; for(unsigned e = 0; e < Decl.m_dwNumElements; ++e) { RDVElement &velem = Decl.m_VertexElements[e]; if(velem.m_dwRegister == D3DVSDE_POSITION) // Position
{ RDVStream &vstream = m_VStream[velem.m_dwStreamIndex]; pVerts = vstream.m_pSavedData + pDIP->BaseVertexIndex * vstream.m_dwStride + velem.m_dwOffset; vstride = vstream.m_dwStride; } else if(velem.m_dwRegister == D3DVSDE_NORMAL) // Normal
{ RDVStream &vstream = m_VStream[velem.m_dwStreamIndex]; pNorms = vstream.m_pSavedData + pDIP->BaseVertexIndex * vstream.m_dwStride + velem.m_dwOffset; nstride = vstream.m_dwStride; } }
if(pVerts == 0 || pNorms == 0) { DPFERR("This tessellation scheme needs positions and normals explicitely specified"); return DDERR_INVALIDPARAMS; }
RRIndexAccessor Index(m_IndexStream.m_pData, m_IndexStream.m_dwStride, pDIP->StartIndex);
switch(pDIP->primType) { case D3DPT_TRIANGLELIST: { for(unsigned i = 0; i < pDIP->PrimitiveCount; ++i) { FLOAT *pV[3], *pN[3]; unsigned iM[3], iN[3];
pV[0] = (FLOAT*)(pVerts + Index[i * 3] * vstride); pV[1] = (FLOAT*)(pVerts + Index[i * 3 + 1] * vstride); pV[2] = (FLOAT*)(pVerts + Index[i * 3 + 2] * vstride); pN[0] = (FLOAT*)(pNorms + Index[i * 3] * nstride); pN[1] = (FLOAT*)(pNorms + Index[i * 3 + 1] * nstride); pN[2] = (FLOAT*)(pNorms + Index[i * 3 + 2] * nstride); iM[0] = pDIP->BaseVertexIndex + Index[i * 3]; iN[0] = 0; iM[1] = pDIP->BaseVertexIndex + Index[i * 3 + 1]; iN[1] = 0; iM[2] = pDIP->BaseVertexIndex + Index[i * 3 + 2]; iN[2] = 0;
RDNPatch patch(pV, pN, GetRS()[D3DRS_POSITIONORDER], GetRS()[D3DRS_NORMALORDER]); hr = DrawNPatch(patch, 0, iM, iN, unsigned(GetRSf()[D3DRS_PATCHSEGMENTS])); if(FAILED(hr)) { return hr; } } } break; case D3DPT_TRIANGLEFAN: { for(unsigned i = 0; i < pDIP->PrimitiveCount; ++i) { FLOAT *pV[3], *pN[3]; unsigned iM[3], iN[3]; pV[0] = (FLOAT*)(pVerts + Index[0] * vstride); pV[1] = (FLOAT*)(pVerts + Index[i + 1] * vstride); pV[2] = (FLOAT*)(pVerts + Index[i + 2] * vstride); pN[0] = (FLOAT*)(pNorms + Index[0] * nstride); pN[1] = (FLOAT*)(pNorms + Index[i + 1] * nstride); pN[2] = (FLOAT*)(pNorms + Index[i + 2] * nstride); iM[0] = pDIP->BaseVertexIndex + Index[0]; iN[0] = 0; iM[1] = pDIP->BaseVertexIndex + Index[i + 1]; iN[1] = 0; iM[2] = pDIP->BaseVertexIndex + Index[i + 2]; iN[2] = 0; RDNPatch patch(pV, pN, GetRS()[D3DRS_POSITIONORDER], GetRS()[D3DRS_NORMALORDER]);
hr = DrawNPatch(patch, 0, iM, iN, unsigned(GetRSf()[D3DRS_PATCHSEGMENTS])); if(FAILED(hr)) { return hr; } } } break; case D3DPT_TRIANGLESTRIP: { for(unsigned i = 0; i < pDIP->PrimitiveCount; ++i) { FLOAT *pV[3], *pN[3]; unsigned iM[3], iN[3];
pV[0] = (FLOAT*)(pVerts + Index[i] * vstride); pN[0] = (FLOAT*)(pNorms + Index[i] * nstride); iM[0] = pDIP->BaseVertexIndex + Index[i]; iN[0] = 0; iM[0] = pDIP->BaseVertexIndex + Index[i]; iN[0] = 0; if((i & 1) != 0) { pV[1] = (FLOAT*)(pVerts + Index[i + 2] * vstride); pV[2] = (FLOAT*)(pVerts + Index[i + 1] * vstride); pN[1] = (FLOAT*)(pNorms + Index[i + 2] * nstride); pN[2] = (FLOAT*)(pNorms + Index[i + 1] * nstride); iM[1] = pDIP->BaseVertexIndex + Index[i + 2]; iN[1] = 0; iM[2] = pDIP->BaseVertexIndex + Index[i + 1]; iN[2] = 0; } else { pV[1] = (FLOAT*)(pVerts + Index[i + 1] * vstride); pV[2] = (FLOAT*)(pVerts + Index[i + 2] * vstride); pN[1] = (FLOAT*)(pNorms + Index[i + 1] * nstride); pN[2] = (FLOAT*)(pNorms + Index[i + 2] * nstride); iM[1] = pDIP->BaseVertexIndex + Index[i + 1]; iN[1] = 0; iM[2] = pDIP->BaseVertexIndex + Index[i + 2]; iN[2] = 0; }
RDNPatch patch(pV, pN, GetRS()[D3DRS_POSITIONORDER], GetRS()[D3DRS_NORMALORDER]);
hr = DrawNPatch(patch, 0, iM, iN, unsigned(GetRSf()[D3DRS_PATCHSEGMENTS])); if(FAILED(hr)) { return hr; } } } break; default: _ASSERT(FALSE, "Unsupported primitive type"); hr = E_FAIL; } return hr; }
//-----------------------------------------------------------------------------
// RDCubicBezierTriangle::SamplePosition
//-----------------------------------------------------------------------------
void RDCubicBezierTriangle::SamplePosition(double u, double v, FLOAT *Q) const { for(unsigned e = 0; e < 3; ++e) { Q[e] = FLOAT(m_B[0][0][e] * Basis(0, 0, u, v) + m_B[0][3][e] * Basis(0, 3, u, v) + m_B[3][0][e] * Basis(3, 0, u, v) + m_B[0][1][e] * Basis(0, 1, u, v) + m_B[0][2][e] * Basis(0, 2, u, v) + m_B[1][2][e] * Basis(1, 2, u, v) + m_B[2][1][e] * Basis(2, 1, u, v) + m_B[2][0][e] * Basis(2, 0, u, v) + m_B[1][0][e] * Basis(1, 0, u, v) + m_B[1][1][e] * Basis(1, 1, u, v)); } }
//-----------------------------------------------------------------------------
// RDCubicBezierTriangle::Sample
//-----------------------------------------------------------------------------
void RDCubicBezierTriangle::Sample(DWORD dwDataType, double u, double v, const BYTE* const B[], BYTE *Q) const { double w = 1.0 - u - v; unsigned dwElements = 0; switch(dwDataType) { case D3DVSDT_FLOAT4: ++dwElements; case D3DVSDT_FLOAT3: ++dwElements; case D3DVSDT_FLOAT2: ++dwElements; case D3DVSDT_FLOAT1: ++dwElements; { for(unsigned e = 0; e < dwElements; ++e) { ((FLOAT*)Q)[e] = FLOAT(w * double(((FLOAT*)B[0])[e]) + v * double(((FLOAT*)B[1])[e]) + u * double(((FLOAT*)B[2])[e])); } } break; case D3DVSDT_D3DCOLOR: case D3DVSDT_UBYTE4: dwElements = 4; { for(unsigned e = 0; e < 4; ++e) { int t = int(w * double(B[0][e]) + v * double(B[1][e]) + u * double(B[2][e])); Q[e] = BYTE(t < 0 ? 0 : (t > 255 ? 255 : t)); } } break; case D3DVSDT_SHORT4: dwElements += 2; case D3DVSDT_SHORT2: dwElements += 2; { for(unsigned e = 0; e < dwElements; ++e) { ((SHORT*)Q)[e] = SHORT(w * double(((SHORT*)B[0])[e]) + v * double(((SHORT*)B[1])[e]) + u * double(((SHORT*)B[2])[e])); } } break; default: _ASSERT(FALSE, "Ununderstood vertex element data type"); } }
//-----------------------------------------------------------------------------
// RDNPatch::RDNPatch
//-----------------------------------------------------------------------------
RDNPatch::RDNPatch(const FLOAT* const pV[], const FLOAT* const pN[], const DWORD PositionOrder, const DWORD NormalOrder) { _ASSERT((PositionOrder == D3DORDER_LINEAR) || (PositionOrder == D3DORDER_CUBIC), "Unsupported position order in NPatch"); _ASSERT((NormalOrder == D3DORDER_LINEAR) || (NormalOrder == D3DORDER_QUADRATIC), "Unsupported normal order in NPatch");
m_PositionOrder = PositionOrder; m_NormalOrder = NormalOrder; // Assign corner points
m_B[0][0][0] = double(pV[0][0]); m_B[0][0][1] = double(pV[0][1]); m_B[0][0][2] = double(pV[0][2]); m_B[0][3][0] = double(pV[1][0]); m_B[0][3][1] = double(pV[1][1]); m_B[0][3][2] = double(pV[1][2]); m_B[3][0][0] = double(pV[2][0]); m_B[3][0][1] = double(pV[2][1]); m_B[3][0][2] = double(pV[2][2]);
if (PositionOrder == D3DORDER_CUBIC) { // Compute edge control points
ComputeEdgeControlPoint(0, 1, pV, pN, 0, 1); ComputeEdgeControlPoint(1, 0, pV, pN, 0, 2); ComputeEdgeControlPoint(1, 2, pV, pN, 1, 2); ComputeEdgeControlPoint(2, 1, pV, pN, 2, 1); ComputeEdgeControlPoint(2, 0, pV, pN, 2, 0); ComputeEdgeControlPoint(0, 2, pV, pN, 1, 0);
// Compute central control point
m_B[1][1][0] = (m_B[2][0][0] + m_B[1][0][0] + m_B[0][2][0] + m_B[0][1][0] + m_B[2][1][0] + m_B[1][2][0]) / 4.0 - (m_B[3][0][0] + m_B[0][3][0] + m_B[0][0][0]) / 6.0; m_B[1][1][1] = (m_B[2][0][1] + m_B[1][0][1] + m_B[0][2][1] + m_B[0][1][1] + m_B[2][1][1] + m_B[1][2][1]) / 4.0 - (m_B[3][0][1] + m_B[0][3][1] + m_B[0][0][1]) / 6.0; m_B[1][1][2] = (m_B[2][0][2] + m_B[1][0][2] + m_B[0][2][2] + m_B[0][1][2] + m_B[2][1][2] + m_B[1][2][2]) / 4.0 - (m_B[3][0][2] + m_B[0][3][2] + m_B[0][0][2]) / 6.0; } if (NormalOrder == D3DORDER_QUADRATIC) { // Compute central control point
Normalize(*(RDVECTOR3*)pN[0]); Normalize(*(RDVECTOR3*)pN[1]); Normalize(*(RDVECTOR3*)pN[2]); m_N002 = *(RDVECTOR3*)pN[0]; m_N020 = *(RDVECTOR3*)pN[1]; m_N200 = *(RDVECTOR3*)pN[2]; ComputeNormalControlPoint(&m_N110, 1, 2, pV, pN); ComputeNormalControlPoint(&m_N101, 2, 0, pV, pN); ComputeNormalControlPoint(&m_N011, 0, 1, pV, pN); } }
//-----------------------------------------------------------------------------
// RDNPatch::SamplePosition
//-----------------------------------------------------------------------------
void RDNPatch::SamplePosition(double u, double v, FLOAT *Q) const { if (m_PositionOrder == D3DORDER_CUBIC) RDCubicBezierTriangle::SamplePosition(u, v, Q); else { double w = 1.0 - u - v; Q[0] = m_B[0][0][0] * w + m_B[0][3][0] * v + m_B[3][0][0] * u; Q[1] = m_B[0][0][1] * w + m_B[0][3][1] * v + m_B[3][0][1] * u; Q[2] = m_B[0][0][2] * w + m_B[0][3][2] * v + m_B[3][0][2] * u; } }
//-----------------------------------------------------------------------------
// RDNPatch::SampleNormal
//-----------------------------------------------------------------------------
void RDNPatch::SampleNormal(double u, double v, const BYTE* const B[], FLOAT *Q) const { if (m_NormalOrder == D3DORDER_LINEAR) RDCubicBezierTriangle::Sample(D3DVSDT_FLOAT3, u, v, B, (BYTE*)Q); else { // Computed by article "Curved PN Triangles" (Chas Boyd, ...)
double w = 1.0 - u - v; double ww = w*w; double uu = u*u; double vv = v*v; double uv = u*v; double wu = w*u; double wv = w*v; Q[0] = m_N200.x * uu + m_N020.x * vv + m_N002.x * ww + m_N110.x * uv + m_N011.x * wv + m_N101.x * wu; Q[1] = m_N200.y * uu + m_N020.y * vv + m_N002.y * ww + m_N110.y * uv + m_N011.y * wv + m_N101.y * wu; Q[2] = m_N200.z * uu + m_N020.z * vv + m_N002.z * ww + m_N110.z * uv + m_N011.z * wv + m_N101.z * wu; Normalize(*(RDVECTOR3*)Q); } }
//-----------------------------------------------------------------------------
// RDNPatch::ComputeNormalControlPoint
//-----------------------------------------------------------------------------
void RDNPatch::ComputeNormalControlPoint(RDVECTOR3* cp, unsigned i, unsigned j, const FLOAT* const pV[], const FLOAT* const pN[]) { RDVECTOR3 Pji, Nij; SubtractVector(*(RDVECTOR3*)pV[j], *(RDVECTOR3*)pV[i], Pji); AddVector(*(RDVECTOR3*)pN[j], *(RDVECTOR3*)pN[i], Nij); FLOAT v = 2.0f * DotProduct(Pji, Nij) / DotProduct(Pji, Pji); SubtractVector(Nij, ScaleVector(Pji, v), *cp); }
//-----------------------------------------------------------------------------
// RDNPatch::ComputeEdgeControlPoint
//-----------------------------------------------------------------------------
void RDNPatch::ComputeEdgeControlPoint(unsigned a, unsigned b, const FLOAT* const pV[], const FLOAT* const pN[], unsigned u, unsigned v) { static const double Tension = 1.0 / 3.0; double t, Edge[3];
Edge[0] = double(pV[b][0]) - double(pV[a][0]); Edge[1] = double(pV[b][1]) - double(pV[a][1]); Edge[2] = double(pV[b][2]) - double(pV[a][2]);
t = Edge[0] * double(pN[a][0]) + Edge[1] * double(pN[a][1]) + Edge[2] * double(pN[a][2]);
m_B[u][v][0] = double(pV[a][0]) + (Edge[0] - t * double(pN[a][0])) * Tension; m_B[u][v][1] = double(pV[a][1]) + (Edge[1] - t * double(pN[a][1])) * Tension; m_B[u][v][2] = double(pV[a][2]) + (Edge[2] - t * double(pN[a][2])) * Tension; }
|