|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil -*- (for GNU Emacs)
//
// Copyright (c) 1998-2000 Microsoft Corporation
//
// This file is part of the Microsoft Research IPv6 Network Protocol Stack.
// You should have received a copy of the Microsoft End-User License Agreement
// for this software along with this release; see the file "license.txt".
// If not, please see http://www.research.microsoft.com/msripv6/license.htm,
// or write to Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
//
// Abstract:
//
// Generic support for running IPv6 over IPv4.
//
#include "oscfg.h"
#include "ndis.h"
#include "ip6imp.h"
#include "ip6def.h"
#include "llip6if.h"
#include "tdi.h"
#include "tdiinfo.h"
#include "tdikrnl.h"
#include "tdistat.h"
#include "tunnel.h"
#include "ntddtcp.h"
#include "tcpinfo.h"
#include "icmp.h"
#include "neighbor.h"
#include "route.h"
#include "security.h"
#include <stdio.h>
#include "ntddip6.h"
#include "icmp.h"
//
// Our globals are all in one structure.
//
TunnelGlobals Tunnel;
//* TunnelSetAddressObjectInformation
//
// Set information on the TDI address object.
//
// Our caller should initialize the ID.toi_id, BufferSize, Buffer
// fields of the SetInfo structure, but we initialize the rest.
//
NTSTATUS TunnelSetAddressObjectInformation( PFILE_OBJECT AO, PTCP_REQUEST_SET_INFORMATION_EX SetInfo, ULONG SetInfoSize) { IO_STATUS_BLOCK iosb; KEVENT event; NTSTATUS status; PIRP irp; PIO_STACK_LOCATION irpSp;
//
// Finish initialization of the request structure for this IOCTL.
//
SetInfo->ID.toi_entity.tei_entity = CL_TL_ENTITY; SetInfo->ID.toi_entity.tei_instance = 0; SetInfo->ID.toi_class = INFO_CLASS_PROTOCOL; SetInfo->ID.toi_type = INFO_TYPE_ADDRESS_OBJECT;
//
// Initialize the event that we use to wait.
//
KeInitializeEvent(&event, NotificationEvent, FALSE);
//
// Create and initialize the IRP for this operation.
//
irp = IoBuildDeviceIoControlRequest(IOCTL_TCP_SET_INFORMATION_EX, AO->DeviceObject, SetInfo, SetInfoSize, NULL, // output buffer
0, // output buffer length
FALSE, // internal device control?
&event, &iosb); if (irp == NULL) return STATUS_INSUFFICIENT_RESOURCES;
iosb.Status = STATUS_UNSUCCESSFUL; iosb.Information = (ULONG)-1;
irpSp = IoGetNextIrpStackLocation(irp); irpSp->FileObject = AO;
//
// Make the IOCTL, waiting for it to finish if necessary.
//
status = IoCallDriver(AO->DeviceObject, irp); if (status == STATUS_PENDING) { KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); status = iosb.Status; }
return status; }
//* TunnelSetAddressObjectUCastIF
//
// Binds the TDI address object to a particular interface.
//
NTSTATUS TunnelSetAddressObjectUCastIF(PFILE_OBJECT AO, IPAddr Address) { PTCP_REQUEST_SET_INFORMATION_EX setInfo; union { // get correct alignment
TCP_REQUEST_SET_INFORMATION_EX setInfo; char bytes[sizeof *setInfo - sizeof setInfo->Buffer + sizeof(IPAddr)]; } buffer;
setInfo = &buffer.setInfo; setInfo->ID.toi_id = AO_OPTION_IP_UCASTIF; setInfo->BufferSize = sizeof(IPAddr); * (IPAddr *) setInfo->Buffer = Address;
return TunnelSetAddressObjectInformation(AO, setInfo, sizeof buffer); }
//* TunnelSetAddressObjectTTL
//
// Set the unicast TTL on a TDI address object.
// This sets the v4 header TTL that will be used
// for unicast packets sent via this TDI address object.
//
NTSTATUS TunnelSetAddressObjectTTL(PFILE_OBJECT AO, uchar TTL) { TCP_REQUEST_SET_INFORMATION_EX setInfo;
setInfo.ID.toi_id = AO_OPTION_TTL; setInfo.BufferSize = 1; setInfo.Buffer[0] = TTL;
return TunnelSetAddressObjectInformation(AO, &setInfo, sizeof setInfo); }
//* TunnelSetAddressObjectMCastTTL
//
// Set the multicast TTL on a TDI address object.
// This sets the v4 header TTL that will be used
// for multicast packets sent via this TDI address object.
//
NTSTATUS TunnelSetAddressObjectMCastTTL(PFILE_OBJECT AO, uchar TTL) { TCP_REQUEST_SET_INFORMATION_EX setInfo;
setInfo.ID.toi_id = AO_OPTION_MCASTTTL; setInfo.BufferSize = 1; setInfo.Buffer[0] = TTL;
return TunnelSetAddressObjectInformation(AO, &setInfo, sizeof setInfo); }
//* TunnelSetAddressObjectMCastIF
//
// Set the multicast interface on a TDI address object.
// This sets the v4 source address that will be used
// for multicast packets sent via this TDI address object.
//
NTSTATUS TunnelSetAddressObjectMCastIF(PFILE_OBJECT AO, IPAddr Address) { PTCP_REQUEST_SET_INFORMATION_EX setInfo; UDPMCastIFReq *req; union { // get correct alignment
TCP_REQUEST_SET_INFORMATION_EX setInfo; char bytes[sizeof *setInfo - sizeof setInfo->Buffer + sizeof *req]; } buffer;
setInfo = &buffer.setInfo; setInfo->ID.toi_id = AO_OPTION_MCASTIF; setInfo->BufferSize = sizeof *req; req = (UDPMCastIFReq *) setInfo->Buffer; req->umi_addr = Address;
return TunnelSetAddressObjectInformation(AO, setInfo, sizeof buffer); }
//* TunnelSetAddressObjectMCastLoop
//
// Controls multicast loopback on a TDI address object.
// This controls whether looped-back multicast packets
// can be received via this address object.
// (IPv4 multicast loopback uses Winsock semantics, not BSD semantics.)
//
NTSTATUS TunnelSetAddressObjectMCastLoop(PFILE_OBJECT AO, int Loop) { TCP_REQUEST_SET_INFORMATION_EX setInfo;
setInfo.ID.toi_id = AO_OPTION_MCASTLOOP; setInfo.BufferSize = 1; setInfo.Buffer[0] = (uchar)Loop;
return TunnelSetAddressObjectInformation(AO, &setInfo, sizeof setInfo); }
//* TunnelAddMulticastAddress
//
// Indicate to the v4 stack that we would like to receive
// on a multicast address.
//
NTSTATUS TunnelAddMulticastAddress( PFILE_OBJECT AO, IPAddr IfAddress, IPAddr MCastAddress) { PTCP_REQUEST_SET_INFORMATION_EX setInfo; UDPMCastReq *req; union { // get correct alignment
TCP_REQUEST_SET_INFORMATION_EX setInfo; char bytes[sizeof *setInfo - sizeof setInfo->Buffer + sizeof *req]; } buffer;
setInfo = &buffer.setInfo; setInfo->ID.toi_id = AO_OPTION_ADD_MCAST; setInfo->BufferSize = sizeof *req; req = (UDPMCastReq *) setInfo->Buffer; req->umr_if = IfAddress; req->umr_addr = MCastAddress;
return TunnelSetAddressObjectInformation(AO, setInfo, sizeof buffer); }
//* TunnelDelMulticastAddress
//
// Indicate to the v4 stack that we are no longer
// interested in a multicast address.
//
NTSTATUS TunnelDelMulticastAddress( PFILE_OBJECT AO, IPAddr IfAddress, IPAddr MCastAddress) { PTCP_REQUEST_SET_INFORMATION_EX setInfo; UDPMCastReq *req; union { // get correct alignment
TCP_REQUEST_SET_INFORMATION_EX setInfo; char bytes[sizeof *setInfo - sizeof setInfo->Buffer + sizeof *req]; } buffer;
setInfo = &buffer.setInfo; setInfo->ID.toi_id = AO_OPTION_DEL_MCAST; setInfo->BufferSize = sizeof *req; req = (UDPMCastReq *) setInfo->Buffer; req->umr_if = IfAddress; req->umr_addr = MCastAddress;
return TunnelSetAddressObjectInformation(AO, setInfo, sizeof buffer); }
//* TunnelGetAddressObjectInformation
//
// Get information from the TDI address object.
//
// Callable from thread context, not DPC context.
//
NTSTATUS TunnelGetAddressObjectInformation( PFILE_OBJECT AO, PTCP_REQUEST_QUERY_INFORMATION_EX GetInfo, ULONG GetInfoSize, PVOID Buffer, ULONG BufferSize) { IO_STATUS_BLOCK iosb; KEVENT event; NTSTATUS status; PIRP irp; PIO_STACK_LOCATION irpSp;
//
// Initialize the event that we use to wait.
//
KeInitializeEvent(&event, NotificationEvent, FALSE);
//
// Create and initialize the IRP for this operation.
//
irp = IoBuildDeviceIoControlRequest(IOCTL_TCP_QUERY_INFORMATION_EX, AO->DeviceObject, GetInfo, GetInfoSize, Buffer, // output buffer
BufferSize, // output buffer length
FALSE, // internal device control?
&event, &iosb); if (irp == NULL) return STATUS_INSUFFICIENT_RESOURCES;
iosb.Status = STATUS_UNSUCCESSFUL; iosb.Information = (ULONG)-1;
irpSp = IoGetNextIrpStackLocation(irp); irpSp->FileObject = AO;
//
// Make the IOCTL, waiting for it to finish if necessary.
//
status = IoCallDriver(AO->DeviceObject, irp); if (status == STATUS_PENDING) { KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); status = iosb.Status; }
return status; }
//* TunnelGetSourceAddress
//
// Finds the source address that the IPv4 stack
// would use to send to the destination address.
// Returns FALSE upon failure.
//
// Callable from thread context, not DPC context.
//
int TunnelGetSourceAddress(IPAddr Dest, IPAddr *Source) { PTCP_REQUEST_QUERY_INFORMATION_EX getInfo; IPAddr *req; union { // get correct alignment
TCP_REQUEST_QUERY_INFORMATION_EX getInfo; char bytes[sizeof *getInfo - sizeof getInfo->Context + sizeof *req]; } buffer; IPRouteEntry route;
getInfo = &buffer.getInfo; getInfo->ID.toi_entity.tei_entity = CL_NL_ENTITY; getInfo->ID.toi_entity.tei_instance = 0; getInfo->ID.toi_class = INFO_CLASS_PROTOCOL; getInfo->ID.toi_type = INFO_TYPE_PROVIDER; getInfo->ID.toi_id = IP_GET_BEST_SOURCE;
req = (IPAddr *) &getInfo->Context; *req = Dest;
return (NT_SUCCESS(TunnelGetAddressObjectInformation( Tunnel.List.AOFile, getInfo, sizeof buffer, Source, sizeof *Source)) && (*Source != INADDR_ANY)); }
//* TunnelOpenAddressObject
//
// Opens a raw IPv4 address object,
// returning a handle (or NULL on error).
//
HANDLE TunnelOpenAddressObject(IPAddr Address, WCHAR *DeviceName) { UNICODE_STRING objectName; OBJECT_ATTRIBUTES objectAttributes; IO_STATUS_BLOCK iosb; PTRANSPORT_ADDRESS transportAddress; TA_IP_ADDRESS taIPAddress; union { // get correct alignment
FILE_FULL_EA_INFORMATION ea; char bytes[sizeof(FILE_FULL_EA_INFORMATION) - 1 + TDI_TRANSPORT_ADDRESS_LENGTH + 1 + sizeof taIPAddress]; } eaBuffer; PFILE_FULL_EA_INFORMATION ea = &eaBuffer.ea; HANDLE tdiHandle; NTSTATUS status;
//
// Initialize an IPv4 address.
//
taIPAddress.TAAddressCount = 1; taIPAddress.Address[0].AddressLength = TDI_ADDRESS_LENGTH_IP; taIPAddress.Address[0].AddressType = TDI_ADDRESS_TYPE_IP; taIPAddress.Address[0].Address[0].sin_port = 0; taIPAddress.Address[0].Address[0].in_addr = Address;
//
// Initialize the extended-attributes information,
// to indicate that we are opening an address object
// with the specified IPv4 address.
//
ea->NextEntryOffset = 0; ea->Flags = 0; ea->EaNameLength = TDI_TRANSPORT_ADDRESS_LENGTH; ea->EaValueLength = (USHORT)sizeof taIPAddress;
RtlMoveMemory(ea->EaName, TdiTransportAddress, ea->EaNameLength + 1);
transportAddress = (PTRANSPORT_ADDRESS)(&ea->EaName[ea->EaNameLength + 1]);
RtlMoveMemory(transportAddress, &taIPAddress, sizeof taIPAddress);
//
// Open a raw IP address object.
//
RtlInitUnicodeString(&objectName, DeviceName);
InitializeObjectAttributes(&objectAttributes, &objectName, OBJ_CASE_INSENSITIVE, // Attributes
NULL, // RootDirectory
NULL); // SecurityDescriptor
status = ZwCreateFile(&tdiHandle, GENERIC_READ | GENERIC_WRITE | SYNCHRONIZE, &objectAttributes, &iosb, NULL, // AllocationSize
0, // FileAttributes
FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_CREATE, 0, // CreateOptions
ea, sizeof eaBuffer); if (!NT_SUCCESS(status)) return NULL;
return tdiHandle; }
//* TunnelObjectAddRef
//
// Adds another reference to an existing file object.
//
// Callable from thread or DPC context.
//
void TunnelObjectAddRef(FILE_OBJECT *File) { NTSTATUS Status;
Status = ObReferenceObjectByPointer(File, GENERIC_READ | GENERIC_WRITE | SYNCHRONIZE, NULL, // object type
KernelMode); ASSERT(NT_SUCCESS(Status)); }
//* TunnelObjectFromHandle
//
// Converts a handle to an object pointer.
//
FILE_OBJECT * TunnelObjectFromHandle(HANDLE Handle) { PVOID Object; NTSTATUS Status;
Status = ObReferenceObjectByHandle( Handle, GENERIC_READ | GENERIC_WRITE | SYNCHRONIZE, NULL, // object type
KernelMode, &Object, NULL); // handle info
ASSERT(NT_SUCCESS(Status)); ASSERT(Object != NULL);
return Object; }
typedef struct TunnelOpenAddressContext { WORK_QUEUE_ITEM WQItem; IPAddr Addr; HANDLE AOHandle; FILE_OBJECT *AOFile; KEVENT Event; } TunnelOpenAddressContext;
//* TunnelOpenAddressHelper
//
// Opens a tunnel address object.
//
// Callable from thread context, not DPC context.
// Callable in kernel process context only.
// Called with the tunnel mutex held.
//
void TunnelOpenAddressHelper(TunnelOpenAddressContext *oac) { oac->AOHandle = TunnelOpenAddressObject(oac->Addr, TUNNEL_DEVICE_NAME(IP_PROTOCOL_V6)); if (oac->AOHandle != NULL) oac->AOFile = TunnelObjectFromHandle(oac->AOHandle); else oac->AOFile = NULL; }
//* TunnelOpenAddressWorker
//
// Executes the open operations in a worker thread context.
//
void TunnelOpenAddressWorker(void *Context) { TunnelOpenAddressContext *oac = (TunnelOpenAddressContext *) Context;
TunnelOpenAddressHelper(oac); KeSetEvent(&oac->Event, 0, FALSE); }
//* TunnelOpenAddress
//
// Address objects must be opened in the kernel process context,
// so they will not be tied to a particular user process.
//
// The main input is tc->SrcAddr, but also uses tc->DstAddr.
// Initializes tc->AOHandle and tc->AOFile.
// If there is an error opening the address object,
// they are both initialized to NULL.
//
// Callable from thread context, not DPC context.
//
void TunnelOpenAddress(TunnelContext *tc) { TunnelOpenAddressContext oac; KIRQL OldIrql; NTSTATUS Status;
oac.Addr = tc->SrcAddr;
if (IoGetCurrentProcess() != Tunnel.KernelProcess) { //
// We are in the wrong process context, so
// punt this operation to a worker thread.
// Initialize and queue the work item -
// it will execute asynchronously.
//
ExInitializeWorkItem(&oac.WQItem, TunnelOpenAddressWorker, &oac); KeInitializeEvent(&oac.Event, SynchronizationEvent, FALSE); ExQueueWorkItem(&oac.WQItem, CriticalWorkQueue);
//
// Wait for the work item to finish.
//
(void) KeWaitForSingleObject(&oac.Event, UserRequest, KernelMode, FALSE, NULL); } else { //
// It's safe for us to open the address object directly.
//
TunnelOpenAddressHelper(&oac); }
if (oac.AOFile != NULL) { //
// Tunnel.V4Device might be null if TunnelOpenV4 failed.
// Which would be bizarre but conceivable.
// It would mean we could send tunneled packets but not receive.
//
ASSERT((Tunnel.V4Device == NULL) || (oac.AOFile->DeviceObject == Tunnel.V4Device));
//
// Finish initializing the new address object.
//
Status = TunnelSetAddressObjectUCastIF(oac.AOFile, oac.Addr); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenAddress(%s): " "TunnelSetAddressObjectUCastIF -> %x\n", FormatV4Address(oac.Addr), Status)); }
//
// For 6over4 interfaces, set additional options.
//
if (tc->DstAddr == INADDR_ANY) {
Status = TunnelSetAddressObjectTTL(oac.AOFile, TUNNEL_6OVER4_TTL); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenAddress(%s): " "TunnelSetAddressObjectTTL -> %x\n", FormatV4Address(oac.Addr), Status)); }
Status = TunnelSetAddressObjectMCastTTL(oac.AOFile, TUNNEL_6OVER4_TTL); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenAddress(%s): " "TunnelSetAddressObjectMCastTTL -> %x\n", FormatV4Address(oac.Addr), Status)); }
Status = TunnelSetAddressObjectMCastIF(oac.AOFile, oac.Addr); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenAddress(%s): " "TunnelSetAddressObjectMCastIF -> %x\n", FormatV4Address(oac.Addr), Status)); } } }
//
// Now that the address object is initialized,
// we can update the tunnel context.
// We need both the mutex and spinlock for update.
// NB: In some paths, the tunnel context is not yet
// on a list and so the locks are not needed.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); tc->AOHandle = oac.AOHandle; tc->AOFile = oac.AOFile; KeReleaseSpinLock(&Tunnel.Lock, OldIrql); }
typedef struct TunnelCloseAddressObjectContext { WORK_QUEUE_ITEM WQItem; HANDLE Handle; KEVENT Event; } TunnelCloseAddressObjectContext;
//* TunnelCloseAddressObjectWorker
//
// Executes the close operation in a worker thread context.
//
void TunnelCloseAddressObjectWorker(void *Context) { TunnelCloseAddressObjectContext *chc = (TunnelCloseAddressObjectContext *) Context;
ZwClose(chc->Handle); KeSetEvent(&chc->Event, 0, FALSE); }
//* TunnelCloseAddressObject
//
// Because the address object handles are opened in the kernel process
// context, we must always close them in the kernel process context.
//
// Callable from thread context, not DPC context.
//
void TunnelCloseAddressObject(HANDLE Handle) { if (IoGetCurrentProcess() != Tunnel.KernelProcess) { TunnelCloseAddressObjectContext chc;
//
// We are in the wrong process context, so
// punt this operation to a worker thread.
//
//
// Initialize and queue the work item -
// it will execute asynchronously.
//
ExInitializeWorkItem(&chc.WQItem, TunnelCloseAddressObjectWorker, &chc); chc.Handle = Handle; KeInitializeEvent(&chc.Event, SynchronizationEvent, FALSE); ExQueueWorkItem(&chc.WQItem, CriticalWorkQueue);
//
// Wait for the work item to finish.
//
(void) KeWaitForSingleObject(&chc.Event, UserRequest, KernelMode, FALSE, NULL); } else { //
// It's safe for us to close the handle directly.
//
ZwClose(Handle); } }
//* TunnelInsertTunnel
//
// Insert a tunnel on the global list.
// Called with both tunnel locks held.
//
void TunnelInsertTunnel(TunnelContext *tc, TunnelContext *List) { tc->Next = List->Next; tc->Prev = List; List->Next->Prev = tc; List->Next = tc; }
//* TunnelRemoveTunnel
//
// Remove a tunnel from the global list.
// Called with both tunnel locks held.
//
void TunnelRemoveTunnel(TunnelContext *tc) { tc->Next->Prev = tc->Prev; tc->Prev->Next = tc->Next; }
//
// Context information that we pass to the IPv4 stack
// when transmitting.
//
typedef struct TunnelTransmitContext { PNDIS_PACKET Packet; TA_IP_ADDRESS taIPAddress; TDI_CONNECTION_INFORMATION tdiConnInfo; } TunnelTransmitContext;
//* TunnelTransmitComplete
//
// Completion function for TunnelTransmit,
// called when the IPv4 stack completes our IRP.
//
NTSTATUS TunnelTransmitComplete( PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID Context) { TunnelTransmitContext *ttc = (TunnelTransmitContext *) Context; PNDIS_PACKET Packet = ttc->Packet; TDI_STATUS TDIStatus = Irp->IoStatus.Status; IP_STATUS IPStatus; uchar ICMPCode;
//
// Free the state that we allocated in TunnelTransmit.
//
ExFreePool(ttc); IoFreeIrp(Irp);
//
// Undo our adjustment before letting upper-layer code
// see the packet.
//
UndoAdjustPacketBuffer(Packet);
//
// Convert the error code.
// For some errors, we send an ICMPv6 message so that the error
// can be forwarded. For most errors we just complete the packet.
//
switch (TDIStatus) { case TDI_SUCCESS: IPStatus = IP_SUCCESS; goto CallSendComplete; case TDI_BUFFER_TOO_BIG: //
// TODO: It would be preferable to generate an ICMPv6 Packet Too Big,
// but TDI does not give us the MTU value. This needs to be solved
// before we can set the dont-fragment bit and do PMTU discovery.
//
IPStatus = IP_PACKET_TOO_BIG; goto CallSendComplete; default: IPStatus = IP_GENERAL_FAILURE;
CallSendComplete: //
// Let IPv6 know that the send completed.
//
IPv6SendComplete(PC(Packet)->IF, Packet, IPStatus); break;
case TDI_DEST_NET_UNREACH: case TDI_DEST_HOST_UNREACH: case TDI_DEST_PROT_UNREACH: case TDI_DEST_PORT_UNREACH: //
// Generate an ICMPv6 error.
// Because this is a link-specific error,
// we use address-unreachable.
// NB: At the moment, the IPv4 stack does
// not return these errors to us.
// This will call IPv6SendComplete for us.
//
IPv6SendAbort(CastFromIF(PC(Packet)->IF), Packet, PC(Packet)->pc_offset, ICMPv6_DESTINATION_UNREACHABLE, ICMPv6_ADDRESS_UNREACHABLE, 0, FALSE); break; }
//
// Tell IoCompleteRequest to stop working on the IRP.
//
return STATUS_MORE_PROCESSING_REQUIRED; }
//* TunnelTransmitViaAO
//
// Encapsulate a v6 packet in a v4 packet and send it
// to the specified v4 address, using the specified
// TDI address object. The address object may be bound
// to a v4 address, or else the v4 stack chooses
// the v4 source address.
//
// Callable from thread or DPC context.
//
void TunnelTransmitViaAO( FILE_OBJECT *File, // Pointer to TDI address object.
PNDIS_PACKET Packet, // Pointer to packet to be transmitted.
uint Offset, // Offset from start of packet to IPv6 header.
IPAddr Address) // Link-layer (IPv4) destination address.
{ TunnelTransmitContext *ttc; PIRP irp; PMDL mdl; ULONG SendLen;
//
// We do not need any space for a link-layer header,
// because the IPv4 code takes care of that transparently.
//
(void) AdjustPacketBuffer(Packet, Offset, 0);
//
// TdiBuildSendDatagram needs an MDL and the total amount
// of data that the MDL represents.
//
NdisQueryPacket(Packet, NULL, NULL, &mdl, &SendLen);
//
// Allocate the context that we will pass to the IPv4 stack.
//
ttc = ExAllocatePool(NonPagedPool, sizeof *ttc); if (ttc == NULL) { ErrorReturn: UndoAdjustPacketBuffer(Packet); IPv6SendComplete(PC(Packet)->IF, Packet, IP_GENERAL_FAILURE); return; }
//
// Allocate an IRP that we will pass to the IPv4 stack.
//
irp = IoAllocateIrp(File->DeviceObject->StackSize, FALSE); if (irp == NULL) { ExFreePool(ttc); goto ErrorReturn; }
//
// Initialize the context information.
// Note that many fields of the "connection info" are unused.
//
ttc->Packet = Packet;
ttc->taIPAddress.TAAddressCount = 1; ttc->taIPAddress.Address[0].AddressLength = TDI_ADDRESS_LENGTH_IP; ttc->taIPAddress.Address[0].AddressType = TDI_ADDRESS_TYPE_IP; ttc->taIPAddress.Address[0].Address[0].sin_port = 0; ttc->taIPAddress.Address[0].Address[0].in_addr = Address;
ttc->tdiConnInfo.RemoteAddressLength = sizeof ttc->taIPAddress; ttc->tdiConnInfo.RemoteAddress = &ttc->taIPAddress;
//
// Initialize the IRP.
//
TdiBuildSendDatagram(irp, File->DeviceObject, File, TunnelTransmitComplete, ttc, mdl, SendLen, &ttc->tdiConnInfo);
//
// Pass the IRP to the IPv4 stack.
// Note that unlike NDIS's asynchronous operations,
// our completion routine will always be called,
// no matter what the return code from IoCallDriver.
//
(void) IoCallDriver(File->DeviceObject, irp); }
//* TunnelTransmitViaTC
//
// Extracts a file object reference from a tunnel context
// and calls TunnelTransmitViaAO.
//
void TunnelTransmitViaTC( TunnelContext *tc, PNDIS_PACKET Packet, // Pointer to packet to be transmitted.
uint Offset, // Offset from start of packet to IPv6 header.
IPAddr Address) // Link-layer (IPv4) destination address.
{ Interface *IF = tc->IF; PFILE_OBJECT File; KIRQL OldIrql;
//
// Get a reference to the TDI address object.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); File = tc->AOFile; if (File == NULL) { ASSERT(IF->Flags & IF_FLAG_MEDIA_DISCONNECTED); KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
IPv6SendComplete(IF, Packet, IP_GENERAL_FAILURE); return; }
TunnelObjectAddRef(File); KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
TunnelTransmitViaAO(File, Packet, Offset, Address);
ObDereferenceObject(File); }
//* TunnelSearchAOList
//
// Search the list of TDI address objects
// for one bound to the specified v4 address.
// If successful, the TDI address object
// is returned with a reference for the caller.
//
// REVIEW: This design is inefficient on
// machines with thousands of v4 addresses.
//
FILE_OBJECT * TunnelSearchAOList(IPAddr Addr) { FILE_OBJECT *File; TunnelContext *tc; KIRQL OldIrql;
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); for (tc = Tunnel.AOList.Next; ; tc = tc->Next) {
if (tc == &Tunnel.AOList) { File = NULL; break; }
if (tc->SrcAddr == Addr) { File = tc->AOFile; TunnelObjectAddRef(File); break; } } KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
return File; }
//* TunnelTransmit
//
// Translates the arguments of our link-layer transmit function
// to the internal TunnelTransmitViaTC/AO.
//
void TunnelTransmit( void *Context, // Pointer to tunnel interface.
PNDIS_PACKET Packet, // Pointer to packet to be transmitted.
uint Offset, // Offset from start of packet to IPv6 header.
const void *LinkAddress) // Link-layer address.
{ TunnelContext *tc = (TunnelContext *) Context; IPAddr Address = * (IPAddr *) LinkAddress;
//
// Suppress packets sent to various illegal destination types.
// REVIEW - It would be good to suppress subnet broadcasts,
// but we don't know the v4 net mask.
//
if ((Address == INADDR_ANY) || IsV4Broadcast(Address) || IsV4Multicast(Address)) {
KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_USER_ERROR, "TunnelTransmit: illegal destination %s\n", FormatV4Address(Address))); IPv6SendAbort(CastFromIF(tc->IF), Packet, Offset, ICMPv6_DESTINATION_UNREACHABLE, ICMPv6_COMMUNICATION_PROHIBITED, 0, FALSE); return; }
//
// It would be nice to suppress transmission of packets
// that will result in v4 loopback, but we don't have a
// convenient way of doing that here. We could check
// if Address == tc->SrcAddr, but that won't catch most cases.
// Instead TunnelReceivePacket checks for this.
//
if (tc->IF->Type == IF_TYPE_TUNNEL_AUTO) { IPv6Header Buffer; IPv6Header UNALIGNED *IP; IPAddr DesiredSrc; FILE_OBJECT *File;
//
// tc->AOFile is not bound to a particular v4 address,
// so the v4 stack can choose a source address.
// But it might choose a source address that is not
// consistent with the v6 source address.
// To prevent this, we keep a stash of TDI address
// objects bound to v4 addresses and when appropriate,
// use a bound TDI address object.
//
IP = GetIPv6Header(Packet, Offset, &Buffer); if ((IP != NULL) && (IsV4Compatible(AlignAddr(&IP->Source)) || IsISATAP(AlignAddr(&IP->Source)))) {
//
// Search for a TDI address object bound to
// the desired v4 source address.
//
DesiredSrc = ExtractV4Address(AlignAddr(&IP->Source)); File = TunnelSearchAOList(DesiredSrc); if (File != NULL) {
//
// Encapsulate and transmit the packet,
// using the desired v4 source address.
//
TunnelTransmitViaAO(File, Packet, Offset, Address); ObDereferenceObject(File); return; } } }
//
// Encapsulate and transmit the packet.
//
TunnelTransmitViaTC(tc, Packet, Offset, Address); }
//* TunnelTransmitND
//
// Translates the arguments of our link-layer transmit function
// to the internal TunnelTransmitViaTC.
//
// This is just like TunnelTransmit, except it doesn't have
// the checks for bad destination addresses. 6over4 destination
// addresses are handled via Neighbor Discovery and
// multicast is needed.
//
void TunnelTransmitND( void *Context, // Pointer to tunnel interface.
PNDIS_PACKET Packet, // Pointer to packet to be transmitted.
uint Offset, // Offset from start of packet to IPv6 header.
const void *LinkAddress) // Link-layer address.
{ TunnelContext *tc = (TunnelContext *) Context; IPAddr Address = * (IPAddr *) LinkAddress;
//
// Encapsulate and transmit the packet.
//
TunnelTransmitViaTC(tc, Packet, Offset, Address); }
//* TunnelCreateReceiveIrp
//
// Creates an IRP for TunnelReceive/TunnelReceiveComplete.
//
PIRP TunnelCreateReceiveIrp(DEVICE_OBJECT *Device) { PIRP irp; PMDL mdl; void *buffer;
irp = IoAllocateIrp(Device->StackSize, FALSE); if (irp == NULL) goto ErrorReturn;
buffer = ExAllocatePool(NonPagedPool, TUNNEL_RECEIVE_BUFFER); if (buffer == NULL) goto ErrorReturnFreeIrp;
mdl = IoAllocateMdl(buffer, TUNNEL_RECEIVE_BUFFER, FALSE, // This is the irp's primary MDL.
FALSE, // Do not charge quota.
irp); if (mdl == NULL) goto ErrorReturnFreeBuffer;
MmBuildMdlForNonPagedPool(mdl);
return irp;
ErrorReturnFreeBuffer: ExFreePool(buffer); ErrorReturnFreeIrp: IoFreeIrp(irp); ErrorReturn: return NULL; }
//* TunnelSelectTunnel
//
// Try to choose a tunnel on which to deliver a packet.
//
// Called with the tunnel lock held.
//
NetTableEntryOrInterface * TunnelSelectTunnel( IPv6Addr *V6Dest, // May be NULL.
IPAddr V4Dest, IPAddr V4Src, uint Flags) { TunnelContext *tc; Interface *IF;
//
// First try to receive the packet on a point-to-point interface.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { IF = tc->IF;
//
// Restrict the point-to-point tunnel to only receiving
// packets that are sent from & to the proper link-layer
// addresses. That is, make it really point-to-point.
//
if (((IF->Flags & Flags) == Flags) && (IF->Type == IF_TYPE_TUNNEL_V6V4) && (V4Src == tc->DstAddr) && (V4Dest == tc->SrcAddr)) {
AddRefIF(IF); return CastFromIF(IF); } }
//
// Next try to receive the packet on a 6-over-4 interface.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { IF = tc->IF;
//
// Restrict the 6-over-4 interface to only receiving
// packets that are sent to proper link-layer addresses.
// This is our v4 address and multicast addresses
// from TunnelConvertAddress.
//
if (((Flags == 0) || (IF->Flags & Flags)) && (IF->Type == IF_TYPE_TUNNEL_6OVER4) && ((V4Dest == tc->SrcAddr) || ((((uchar *)&V4Dest)[0] == 239) && (((uchar *)&V4Dest)[1] == 192)))) {
AddRefIF(IF); return CastFromIF(IF); } }
//
// Finally, try to receive the packet on a tunnel pseudo-interface.
// This is a fall-back for forwarding situations
// or when V6Dest is NULL. In the latter case,
// we only consider automatic tunneling interfaces
// because they usually have link-local addresses.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { IF = tc->IF;
if (((Flags == 0) || (IF->Flags & Flags)) && ((IF->Type == IF_TYPE_TUNNEL_AUTO) || ((V6Dest != NULL) && (IF->Type == IF_TYPE_TUNNEL_6TO4)))) {
AddRefIF(IF); return CastFromIF(IF); } }
return NULL; }
//* TunnelFindReceiver
//
// Finds the NTEorIF that should receive an encapsulated packet.
// Returns the NTEorIF with a reference, or NULL.
// Called at DPC level.
//
NetTableEntryOrInterface * TunnelFindReceiver( IPv6Addr *V6Dest, // May be NULL.
IPAddr V4Dest, IPAddr V4Src) { NetTableEntryOrInterface *NTEorIF; TunnelContext *tc;
//
// So we can access the global list of tunnels.
//
KeAcquireSpinLockAtDpcLevel(&Tunnel.Lock);
if (V6Dest != NULL) { //
// First try to receive the packet directly (not forwarding)
// on a tunnel pseudo-interface.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { Interface *IF = tc->IF;
if ((IF->Type == IF_TYPE_TUNNEL_AUTO) || (IF->Type == IF_TYPE_TUNNEL_6TO4)) { ushort Type;
NTEorIF = FindAddressOnInterface(IF, V6Dest, &Type); if (NTEorIF != NULL) { if (Type != ADE_NONE) goto UnlockAndReturn; ReleaseIF(CastToIF(NTEorIF)); } } } }
//
// Next try to receive the packet on a tunnel interface which
// is marked as forwarding.
//
NTEorIF = TunnelSelectTunnel(V6Dest, V4Dest, V4Src, IF_FLAG_FORWARDS); if (NTEorIF != NULL) goto UnlockAndReturn;
//
// Finally try to receive the packet on any matching tunnel interface.
//
NTEorIF = TunnelSelectTunnel(V6Dest, V4Dest, V4Src, 0);
UnlockAndReturn: KeReleaseSpinLockFromDpcLevel(&Tunnel.Lock); return NTEorIF; }
//* TunnelReceiveIPv6Helper
//
// Called when we receive an encapsulated IPv6 packet,
// when we have identified the IPv6 header and found
// the NTEorIF that will receive the packet.
//
// Called at DPC level.
//
void TunnelReceiveIPv6Helper( IPHeader UNALIGNED *IPv4H, IPv6Header UNALIGNED *IPv6H, NetTableEntryOrInterface *NTEorIF, void *Data, uint Length) { IPv6Packet IPPacket; uint Flags;
//
// Check if the packet was received as a link-layer multicast/broadcast.
//
if (IsV4Broadcast(IPv4H->iph_dest) || IsV4Multicast(IPv4H->iph_dest)) Flags = PACKET_NOT_LINK_UNICAST; else Flags = 0;
RtlZeroMemory(&IPPacket, sizeof IPPacket); IPPacket.FlatData = Data; IPPacket.Data = Data; IPPacket.ContigSize = Length; IPPacket.TotalSize = Length; IPPacket.Flags = Flags; IPPacket.NTEorIF = NTEorIF;
//
// We want to prevent any loopback in the v4 stack.
// Loopback should be handled in our v6 routing table.
// For example, we want to prevent loops where 6to4
// addresses are routed around and around and around.
// Without this code, the hop count would eventually
// catch the loop and report a strange ICMP error.
//
if (IPv4H->iph_dest == IPv4H->iph_src) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NET_ERROR, "TunnelReceiveIPv6Helper: suppressed loopback\n"));
//
// Send an ICMP error. This requires some setup.
//
IPPacket.IP = IPv6H; IPPacket.SrcAddr = AlignAddr(&IPv6H->Source); IPPacket.IPPosition = IPPacket.Position; AdjustPacketParams(&IPPacket, sizeof(IPv6Header));
ICMPv6SendError(&IPPacket, ICMPv6_DESTINATION_UNREACHABLE, ICMPv6_NO_ROUTE_TO_DESTINATION, 0, IPv6H->NextHeader, FALSE); } else { int PktRefs;
PktRefs = IPv6Receive(&IPPacket); ASSERT(PktRefs == 0); } }
//* TunnelReceiveIPv6
//
// Called when we receive an encapsulated IPv6 packet.
// Called at DPC level.
//
// We select a single tunnel interface to receive the packet.
// It's difficult to select the correct interface in all situations.
//
void TunnelReceiveIPv6( IPHeader UNALIGNED *IPv4H, void *Data, uint Length) { IPv6Header UNALIGNED *IPv6H; NetTableEntryOrInterface *NTEorIF;
//
// If the packet does not contain a full IPv6 header,
// just ignore it. We need to look at the IPv6 header
// below to demultiplex the packet to the proper
// tunnel interface.
//
if (Length < sizeof *IPv6H) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceiveIPv6: too small to contain IPv6 hdr\n")); return; } IPv6H = (IPv6Header UNALIGNED *) Data;
//
// Find the NTEorIF that will receive the packet.
//
NTEorIF = TunnelFindReceiver(AlignAddr(&IPv6H->Dest), IPv4H->iph_dest, IPv4H->iph_src); if (NTEorIF == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceiveIPv6: no receiver\n")); return; }
TunnelReceiveIPv6Helper(IPv4H, IPv6H, NTEorIF, Data, Length);
if (IsNTE(NTEorIF)) ReleaseNTE(CastToNTE(NTEorIF)); else ReleaseIF(CastToIF(NTEorIF)); }
//* TunnelFindPutativeSource
//
// Finds an address to use as the "source" of an error
// for completed echo requests.
// Returns FALSE if no address is available.
//
int TunnelFindPutativeSource( IPAddr V4Dest, IPAddr V4Src, IPv6Addr *Source, uint *ScopeId) { NetTableEntryOrInterface *NTEorIF; Interface *IF; int rc;
//
// First find an interface that would receive
// a tunneled packet.
//
NTEorIF = TunnelFindReceiver(NULL, V4Dest, V4Src); if (NTEorIF == NULL) return FALSE;
IF = NTEorIF->IF;
//
// Then get a link-local address on the interface.
//
rc = GetLinkLocalAddress(IF, Source); *ScopeId = IF->ZoneIndices[ADE_LINK_LOCAL];
if (IsNTE(NTEorIF)) ReleaseNTE(CastToNTE(NTEorIF)); else ReleaseIF(IF);
return rc; }
//* TunnelFindSourceAddress
//
// Finds a source address to use in a constructed ICMPv6 error,
// given the NTEorIF that is receiving the ICMPv6 error
// and the IPv6 destination of the error.
// Returns FALSE if no address is available.
//
int TunnelFindSourceAddress( NetTableEntryOrInterface *NTEorIF, IPv6Addr *V6Dest, IPv6Addr *V6Src) { RouteCacheEntry *RCE; IP_STATUS Status;
//
// REVIEW: In the MIPV6 code base, eliminate this check.
//
if (IsNTE(NTEorIF)) { *V6Src = CastToNTE(NTEorIF)->Address; return TRUE; }
Status = RouteToDestination(V6Dest, 0, NTEorIF, RTD_FLAG_NORMAL, &RCE); if (Status != IP_SUCCESS) return FALSE;
*V6Src = RCE->NTE->Address; ReleaseRCE(RCE); return TRUE; }
//* TunnelReceiveICMPv4
//
// Called when we receive an ICMPv4 packet.
// Called at DPC level.
//
// If an encapsulated IPv6 packet triggered
// this ICMPv4 error, then we construct an ICMPv6 error
// based on the ICMPv4 error and process the constructed packet.
//
void TunnelReceiveICMPv4( IPHeader UNALIGNED *IPv4H, void *Data, uint Length) { ICMPHeader UNALIGNED *ICMPv4H; IPHeader UNALIGNED *ErrorIPv4H; uint ErrorHeaderLength; IPv6Header UNALIGNED *ErrorIPv6H; void *NewData; uint NewLength; uint NewPayloadLength; IPv6Header *NewIPv6H; ICMPv6Header *NewICMPv6H; uint *NewICMPv6Param; void *NewErrorData; IPv6Addr V6Src; NetTableEntryOrInterface *NTEorIF;
//
// If the packet does not contain a full ICMPv4 header,
// just ignore it.
//
if (Length < sizeof *ICMPv4H) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceiveICMPv4: too small to contain ICMPv4 hdr\n")); return; } ICMPv4H = (ICMPHeader UNALIGNED *) Data; Length -= sizeof *ICMPv4H; (char *)Data += sizeof *ICMPv4H;
//
// Ignore everything but selected ICMP errors.
//
if ((ICMPv4H->ich_type != ICMP_DEST_UNREACH) && (ICMPv4H->ich_type != ICMP_SOURCE_QUENCH) && (ICMPv4H->ich_type != ICMP_TIME_EXCEED) && (ICMPv4H->ich_type != ICMP_PARAM_PROBLEM)) return;
//
// We need sufficient data from the error packet:
// at least the IPv4 header.
//
if (Length < sizeof *ErrorIPv4H) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceiveICMPv4: " "too small to contain error IPv4 hdr\n")); return; } ErrorIPv4H = (IPHeader UNALIGNED *) Data; ErrorHeaderLength = ((ErrorIPv4H->iph_verlen & 0xf) << 2); if ((ErrorHeaderLength < sizeof *ErrorIPv4H) || (ErrorIPv4H->iph_length < ErrorHeaderLength)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceiveICMPv4: " "error IPv4 hdr length too small\n")); return; }
//
// We are only interested if this error is in response
// to an IPv6-in-IPv4 packet.
//
if (ErrorIPv4H->iph_protocol != IP_PROTOCOL_V6) return;
//
// Ignore the packet if the ICMPv4 checksum fails.
// We do this check after the cheaper checks above,
// when we know that we really want to process the error.
//
if (Cksum(ICMPv4H, sizeof *ICMPv4H + Length) != 0xffff) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceiveICMPv4: bad checksum\n")); return; }
//
// Ensure that we do not look at garbage bytes
// at the end of the ICMP packet.
// We must adjust Length after checking the checksum.
//
if (ErrorIPv4H->iph_length < Length) Length = ErrorIPv4H->iph_length;
//
// Ideally we also have the encapsulated IPv6 header.
// But often IPv4 routers will return insufficient information.
// In that case, we make a best effort to identify
// and complete any outstanding echo requests.
// Yes, this is a hack.
//
if (Length < ErrorHeaderLength + sizeof *ErrorIPv6H) { uint ScopeId; IP_STATUS Status;
if (! TunnelFindPutativeSource(IPv4H->iph_dest, ErrorIPv4H->iph_dest, &V6Src, &ScopeId)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INTERNAL_ERROR, "TunnelReceiveICMPv4: no putative source\n")); return; }
//
// The status code here should be the same as if
// we constructed an ICMPv6 error below and then
// converted to a status code in ICMPv6ErrorReceive.
//
if ((ICMPv4H->ich_type == ICMP_DEST_UNREACH) && (ICMPv4H->ich_code == ICMP_FRAG_NEEDED) && (net_long(ICMPv4H->ich_param) >= ErrorHeaderLength + IPv6_MINIMUM_MTU)) Status = IP_PACKET_TOO_BIG; else Status = IP_DEST_ADDR_UNREACHABLE;
ICMPv6ProcessTunnelError(ErrorIPv4H->iph_dest, &V6Src, ScopeId, Status); return; }
//
// Move past the IPv4 header in the error data.
// Everything past this point, including the error IPv6 header,
// will become data in the constructed ICMPv6 error.
//
Length -= ErrorHeaderLength; (char *)Data += ErrorHeaderLength; ErrorIPv6H = (IPv6Header UNALIGNED *) Data;
//
// Determine who will receive the constructed ICMPv6 error.
//
NTEorIF = TunnelFindReceiver(AlignAddr(&ErrorIPv6H->Source), IPv4H->iph_dest, ErrorIPv4H->iph_dest); if (NTEorIF == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INTERNAL_ERROR, "TunnelReceiveICMPv4: no receiver\n")); return; }
//
// Find a source address for the constructed ICMPv6 error.
//
if (! TunnelFindSourceAddress(NTEorIF, AlignAddr(&ErrorIPv6H->Source), &V6Src)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INTERNAL_ERROR, "TunnelReceiveICMPv4: no source address\n")); goto ReleaseAndReturn; }
//
// Allocate memory for the constructed ICMPv6 error.
//
NewPayloadLength = sizeof *NewICMPv6H + sizeof *NewICMPv6Param + Length; NewLength = sizeof *NewIPv6H + NewPayloadLength; NewData = ExAllocatePool(NonPagedPool, NewLength); if (NewData == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelReceiveICMPv4: no pool\n")); goto ReleaseAndReturn; }
//
// Build the IPv6 header.
//
NewIPv6H = (IPv6Header *) NewData; NewIPv6H->VersClassFlow = IP_VERSION; NewIPv6H->PayloadLength = net_short((ushort)NewPayloadLength); NewIPv6H->NextHeader = IP_PROTOCOL_ICMPv6; NewIPv6H->HopLimit = DEFAULT_CUR_HOP_LIMIT; NewIPv6H->Source = V6Src; NewIPv6H->Dest = ErrorIPv6H->Source;
//
// Build the ICMPv6 header.
//
NewICMPv6H = (ICMPv6Header *) (NewIPv6H + 1); NewICMPv6Param = (uint *) (NewICMPv6H + 1);
if ((ICMPv4H->ich_type == ICMP_DEST_UNREACH) && (ICMPv4H->ich_code == ICMP_FRAG_NEEDED)) { uint MTU;
//
// Calculate the MTU as seen by the IPv6 packet.
// The MTU can not be smaller than IPv6_MINIMUM_MTU.
// NB: In old-style frag-needed errors,
// ich_param should be zero.
// NB: Actually, this code should not be exercised since
// we do not set the dont-fragment bit in our IPv4 packets.
//
MTU = net_long(ICMPv4H->ich_param); if (MTU < ErrorHeaderLength + IPv6_MINIMUM_MTU) { //
// If we were setting the dont-fragment bit,
// we should clear it in this case.
// We need to allow the IPv4 layer to fragment.
//
goto GenerateAddressUnreachable; } MTU -= ErrorHeaderLength;
NewICMPv6H->Type = ICMPv6_PACKET_TOO_BIG; NewICMPv6H->Code = 0; *NewICMPv6Param = net_long(MTU); } else { //
// For everything else, we use address-unreachable.
// It is the appropriate code for a link-specific error.
//
GenerateAddressUnreachable: NewICMPv6H->Type = ICMPv6_DESTINATION_UNREACHABLE; NewICMPv6H->Code = ICMPv6_ADDRESS_UNREACHABLE; *NewICMPv6Param = 0; }
//
// Copy the error data to the new packet.
//
NewErrorData = (void *) (NewICMPv6Param + 1); RtlCopyMemory(NewErrorData, Data, Length);
//
// Calculate the ICMPv6 checksum.
//
NewICMPv6H->Checksum = 0; NewICMPv6H->Checksum = ChecksumPacket(NULL, 0, (uchar *)NewICMPv6H, NewPayloadLength, &NewIPv6H->Source, &NewIPv6H->Dest, IP_PROTOCOL_ICMPv6);
//
// Receive the constructed packet.
//
TunnelReceiveIPv6Helper(IPv4H, NewIPv6H, NTEorIF, NewData, NewLength);
ExFreePool(NewData); ReleaseAndReturn: if (IsNTE(NTEorIF)) ReleaseNTE(CastToNTE(NTEorIF)); else ReleaseIF(CastToIF(NTEorIF)); }
//* TunnelReceivePacket
//
// Called when we receive an encapsulated IPv6 packet OR
// we receive an ICMPv4 packet.
// Called at DPC level.
//
// We select a single tunnel interface to receive the packet.
// It's difficult to select the correct interface in all situations.
//
void TunnelReceivePacket(void *Data, uint Length) { IPHeader UNALIGNED *IPv4H; uint HeaderLength;
//
// The incoming data includes the IPv4 header.
// We should only get properly-formed IPv4 packets.
//
ASSERT(Length >= sizeof *IPv4H); IPv4H = (IPHeader UNALIGNED *) Data; HeaderLength = ((IPv4H->iph_verlen & 0xf) << 2); ASSERT(Length >= HeaderLength); Length -= HeaderLength; (char *)Data += HeaderLength;
if (IPv4H->iph_src == INADDR_ANY) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceivePacket: null v4 source\n")); return; }
if (IPv4H->iph_protocol == IP_PROTOCOL_V6) { //
// Process the encapsulated IPv6 packet.
//
TunnelReceiveIPv6(IPv4H, Data, Length); } else if (IPv4H->iph_protocol == IP_PROTOCOL_ICMPv4) { //
// Process the ICMPv4 packet.
//
TunnelReceiveICMPv4(IPv4H, Data, Length); } else { //
// We should not receive stray packets.
//
ASSERT(! "bad iph_protocol"); } }
//* TunnelReceiveComplete
//
// Completion function for TunnelReceive,
// called when the IPv4 stack completes our IRP.
//
NTSTATUS TunnelReceiveComplete( PDEVICE_OBJECT DeviceObject, PIRP Irp, PVOID Context) { TDI_STATUS status = Irp->IoStatus.Status; void *Data; ULONG BytesRead;
ASSERT(Context == NULL);
if (status == TDI_SUCCESS) { //
// The incoming data includes the IPv4 header.
// We should only get properly-formed IPv4 packets.
//
BytesRead = (ULONG)Irp->IoStatus.Information; Data = Irp->MdlAddress->MappedSystemVa;
TunnelReceivePacket(Data, BytesRead); }
//
// Put the IRP back so that TunnelReceive can use it again.
//
KeAcquireSpinLockAtDpcLevel(&Tunnel.Lock); ASSERT(Tunnel.ReceiveIrp == NULL); Tunnel.ReceiveIrp = Irp; KeReleaseSpinLockFromDpcLevel(&Tunnel.Lock);
//
// Tell IoCompleteRequest to stop working on the IRP.
//
return STATUS_MORE_PROCESSING_REQUIRED; }
//* TunnelReceive
//
// Called from the IPv4 protocol stack, when it receives
// an encapsulated v6 packet.
//
NTSTATUS TunnelReceive( IN PVOID TdiEventContext, // The event context
IN LONG SourceAddressLength, // Length of SourceAddress field.
IN PVOID SourceAddress, // Describes the datagram's originator.
IN LONG OptionsLength, // Length of Options field.
IN PVOID Options, // Options for the receive.
IN ULONG ReceiveDatagramFlags, //
IN ULONG BytesIndicated, // Number of bytes this indication.
IN ULONG BytesAvailable, // Number of bytes in complete Tsdu.
OUT ULONG *BytesTaken, // Number of bytes used.
IN PVOID Tsdu, // Pointer describing this TSDU,
// typically a lump of bytes
OUT PIRP *IoRequestPacket) // TdiReceive IRP if
// MORE_PROCESSING_REQUIRED.
{ PIRP irp;
ASSERT(TdiEventContext == NULL); ASSERT(BytesIndicated <= BytesAvailable);
//
// If the packet is too large, refuse to receive it.
//
if (BytesAvailable > TUNNEL_RECEIVE_BUFFER) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_BAD_PACKET, "TunnelReceive - too big %x\n", BytesAvailable)); *BytesTaken = BytesAvailable; return STATUS_SUCCESS; }
//
// Check if we already have the entire packet to work with.
// If so, we can directly call TunnelReceivePacket.
//
if (BytesIndicated == BytesAvailable) {
TunnelReceivePacket(Tsdu, BytesIndicated);
//
// Tell our caller that we took the data
// and that we are done.
//
*BytesTaken = BytesAvailable; return STATUS_SUCCESS; }
//
// We need an IRP to receive the entire packet.
// The IRP has a pre-allocated MDL.
//
// NB: We may get here before TunnelOpenV4 has
// finished initializing. In that case,
// we will not find an IRP.
//
KeAcquireSpinLockAtDpcLevel(&Tunnel.Lock); irp = Tunnel.ReceiveIrp; Tunnel.ReceiveIrp = NULL; KeReleaseSpinLockFromDpcLevel(&Tunnel.Lock);
//
// If we don't have an IRP available to us,
// just drop the packet. This doesn't happen in practice.
//
if (irp == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_RARE, "TunnelReceive - no irp\n")); *BytesTaken = BytesAvailable; return STATUS_SUCCESS; }
//
// Build the receive datagram request.
//
TdiBuildReceiveDatagram(irp, Tunnel.V4Device, Tunnel.List.AOFile, TunnelReceiveComplete, NULL, // Context
irp->MdlAddress, BytesAvailable, &Tunnel.ReceiveInputInfo, &Tunnel.ReceiveOutputInfo, 0); // ReceiveFlags
//
// Make the next stack location current. Normally IoCallDriver would
// do this, but since we're bypassing that, we do it directly.
//
IoSetNextIrpStackLocation(irp);
//
// Return the irp to our caller.
//
*IoRequestPacket = irp; *BytesTaken = 0; return STATUS_MORE_PROCESSING_REQUIRED; }
//* TunnelSetReceiveHandler
//
// Request notification of received IPv4 datagrams
// using the specified TDI address object.
//
NTSTATUS TunnelSetReceiveHandler( FILE_OBJECT *File, // TDI address object.
PVOID EventHandler) // Receive handler.
{ IO_STATUS_BLOCK iosb; KEVENT event; NTSTATUS status; PIRP irp;
//
// Initialize the event that we use to wait.
//
KeInitializeEvent(&event, NotificationEvent, FALSE);
//
// Create and initialize the IRP for this operation.
//
irp = IoBuildDeviceIoControlRequest(0, // dummy ioctl
File->DeviceObject, NULL, // input buffer
0, // input buffer length
NULL, // output buffer
0, // output buffer length
TRUE, // internal device control?
&event, &iosb); if (irp == NULL) return STATUS_INSUFFICIENT_RESOURCES;
iosb.Status = STATUS_UNSUCCESSFUL; iosb.Information = (ULONG)-1;
TdiBuildSetEventHandler(irp, File->DeviceObject, File, NULL, NULL, // comp routine/context
TDI_EVENT_RECEIVE_DATAGRAM, EventHandler, NULL);
//
// Make the IOCTL, waiting for it to finish if necessary.
//
status = IoCallDriver(File->DeviceObject, irp); if (status == STATUS_PENDING) { KeWaitForSingleObject(&event, Executive, KernelMode, FALSE, NULL); status = iosb.Status; }
return status; }
//* TunnelCreateToken
//
// Given a link-layer address, creates a 64-bit "interface token"
// in the low eight bytes of an IPv6 address.
// Does not modify the other bytes in the IPv6 address.
//
void TunnelCreateToken( void *Context, IPv6Addr *Address) { TunnelContext *tc = (TunnelContext *)Context; uchar *IPAddress = (uchar *)&tc->TokenAddr;
//
// Embed the link's interface index in the interface identifier.
// This makes the interface identifier unique.
// Otherwise point-to-point tunnel and 6-over-4 links
// could have the same link-layer address,
// which is awkward.
//
*(ULONG UNALIGNED *)&Address->s6_bytes[8] = net_long(tc->IF->Index); *(IPAddr UNALIGNED *)&Address->s6_bytes[12] = tc->TokenAddr; }
//* TunnelCreateIsatapToken
//
// Given a link-layer address, creates a 64-bit "interface token"
// in the low eight bytes of an IPv6 address.
// Does not modify the other bytes in the IPv6 address.
//
void TunnelCreateIsatapToken( void *Context, IPv6Addr *Address) { TunnelContext *tc = (TunnelContext *)Context;
ASSERT(tc->IF->Type == IF_TYPE_TUNNEL_AUTO);
Address->s6_words[4] = 0; Address->s6_words[5] = 0xfe5e; * (IPAddr UNALIGNED *) &Address->s6_words[6] = tc->TokenAddr; }
//* TunnelReadLinkLayerAddressOption
//
// Parses a Neighbor Discovery link-layer address option
// and if valid, returns a pointer to the link-layer address.
//
const void * TunnelReadLinkLayerAddressOption( void *Context, const uchar *OptionData) { //
// Check that the option length is correct.
//
if (OptionData[1] != 1) return NULL;
//
// Check the must-be-zero padding bytes.
//
if ((OptionData[2] != 0) || (OptionData[3] != 0)) return NULL;
//
// Return a pointer to the embedded IPv4 address.
//
return OptionData + 4; }
//* TunnelWriteLinkLayerAddressOption
//
// Creates a Neighbor Discovery link-layer address option.
// Our caller takes care of the option type & length fields.
// We handle the padding/alignment/placement of the link address
// into the option data.
//
// (Our caller allocates space for the option by adding 2 to the
// link address length and rounding up to a multiple of 8.)
//
void TunnelWriteLinkLayerAddressOption( void *Context, uchar *OptionData, const void *LinkAddress) { const uchar *IPAddress = (uchar *)LinkAddress;
//
// Place the address after the option type/length bytes
// and two bytes of zero padding.
//
OptionData[2] = 0; OptionData[3] = 0; OptionData[4] = IPAddress[0]; OptionData[5] = IPAddress[1]; OptionData[6] = IPAddress[2]; OptionData[7] = IPAddress[3]; }
//* TunnelConvertAddress
//
// Converts an IPv6 address to a link-layer address.
//
ushort TunnelConvertAddress( void *Context, const IPv6Addr *Address, void *LinkAddress) { TunnelContext *tc = (TunnelContext *)Context; Interface *IF = tc->IF; IPAddr UNALIGNED *IPAddress = (IPAddr UNALIGNED *)LinkAddress;
switch (IF->Type) { case IF_TYPE_TUNNEL_AUTO: if (IsV4Compatible(Address) || IsISATAP(Address)) { //
// Extract the IPv4 address from the interface identifier.
//
*IPAddress = ExtractV4Address(Address); return ND_STATE_PERMANENT; } else if ((tc->DstAddr != INADDR_ANY) && IP6_ADDR_EQUAL(Address, &AllRoutersOnLinkAddr)) { //
// Return the IPv4 address from TunnelSetRouterLLAddress.
//
*IPAddress = tc->DstAddr; return ND_STATE_PERMANENT; } else { //
// We can't guess at the correct link-layer address.
// This value will cause IPv6SendND to drop the packet.
//
return ND_STATE_INCOMPLETE; }
case IF_TYPE_TUNNEL_6TO4: if (Is6to4(Address)) { //
// Extract the IPv4 address from the prefix.
//
*IPAddress = Extract6to4Address(Address); return ND_STATE_PERMANENT; } else { //
// We can't guess at the correct link-layer address.
// This value will cause IPv6SendND to drop the packet.
//
return ND_STATE_INCOMPLETE; }
case IF_TYPE_TUNNEL_6OVER4: //
// This is a 6-over-4 link, which uses IPv4 multicast.
//
if (IsMulticast(Address)) { uchar *IPAddressBytes = (uchar *)LinkAddress;
IPAddressBytes[0] = 239; IPAddressBytes[1] = 192; // REVIEW: or 128 or 64??
IPAddressBytes[2] = Address->s6_bytes[14]; IPAddressBytes[3] = Address->s6_bytes[15]; return ND_STATE_PERMANENT; } else { //
// Let Neighbor Discovery do its thing for unicast.
//
return ND_STATE_INCOMPLETE; }
case IF_TYPE_TUNNEL_V6V4: //
// This is a point-to-point tunnel, so write in
// the address of the other side of the tunnel.
//
*IPAddress = tc->DstAddr; if (!(IF->Flags & IF_FLAG_NEIGHBOR_DISCOVERS) || IsMulticast(Address)) return ND_STATE_PERMANENT; else return ND_STATE_STALE;
default: ASSERT(!"TunnelConvertAddress: bad IF type"); return ND_STATE_INCOMPLETE; } }
//* TunnelSetMulticastAddressList
//
// Takes an array of link-layer multicast addresses
// (from TunnelConvertAddress) from which we should
// receive packets. Passes them to the IPv4 stack.
//
// Callable from thread context, not DPC context.
//
NDIS_STATUS TunnelSetMulticastAddressList( void *Context, const void *LinkAddresses, uint NumKeep, uint NumAdd, uint NumDel) { TunnelContext *tc = (TunnelContext *)Context; IPAddr *Addresses = (IPAddr *)LinkAddresses; NTSTATUS Status; uint i;
//
// We only do something for 6-over-4 links.
//
ASSERT(tc->IF->Type == IF_TYPE_TUNNEL_6OVER4);
//
// The IPv6 layer serializes calls to TunnelSetMulticastAddressList
// and TunnelResetMulticastAddressListDone, so we can safely check
// SetMCListOK to handle races with TunnelOpenV4.
//
if (tc->SetMCListOK) { //
// We add the multicast addresses to Tunnel.List.AOFile,
// instead of tc->AOFile, because we are only receiving
// from the first address object.
//
for (i = 0; i < NumAdd; i++) { Status = TunnelAddMulticastAddress( Tunnel.List.AOFile, tc->SrcAddr, Addresses[NumKeep + i]); if (! NT_SUCCESS(Status)) goto Return; }
for (i = 0; i < NumDel; i++) { Status = TunnelDelMulticastAddress( Tunnel.List.AOFile, tc->SrcAddr, Addresses[NumKeep + NumAdd + i]); if (! NT_SUCCESS(Status)) goto Return; } }
Status = STATUS_SUCCESS; Return: return (NDIS_STATUS) Status; }
//* TunnelResetMulticastAddressListDone
//
// Indicates that RestartLinkLayerMulticast has finished,
// and subsequent calls to TunnelSetMulticastAddressList
// will inform us of the link-layer multicast addresses.
//
// Callable from thread context, not DPC context.
//
void TunnelResetMulticastAddressListDone(void *Context) { TunnelContext *tc = (TunnelContext *)Context;
tc->SetMCListOK = TRUE; }
//* TunnelClose
//
// Shuts down a tunnel.
//
// Callable from thread context, not DPC context.
//
void TunnelClose(void *Context) { TunnelContext *tc = (TunnelContext *)Context; KIRQL OldIrql;
//
// Remove the tunnel from our data structures.
//
KeWaitForSingleObject(&Tunnel.Mutex, Executive, KernelMode, FALSE, NULL); KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); TunnelRemoveTunnel(tc); KeReleaseSpinLock(&Tunnel.Lock, OldIrql); KeReleaseMutex(&Tunnel.Mutex, FALSE);
ReleaseIF(tc->IF); }
//* TunnelCleanup
//
// Performs final cleanup of the tunnel context.
//
void TunnelCleanup(void *Context) { TunnelContext *tc = (TunnelContext *)Context;
if (tc->AOHandle == NULL) { //
// No references to release.
//
ASSERT(tc->AOFile == NULL); } else if (tc->AOHandle == Tunnel.List.AOHandle) { //
// No references to release.
//
ASSERT(tc->AOFile == Tunnel.List.AOFile); } else { ObDereferenceObject(tc->AOFile); TunnelCloseAddressObject(tc->AOHandle); }
ExFreePool(tc); }
//* TunnelSetRouterLLAddress
//
// Sets the ISATAP router's IPv4 address.
//
NTSTATUS TunnelSetRouterLLAddress( void *Context, const void *TokenLinkAddress, const void *RouterLinkAddress) { TunnelContext *tc = (TunnelContext *) Context; IPv6Addr LinkLocalAddress; KIRQL OldIrql; NetTableEntry *NTE; Interface *IF = tc->IF;
ASSERT(IF->Type == IF_TYPE_TUNNEL_AUTO);
//
// We should not set/reset one without the other.
//
if ((*((IPAddr *) RouterLinkAddress) == INADDR_ANY) != (*((IPAddr *) TokenLinkAddress) == INADDR_ANY)) return STATUS_INVALID_PARAMETER; RtlCopyMemory(&tc->DstAddr, RouterLinkAddress, sizeof(IPAddr)); RtlCopyMemory(&tc->TokenAddr, TokenLinkAddress, sizeof(IPAddr));
KeAcquireSpinLock(&IF->Lock, &OldIrql); if (tc->DstAddr != INADDR_ANY) { //
// Look for a link-local NTE matching the TokenAddr.
// If we find one, set the preferred link-local NTE to that one,
// so that the IPv6 source address of RS's will match the IPv4
// source address of the outer header.
//
LinkLocalAddress = LinkLocalPrefix; TunnelCreateIsatapToken(Context, &LinkLocalAddress); NTE = (NetTableEntry *) *FindADE(IF, &LinkLocalAddress); if ((NTE != NULL) && (NTE->Type == ADE_UNICAST)) IF->LinkLocalNTE = NTE;
//
// Enable address auto-configuration.
//
IF->CreateToken = TunnelCreateIsatapToken;
//
// Enable Router Discovery.
//
IF->Flags |= IF_FLAG_ROUTER_DISCOVERS; //
// Trigger a Router Solicitation.
//
if (!(IF->Flags & IF_FLAG_ADVERTISES)) { IF->RSCount = 0; IF->RSTimer = 1; } } else { //
// Disable address auto-configuration.
//
IF->CreateToken = NULL;
//
// Disable Router Discovery.
//
IF->Flags &= ~IF_FLAG_ROUTER_DISCOVERS;
//
// Stop sending Router Solicitations.
//
if (!(IF->Flags & IF_FLAG_ADVERTISES)) { IF->RSTimer = 0; } } //
// Remove addresses & routes that were auto-configured from
// Router Advertisements.
//
AddrConfResetAutoConfig(IF, 0); RouteTableResetAutoConfig(IF, 0); InterfaceResetAutoConfig(IF);
KeReleaseSpinLock(&IF->Lock, OldIrql);
return STATUS_SUCCESS; }
//* TunnelCreatePseudoInterface
//
// Creates a pseudo-interface. Type can either be
// IF_TYPE_TUNNEL_AUTO (v4-compatible/ISATAP) or
// IF_TYPE_TUNNEL_6TO4 (6to4 tunneling).
//
// Callable from thread context, not DPC context.
//
// Return codes:
// STATUS_INSUFFICIENT_RESOURCES
// STATUS_UNSUCCESSFUL
// STATUS_SUCCESS
//
NTSTATUS TunnelCreatePseudoInterface(const char *InterfaceName, uint Type) { GUID Guid; LLIPBindInfo BindInfo; TunnelContext *tc; NTSTATUS Status; KIRQL OldIrql;
ASSERT((Type == IF_TYPE_TUNNEL_AUTO) || (Type == IF_TYPE_TUNNEL_6TO4));
//
// Allocate memory for the TunnelContext.
//
tc = ExAllocatePool(NonPagedPool, sizeof *tc); if (tc == NULL) { Status = STATUS_INSUFFICIENT_RESOURCES; goto ErrorReturn; }
//
// Tunnel pseudo-interfaces need a dummy link-layer address.
// It must be distinct from any address assigned to other nodes,
// so that the loopback check in IPv6SendLL works.
//
tc->SrcAddr = INADDR_LOOPBACK; tc->TokenAddr = INADDR_ANY; tc->DstAddr = INADDR_ANY; tc->SetMCListOK = FALSE;
//
// Prepare the binding info for CreateInterface.
//
BindInfo.lip_context = tc; BindInfo.lip_maxmtu = TUNNEL_MAX_MTU; BindInfo.lip_defmtu = TUNNEL_DEFAULT_MTU; BindInfo.lip_flags = IF_FLAG_PSEUDO; BindInfo.lip_type = Type; BindInfo.lip_hdrsize = 0; BindInfo.lip_addrlen = sizeof(IPAddr); BindInfo.lip_addr = (uchar *) &tc->SrcAddr; BindInfo.lip_dadxmit = 0; BindInfo.lip_pref = TUNNEL_DEFAULT_PREFERENCE; BindInfo.lip_token = NULL; BindInfo.lip_rdllopt = NULL; BindInfo.lip_wrllopt = NULL; BindInfo.lip_cvaddr = TunnelConvertAddress; if (Type == IF_TYPE_TUNNEL_AUTO) BindInfo.lip_setrtrlladdr = TunnelSetRouterLLAddress; else BindInfo.lip_setrtrlladdr = NULL; BindInfo.lip_transmit = TunnelTransmit; BindInfo.lip_mclist = NULL; BindInfo.lip_close = TunnelClose; BindInfo.lip_cleanup = TunnelCleanup;
CreateGUIDFromName(InterfaceName, &Guid);
//
// Prevent races with TunnelClose by taking the mutex
// before calling CreateInterface.
//
KeWaitForSingleObject(&Tunnel.Mutex, Executive, KernelMode, FALSE, NULL);
if (Tunnel.List.AOHandle == NULL) { //
// TunnelOpenV4 has not yet happened.
// Create the interface in the disconnected state.
//
tc->AOHandle = NULL; tc->AOFile = NULL; BindInfo.lip_flags |= IF_FLAG_MEDIA_DISCONNECTED; } else { //
// No need to open a new address object.
// Just reuse the global Tunnel.List address object.
//
tc->AOHandle = Tunnel.List.AOHandle; tc->AOFile = Tunnel.List.AOFile; }
//
// Create the IPv6 interface.
// We can hold the mutex across this call, but not a spinlock.
//
Status = CreateInterface(&Guid, &BindInfo, (void **)&tc->IF); if (! NT_SUCCESS(Status)) goto ErrorReturnUnlock;
//
// Once we unlock, the interface could be gone.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); TunnelInsertTunnel(tc, &Tunnel.List); KeReleaseSpinLock(&Tunnel.Lock, OldIrql); KeReleaseMutex(&Tunnel.Mutex, FALSE);
return STATUS_SUCCESS;
ErrorReturnUnlock: KeReleaseMutex(&Tunnel.Mutex, FALSE); ExFreePool(tc); ErrorReturn: return Status; }
//* TunnelOpenV4
//
// Establishes our connection to the IPv4 stack,
// so we can send and receive tunnelled packets.
//
// Called with the tunnel mutex held.
//
void TunnelOpenV4(void) { HANDLE Handle, IcmpHandle; FILE_OBJECT *File, *IcmpFile; DEVICE_OBJECT *Device; IRP *ReceiveIrp; TunnelContext *tc; KIRQL OldIrql; NTSTATUS Status;
//
// We use a single address object to receive all tunnelled packets.
//
Handle = TunnelOpenAddressObject(INADDR_ANY, TUNNEL_DEVICE_NAME(IP_PROTOCOL_V6)); if (Handle == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenV4: TunnelOpenAddressObject(%u) failed\n", IP_PROTOCOL_V6)); return; }
File = TunnelObjectFromHandle(Handle);
//
// We use a second address object to receive ICMPv4 packets.
//
IcmpHandle = TunnelOpenAddressObject(INADDR_ANY, TUNNEL_DEVICE_NAME(IP_PROTOCOL_ICMPv4)); if (IcmpHandle == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenV4: TunnelOpenAddressObject(%u) failed\n", IP_PROTOCOL_ICMPv4)); goto ReturnReleaseHandle; }
IcmpFile = TunnelObjectFromHandle(IcmpHandle);
//
// Disable reception of multicast loopback packets.
//
Status = TunnelSetAddressObjectMCastLoop(File, FALSE); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenV4: " "TunnelSetAddressObjectMCastLoop: %x\n", Status)); goto ReturnReleaseBothHandles; }
//
// After TunnelSetReceiveHandler, we will start receiving
// encapsulated v6 packets. However they will be dropped
// until we finish our initialization here.
//
Status = TunnelSetReceiveHandler(File, TunnelReceive); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenV4: " "TunnelSetReceiveHandler: %x\n", Status)); goto ReturnReleaseBothHandles; }
Status = TunnelSetReceiveHandler(IcmpFile, TunnelReceive); if (! NT_SUCCESS(Status)) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenV4: " "TunnelSetReceiveHandler(2): %x\n", Status)); goto ReturnReleaseBothHandles; }
Device = File->DeviceObject; ASSERT(Device == IcmpFile->DeviceObject); ReceiveIrp = TunnelCreateReceiveIrp(Device); if (ReceiveIrp == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenV4: TunnelCreateReceiveIrp failed\n"));
ReturnReleaseBothHandles: ObDereferenceObject(IcmpFile); TunnelCloseAddressObject(IcmpHandle); ReturnReleaseHandle: ObDereferenceObject(File); TunnelCloseAddressObject(Handle); return; }
//
// We have successfully opened a connection to the IPv4 stack.
// Update our data structures.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); Tunnel.List.AOHandle = Handle; Tunnel.List.AOFile = File; Tunnel.V4Device = Device; Tunnel.ReceiveIrp = ReceiveIrp; Tunnel.IcmpHandle = IcmpHandle; Tunnel.IcmpFile = IcmpFile; KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
//
// Now search our list of interfaces and transition
// pseudo-interfaces to the connected state.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { Interface *IF = tc->IF;
if ((IF->Type == IF_TYPE_TUNNEL_AUTO) || (IF->Type == IF_TYPE_TUNNEL_6TO4)) { //
// The pseudo-interface contexts do not hold
// separate references for the main TDI address object.
//
ASSERT(tc->AOHandle == NULL); ASSERT(tc->AOFile == NULL); KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); tc->AOHandle = Handle; tc->AOFile = File; KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
SetInterfaceLinkStatus(IF, TRUE); } else if (IF->Type == IF_TYPE_TUNNEL_6OVER4) { //
// We must start listening to multicast addresses
// for this 6over4 interface.
//
RestartLinkLayerMulticast(IF, TunnelResetMulticastAddressListDone); } } }
//* TunnelAddAddress
//
// Called by TDI when a transport registers an address.
//
void TunnelAddAddress( TA_ADDRESS *Address, UNICODE_STRING *DeviceName, TDI_PNP_CONTEXT *Context) { if (Address->AddressType == TDI_ADDRESS_TYPE_IP) { TDI_ADDRESS_IP *TdiAddr = (TDI_ADDRESS_IP *) Address->Address; IPAddr V4Addr = TdiAddr->in_addr; TunnelContext *tc; KIRQL OldIrql;
KeWaitForSingleObject(&Tunnel.Mutex, Executive, KernelMode, FALSE, NULL);
//
// First, open a connection to the IPv4 stack if needed.
//
if (Tunnel.List.AOHandle == NULL) TunnelOpenV4();
//
// Next, search for disconnected interfaces that should be connected.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { if (tc->SrcAddr == V4Addr) { Interface *IF = tc->IF;
if (tc->AOHandle == NULL) { ASSERT(IF->Flags & IF_FLAG_MEDIA_DISCONNECTED);
TunnelOpenAddress(tc);
//
// Did TunnelOpenAddress succeed?
// If not, leave the interface disconnected.
//
if (tc->AOHandle == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelAddAddress(%s): " "TunnelOpenAddress failed\n", FormatV4Address(V4Addr))); } else { //
// Connect the interface.
//
SetInterfaceLinkStatus(IF, TRUE); } } else { //
// This is unusual... it indicates a race
// with TunnelCreateTunnel.
//
ASSERT(!(IF->Flags & IF_FLAG_MEDIA_DISCONNECTED)); KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_RARE, "TunnelAddAddress(%s) IF %p connected?\n", FormatV4Address(V4Addr), IF)); } } }
//
// Finally, add an address object to the list.
// Maintain the invariant that an address is present at most once.
//
for (tc = Tunnel.AOList.Next; ; tc = tc->Next) {
if (tc == &Tunnel.AOList) { //
// Add a new address object.
//
tc = ExAllocatePool(NonPagedPool, sizeof *tc); if (tc != NULL) {
//
// Open the address object.
//
tc->SrcAddr = V4Addr; tc->DstAddr = V4Addr; TunnelOpenAddress(tc);
if (tc->AOFile != NULL) { //
// Put the address object on the list.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); TunnelInsertTunnel(tc, &Tunnel.AOList); KeReleaseSpinLock(&Tunnel.Lock, OldIrql); } else { //
// Cleanup the context. We will not
// put an address object on the list.
//
ExFreePool(tc); } } break; }
if (tc->SrcAddr == V4Addr) { //
// It already exists.
// REVIEW: Can this happen?
//
KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_RARE, "TunnelAddAddress(%s) already on AOList?\n", FormatV4Address(V4Addr))); break; } }
KeReleaseMutex(&Tunnel.Mutex, FALSE); } }
//* TunnelDelAddress
//
// Called by TDI when a transport unregisters an address.
//
void TunnelDelAddress( TA_ADDRESS *Address, UNICODE_STRING *DeviceName, TDI_PNP_CONTEXT *Context) { if (Address->AddressType == TDI_ADDRESS_TYPE_IP) { TDI_ADDRESS_IP *TdiAddr = (TDI_ADDRESS_IP *) Address->Address; IPAddr V4Addr = TdiAddr->in_addr; TunnelContext *tc; KIRQL OldIrql;
KeWaitForSingleObject(&Tunnel.Mutex, Executive, KernelMode, FALSE, NULL);
//
// Search for connected interfaces that should be disconnected.
//
for (tc = Tunnel.List.Next; tc != &Tunnel.List; tc = tc->Next) { if (tc->SrcAddr == V4Addr) { Interface *IF = tc->IF;
if (tc->AOHandle == NULL) { //
// The interface is already disconnected.
//
ASSERT(IF->Flags & IF_FLAG_MEDIA_DISCONNECTED); } else { HANDLE Handle; FILE_OBJECT *File;
//
// The interface is connected.
//
ASSERT(!(IF->Flags & IF_FLAG_MEDIA_DISCONNECTED));
//
// Disconnect the interface.
//
SetInterfaceLinkStatus(IF, FALSE);
//
// Release the address object.
//
Handle = tc->AOHandle; File = tc->AOFile;
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); tc->AOHandle = NULL; tc->AOFile = NULL; KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
ObDereferenceObject(File); TunnelCloseAddressObject(Handle); } } }
//
// Remove an address object from the list.
// There can be at most one.
//
for (tc = Tunnel.AOList.Next; tc != &Tunnel.AOList; tc = tc->Next) { if (tc->SrcAddr == V4Addr) { //
// Remove this cache entry.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); TunnelRemoveTunnel(tc); KeReleaseSpinLock(&Tunnel.Lock, OldIrql);
ObDereferenceObject(tc->AOFile); TunnelCloseAddressObject(tc->AOHandle); ExFreePool(tc); break; } }
KeReleaseMutex(&Tunnel.Mutex, FALSE); } }
//* TunnelInit - Initialize the tunnel module.
//
// This functions initializes the tunnel module.
//
// Returns FALSE if we fail to init.
// This should "never" happen, so we are not
// careful about cleanup in that case.
//
// Note we return TRUE if IPv4 is not available,
// but then tunnel functionality will not be available.
//
int TunnelInit(void) { TDI_CLIENT_INTERFACE_INFO Handlers; NTSTATUS status;
Tunnel.KernelProcess = IoGetCurrentProcess();
KeInitializeSpinLock(&Tunnel.Lock); KeInitializeMutex(&Tunnel.Mutex, 0);
//
// Initialize the global list of tunnels.
//
Tunnel.List.Next = Tunnel.List.Prev = &Tunnel.List;
//
// Initialize the global list of address objects.
//
Tunnel.AOList.Next = Tunnel.AOList.Prev = &Tunnel.AOList;
//
// Initialize the pseudo-interfaces used
// for automatic/ISATAP tunneling
// and 6to4 tunneling.
//
status = TunnelCreatePseudoInterface("Auto Tunnel Pseudo-Interface", IF_TYPE_TUNNEL_AUTO); if (! NT_SUCCESS(status)) return FALSE; ASSERT(IFList->Index == 2); // 6to4svc and scripts depend on this.
status = TunnelCreatePseudoInterface("6to4 Tunnel Pseudo-Interface", IF_TYPE_TUNNEL_6TO4); if (! NT_SUCCESS(status)) return FALSE; ASSERT(IFList->Index == 3); // 6to4svc and scripts depend on this.
//
// Request address notifications from TDI.
// REVIEW - What should ClientName be? Does it matter?
//
memset(&Handlers, 0, sizeof Handlers); Handlers.MajorTdiVersion = TDI_CURRENT_MAJOR_VERSION; Handlers.MinorTdiVersion = TDI_CURRENT_MINOR_VERSION; Handlers.ClientName = &Tunnel.List.Next->IF->DeviceName; Handlers.AddAddressHandlerV2 = TunnelAddAddress; Handlers.DelAddressHandlerV2 = TunnelDelAddress;
status = TdiRegisterPnPHandlers(&Handlers, sizeof Handlers, &Tunnel.TdiHandle); if (!NT_SUCCESS(status)) return FALSE;
return TRUE; }
//* TunnelUnload
//
// Called to cleanup when the driver is unloading.
//
// Callable from thread context, not DPC context.
//
void TunnelUnload(void) { TunnelContext *tc;
//
// All interfaces are already destroyed.
//
ASSERT(Tunnel.List.Next == &Tunnel.List); ASSERT(Tunnel.List.Prev == &Tunnel.List);
//
// Stop TDI notifications.
// REVIEW: How to handle failure, esp. STATUS_NETWORK_BUSY?
//
(void) TdiDeregisterPnPHandlers(Tunnel.TdiHandle);
//
// Cleanup any remaining address objects.
//
while ((tc = Tunnel.AOList.Next) != &Tunnel.AOList) { TunnelRemoveTunnel(tc); ObDereferenceObject(tc->AOFile); TunnelCloseAddressObject(tc->AOHandle); ExFreePool(tc); } ASSERT(Tunnel.AOList.Prev == &Tunnel.AOList);
//
// Cleanup if TunnelOpenV4 has succeeded.
//
if (Tunnel.List.AOHandle != NULL) { void *buffer; TunnelContext *tc; KIRQL OldIrql;
//
// Stop receiving encapsulated (v6 in v4) and ICMPv4 packets.
// This should block until any current TunnelReceive
// callbacks return, and prevent new callbacks.
// REVIEW: It is really legal to change a receive handler?
// Would just closing the address objects have the proper
// synchronization behavior?
//
(void) TunnelSetReceiveHandler(Tunnel.IcmpFile, NULL); (void) TunnelSetReceiveHandler(Tunnel.List.AOFile, NULL);
ObDereferenceObject(Tunnel.IcmpFile); TunnelCloseAddressObject(Tunnel.IcmpHandle);
ObDereferenceObject(Tunnel.List.AOFile); TunnelCloseAddressObject(Tunnel.List.AOHandle);
buffer = Tunnel.ReceiveIrp->MdlAddress->MappedSystemVa; IoFreeMdl(Tunnel.ReceiveIrp->MdlAddress); IoFreeIrp(Tunnel.ReceiveIrp); ExFreePool(buffer); } }
//* TunnelCreateTunnel
//
// Creates a tunnel. If DstAddr is INADDR_ANY,
// then it's a 6-over-4 tunnel. Otherwise it's point-to-point.
//
// Callable from thread context, not DPC context.
//
// Return codes:
// STATUS_ADDRESS_ALREADY_EXISTS The tunnel already exists.
// STATUS_INSUFFICIENT_RESOURCES
// STATUS_UNSUCCESSFUL
// STATUS_SUCCESS
//
NTSTATUS TunnelCreateTunnel(IPAddr SrcAddr, IPAddr DstAddr, uint Flags, Interface **ReturnIF) { char SrcAddrStr[16], DstAddrStr[16]; char InterfaceName[128]; GUID Guid; LLIPBindInfo BindInfo; TunnelContext *tc, *tcTmp; KIRQL OldIrql; NTSTATUS Status;
//
// 6over4 interfaces must use Neighbor Discovery
// and may use Router Discovery but should not have other flags set.
// p2p interfaces may use ND, RD, and/or periodic MLD.
//
ASSERT(SrcAddr != INADDR_ANY); ASSERT((DstAddr == INADDR_ANY) ? ((Flags & IF_FLAG_NEIGHBOR_DISCOVERS) && !(Flags &~ IF_FLAGS_DISCOVERS)) : !(Flags &~ (IF_FLAGS_DISCOVERS|IF_FLAG_PERIODICMLD)));
FormatV4AddressWorker(SrcAddrStr, SrcAddr); FormatV4AddressWorker(DstAddrStr, DstAddr);
tc = ExAllocatePool(NonPagedPool, sizeof *tc); if (tc == NULL) { Status = STATUS_INSUFFICIENT_RESOURCES; goto ErrorReturn; }
tc->DstAddr = DstAddr; tc->TokenAddr = tc->SrcAddr = SrcAddr; tc->SetMCListOK = FALSE;
//
// Prepare the binding info for CreateInterface.
//
BindInfo.lip_context = tc; BindInfo.lip_maxmtu = TUNNEL_MAX_MTU; BindInfo.lip_defmtu = TUNNEL_DEFAULT_MTU; if (DstAddr == INADDR_ANY) { BindInfo.lip_type = IF_TYPE_TUNNEL_6OVER4; BindInfo.lip_flags = IF_FLAG_MULTICAST;
sprintf(InterfaceName, "6over4 %hs", SrcAddrStr); } else { BindInfo.lip_type = IF_TYPE_TUNNEL_V6V4; BindInfo.lip_flags = IF_FLAG_P2P | IF_FLAG_MULTICAST;
sprintf(InterfaceName, "v6v4 %hs %hs", SrcAddrStr, DstAddrStr); } BindInfo.lip_flags |= Flags;
CreateGUIDFromName(InterfaceName, &Guid);
//
// We do not want IPv6 to reserve space for our link-layer header.
//
BindInfo.lip_hdrsize = 0; //
// For point-to-point interfaces, the remote link-layer address
// must follow the local link-layer address in memory.
// So we rely on the TunnelContext layout of SrcAddr & DstAddr.
//
BindInfo.lip_addrlen = sizeof(IPAddr); BindInfo.lip_addr = (uchar *) &tc->SrcAddr; BindInfo.lip_dadxmit = 1; // Per RFC 2462.
BindInfo.lip_pref = TUNNEL_DEFAULT_PREFERENCE;
BindInfo.lip_token = TunnelCreateToken; BindInfo.lip_cvaddr = TunnelConvertAddress; BindInfo.lip_transmit = TunnelTransmitND; if (DstAddr == INADDR_ANY) { BindInfo.lip_mclist = TunnelSetMulticastAddressList; BindInfo.lip_rdllopt = TunnelReadLinkLayerAddressOption; BindInfo.lip_wrllopt = TunnelWriteLinkLayerAddressOption; } else { BindInfo.lip_mclist = NULL; BindInfo.lip_rdllopt = NULL; BindInfo.lip_wrllopt = NULL; } BindInfo.lip_close = TunnelClose; BindInfo.lip_cleanup = TunnelCleanup;
KeWaitForSingleObject(&Tunnel.Mutex, Executive, KernelMode, FALSE, NULL);
//
// Open an IPv4 TDI Address Object that is bound
// to this address. Packets sent with this AO
// will use this address as the v4 source.
// If the open fails, we create the interface disconnected.
//
TunnelOpenAddress(tc); if (tc->AOHandle == NULL) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_NTOS_ERROR, "TunnelOpenAddress(%s) failed\n", FormatV4Address(SrcAddr))); BindInfo.lip_flags |= IF_FLAG_MEDIA_DISCONNECTED; }
//
// Check that an equivalent tunnel doesn't already exist.
//
for (tcTmp = Tunnel.List.Next; tcTmp != &Tunnel.List; tcTmp = tcTmp->Next) {
if ((tcTmp->SrcAddr == SrcAddr) && (tcTmp->DstAddr == DstAddr)) {
Status = STATUS_ADDRESS_ALREADY_EXISTS; goto ErrorReturnUnlock; } }
//
// For 6over4 interfaces, start receiving multicasts.
//
if (DstAddr == INADDR_ANY) { //
// Synchronize with TunnelOpenV4.
//
if (Tunnel.List.AOHandle != NULL) tc->SetMCListOK = TRUE; }
//
// Create the IPv6 interface.
// We can hold the mutex across this call, but not a spinlock.
//
Status = CreateInterface(&Guid, &BindInfo, (void **)&tc->IF); if (! NT_SUCCESS(Status)) goto ErrorReturnUnlock;
//
// Return a reference to the interface, if requested.
//
if (ReturnIF != NULL) { Interface *IF = tc->IF; AddRefIF(IF); *ReturnIF = IF; }
//
// Put this tunnel on our global list.
// Note that once we unlock, it could be immediately deleted.
//
KeAcquireSpinLock(&Tunnel.Lock, &OldIrql); TunnelInsertTunnel(tc, &Tunnel.List); KeReleaseSpinLock(&Tunnel.Lock, OldIrql); KeReleaseMutex(&Tunnel.Mutex, FALSE);
return STATUS_SUCCESS;
ErrorReturnUnlock: KeReleaseMutex(&Tunnel.Mutex, FALSE); if (tc->AOFile != NULL) ObDereferenceObject(tc->AOFile); if (tc->AOHandle != NULL) TunnelCloseAddressObject(tc->AOHandle); ExFreePool(tc); ErrorReturn: return Status; }
|