|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil -*- (for GNU Emacs)
//
// Copyright (c) 1985-2000 Microsoft Corporation
//
// This file is part of the Microsoft Research IPv6 Network Protocol Stack.
// You should have received a copy of the Microsoft End-User License Agreement
// for this software along with this release; see the file "license.txt".
// If not, please see http://www.research.microsoft.com/msripv6/license.htm,
// or write to Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
//
// Abstract:
//
// TCP deliver data code.
//
// This file contains the code for delivering data to the user, including
// putting data into recv. buffers and calling indication handlers.
//
#include "oscfg.h"
#include "ndis.h"
#include "ip6imp.h"
#include "ip6def.h"
#include "tdi.h"
#include "tdint.h"
#include "tdistat.h"
#include "queue.h"
#include "transprt.h"
#include "addr.h"
#include "tcp.h"
#include "tcb.h"
#include "tcprcv.h"
#include "tcpsend.h"
#include "tcpconn.h"
#include "tcpdeliv.h"
#include "route.h"
extern KSPIN_LOCK AddrObjTableLock;
extern uint PutOnRAQ(TCB *RcvTCB, TCPRcvInfo *RcvInfo, IPv6Packet *Packet, uint Size);
extern IPv6Packet * TrimPacket(IPv6Packet *Packet, uint AmountToTrim);
SLIST_HEADER TCPRcvReqFree; // Rcv req. free list.
KSPIN_LOCK TCPRcvReqFreeLock; // Protects rcv req free list.
uint NumTCPRcvReq = 0; // Current number of RcvReqs in system.
uint MaxRcvReq = 0xffffffff; // Maximum allowed number of SendReqs.
NTSTATUS TCPPrepareIrpForCancel(PTCP_CONTEXT TcpContext, PIRP Irp, PDRIVER_CANCEL CancelRoutine); ULONG TCPGetMdlChainByteCount(PMDL Mdl); void TCPDataRequestComplete(void *Context, unsigned int Status, unsigned int ByteCount); VOID TCPCancelRequest(PDEVICE_OBJECT Device, PIRP Irp); VOID CompleteRcvs(TCB *CmpltTCB);
//* FreeRcvReq - Free a rcv request structure.
//
// Called to free a rcv request structure.
//
void // Returns: Nothing.
FreeRcvReq( TCPRcvReq *FreedReq) // Rcv request structure to be freed.
{ PSLIST_ENTRY BufferLink;
CHECK_STRUCT(FreedReq, trr); BufferLink = CONTAINING_RECORD(&(FreedReq->trr_next), SLIST_ENTRY, Next); ExInterlockedPushEntrySList(&TCPRcvReqFree, BufferLink, &TCPRcvReqFreeLock); }
//* GetRcvReq - Get a recv. request structure.
//
// Called to get a rcv. request structure.
//
TCPRcvReq * // Returns: Pointer to RcvReq structure, or NULL if none.
GetRcvReq( void) // Nothing.
{ TCPRcvReq *Temp;
PSLIST_ENTRY BufferLink;
BufferLink = ExInterlockedPopEntrySList(&TCPRcvReqFree, &TCPRcvReqFreeLock);
if (BufferLink != NULL) { Temp = CONTAINING_RECORD(BufferLink, TCPRcvReq, trr_next); CHECK_STRUCT(Temp, trr); } else { if (NumTCPRcvReq < MaxRcvReq) Temp = ExAllocatePool(NonPagedPool, sizeof(TCPRcvReq)); else Temp = NULL;
if (Temp != NULL) { ExInterlockedAddUlong(&NumTCPRcvReq, 1, &TCPRcvReqFreeLock); #if DBG
Temp->trr_sig = trr_signature; #endif
} }
return Temp; }
//* FindLastPacket - Find the last packet in a chain.
//
// A utility routine to find the last packet in a packet chain.
//
IPv6Packet * // Returns: Pointer to last packet in chain.
FindLastPacket( IPv6Packet *Packet) // Pointer to packet chain.
{ ASSERT(Packet != NULL);
while (Packet->Next != NULL) Packet = Packet->Next;
return Packet; }
//* CovetPacketChain - Take owership of a chain of IP packets.
//
// Called to seize ownership of a chain of IP packets. We copy any
// packets that are not already owned by us. We assume that all packets
// not belonging to us start before those that do, so we quit copying
// when we reach a packet we own.
//
IPv6Packet * // Returns: Pointer to new packet chain.
CovetPacketChain( IPv6Packet *OrigPkt, // Packet chain to copy from.
IPv6Packet **LastPkt, // Where to return pointer to last packet in chain.
uint Size) // Maximum size in bytes to seize.
{ IPv6Packet *FirstPkt, *EndPkt; uint BytesToCopy;
ASSERT(OrigPkt != NULL); ASSERT(Size > 0);
if (!(OrigPkt->Flags & PACKET_OURS)) {
BytesToCopy = MIN(Size, OrigPkt->TotalSize); FirstPkt = ExAllocatePoolWithTagPriority(NonPagedPool, sizeof(IPv6Packet) + BytesToCopy, TCP6_TAG, LowPoolPriority); if (FirstPkt != NULL) { EndPkt = FirstPkt; FirstPkt->Next = NULL; FirstPkt->Position = 0; FirstPkt->FlatData = (uchar *)(FirstPkt + 1); FirstPkt->Data = FirstPkt->FlatData; FirstPkt->ContigSize = BytesToCopy; FirstPkt->TotalSize = BytesToCopy; FirstPkt->NdisPacket = NULL; FirstPkt->AuxList = NULL; FirstPkt->Flags = PACKET_OURS; CopyPacketToBuffer(FirstPkt->Data, OrigPkt, BytesToCopy, OrigPkt->Position); Size -= BytesToCopy; OrigPkt = OrigPkt->Next; while (OrigPkt != NULL && !(OrigPkt->Flags & PACKET_OURS) && Size != 0) { IPv6Packet *NewPkt;
BytesToCopy = MIN(Size, OrigPkt->TotalSize); NewPkt = ExAllocatePoolWithTagPriority(NonPagedPool, sizeof(IPv6Packet) + BytesToCopy, TCP6_TAG, LowPoolPriority); if (NewPkt != NULL) { NewPkt->Next = NULL; NewPkt->Position = 0; NewPkt->FlatData = (uchar *)(NewPkt + 1); NewPkt->Data = NewPkt->FlatData; NewPkt->ContigSize = BytesToCopy; NewPkt->TotalSize = BytesToCopy; NewPkt->Flags = PACKET_OURS; NewPkt->NdisPacket = NULL; NewPkt->AuxList = NULL; CopyPacketToBuffer(NewPkt->Data, OrigPkt, BytesToCopy, OrigPkt->Position); EndPkt->Next = NewPkt; EndPkt = NewPkt; Size -= BytesToCopy; OrigPkt = OrigPkt->Next; } else { FreePacketChain(FirstPkt); return NULL; } } EndPkt->Next = OrigPkt; } else return NULL; } else { FirstPkt = OrigPkt; EndPkt = OrigPkt; if (Size < OrigPkt->TotalSize) { OrigPkt->TotalSize = Size; OrigPkt->ContigSize = Size; } Size -= OrigPkt->TotalSize; }
//
// Now walk down the chain, until we run out of Size.
// At this point, Size is the bytes left to 'seize' (it may be 0),
// and the sizes in packets FirstPkt...EndPkt are correct.
//
while (Size != 0) {
EndPkt = EndPkt->Next; ASSERT(EndPkt != NULL);
if (Size < EndPkt->TotalSize) { EndPkt->TotalSize = Size; EndPkt->ContigSize = Size; }
Size -= EndPkt->TotalSize; }
// If there's anything left in the chain, free it now.
if (EndPkt->Next != NULL) { FreePacketChain(EndPkt->Next); EndPkt->Next = NULL; }
*LastPkt = EndPkt; return FirstPkt; }
//* PendData - Pend incoming data to a client.
//
// Called when we need to buffer data for a client because there's no receive
// down and we can't indicate.
//
// The TCB lock is held throughout this procedure. If this is to be changed,
// make sure consistency of tcb_pendingcnt is preserved. This routine is
// always called at DPC level.
//
uint // Returns: Number of bytes of data taken.
PendData( TCB *RcvTCB, // TCB on which to receive the data.
uint RcvFlags, // TCP flags for the incoming packet.
IPv6Packet *InPacket, // Input buffer of packet.
uint Size) // Size in bytes of data in InPacket.
{ IPv6Packet *NewPkt, *LastPkt;
CHECK_STRUCT(RcvTCB, tcb); ASSERT(Size > 0); ASSERT(InPacket != NULL); ASSERT(RcvTCB->tcb_refcnt != 0); ASSERT(RcvTCB->tcb_fastchk & TCP_FLAG_IN_RCV); ASSERT(RcvTCB->tcb_currcv == NULL); ASSERT(RcvTCB->tcb_rcvhndlr == PendData);
CheckPacketList(RcvTCB->tcb_pendhead, RcvTCB->tcb_pendingcnt);
NewPkt = CovetPacketChain(InPacket, &LastPkt, Size); if (NewPkt != NULL) { //
// We have a duplicate chain. Put it on the end of the pending q.
//
if (RcvTCB->tcb_pendhead == NULL) { RcvTCB->tcb_pendhead = NewPkt; RcvTCB->tcb_pendtail = LastPkt; } else { RcvTCB->tcb_pendtail->Next = NewPkt; RcvTCB->tcb_pendtail = LastPkt; } RcvTCB->tcb_pendingcnt += Size; } else { FreePacketChain(InPacket); Size = 0; }
CheckPacketList(RcvTCB->tcb_pendhead, RcvTCB->tcb_pendingcnt);
return Size; }
//* BufferData - Put incoming data into client's buffer.
//
// Called when we believe we have a buffer into which we can put data. We put
// it in there, and if we've filled the buffer or the incoming data has the
// push flag set we'll mark the TCB to return the buffer. Otherwise we'll
// get out and return the data later.
//
// In NT, this routine is called with the TCB lock held, and holds it for
// the duration of the call. This is important to ensure consistency of
// the tcb_pendingcnt field. If we need to change this to free the lock
// partway through, make sure to take this into account. In particular,
// TdiReceive zeros pendingcnt before calling this routine, and this routine
// may update it. If the lock is freed in here there would be a window where
// we really do have pending data, but it's not on the list or reflected in
// pendingcnt. This could mess up our windowing computations, and we'd have
// to be careful not to end up with more data pending than our window allows.
//
uint // Returns: Number of bytes of data taken.
BufferData( TCB *RcvTCB, // TCB on which to receive the data.
uint RcvFlags, // TCP rcv flags for the incoming packet.
IPv6Packet *InPacket, // Input buffer of packet.
uint Size) // Size in bytes of data in InPacket.
{ uchar *DestPtr; // Destination pointer.
uchar *SrcPtr; // Src pointer.
uint SrcSize; // Size of current source buffer.
uint DestSize; // Size of current destination buffer.
uint Copied; // Total bytes to copy.
uint BytesToCopy; // Bytes of data to copy this time.
TCPRcvReq *DestReq; // Current receive request.
IPv6Packet *SrcPkt; // Current source packet.
PNDIS_BUFFER DestBuf; // Current receive buffer.
uint RcvCmpltd; uint Flags;
CHECK_STRUCT(RcvTCB, tcb); ASSERT(Size > 0); ASSERT(InPacket != NULL); ASSERT(RcvTCB->tcb_refcnt != 0); ASSERT(RcvTCB->tcb_rcvhndlr == BufferData);
//
// In order to copy the received data to the application's buffers,
// we now need to map those buffers into the system's address space.
// Rather than attempting to map them below, where the going gets rough,
// we do it up-front where errors may be more readily handled.
//
// N.B. We map one buffer beyond what we need, since the code below
// will update the current receive-request to point beyond the data copied.
//
Copied = 0; for (DestReq = RcvTCB->tcb_currcv; DestReq; DestReq = DestReq->trr_next) {
uint DestAvail = DestReq->trr_size - DestReq->trr_amt;
for (DestBuf = DestReq->trr_buffer, DestSize = DestReq->trr_offset; DestBuf && DestAvail && Copied < Size; DestBuf = NDIS_BUFFER_LINKAGE(DestBuf), DestSize = 0) { if (!NdisBufferVirtualAddressSafe(DestBuf, NormalPagePriority)) { return 0; } DestSize = MIN(NdisBufferLength(DestBuf) - DestSize, DestAvail); DestAvail -= DestSize; Copied += DestSize; }
if (Copied >= Size) { //
// We've mapped the space into which we'll copy;
// now map the space immediately beyond that.
//
if (DestAvail) { //
// We believe space remains in the current receive-request;
// DestBuf should point to the current buffer.
//
ASSERT(DestBuf); } else if ((DestReq = DestReq->trr_next) != NULL) { //
// No more space in that receive-request, but there's another;
// Move to this next one, and map the start of that.
//
DestBuf = DestReq->trr_buffer; } else { break; }
if (!NdisBufferVirtualAddressSafe(DestBuf, NormalPagePriority)) { return 0; } break; } }
Copied = 0; RcvCmpltd = 0;
DestReq = RcvTCB->tcb_currcv;
ASSERT(DestReq != NULL); CHECK_STRUCT(DestReq, trr);
DestBuf = DestReq->trr_buffer;
DestSize = MIN(NdisBufferLength(DestBuf) - DestReq->trr_offset, DestReq->trr_size - DestReq->trr_amt); DestPtr = (uchar *)NdisBufferVirtualAddress(DestBuf) + DestReq->trr_offset;
SrcPkt = InPacket; SrcSize = SrcPkt->TotalSize;
Flags = (RcvFlags & TCP_FLAG_PUSH) ? TRR_PUSHED : 0; RcvCmpltd = Flags; DestReq->trr_flags |= Flags;
do {
BytesToCopy = MIN(Size - Copied, MIN(SrcSize, DestSize)); CopyPacketToBuffer(DestPtr, SrcPkt, BytesToCopy, SrcPkt->Position); Copied += BytesToCopy; DestReq->trr_amt += BytesToCopy;
// Update our source pointers.
if ((SrcSize -= BytesToCopy) == 0) { IPv6Packet *TempPkt;
// We've copied everything in this packet.
TempPkt = SrcPkt; SrcPkt = SrcPkt->Next; if (Size != Copied) { ASSERT(SrcPkt != NULL); SrcSize = SrcPkt->TotalSize; } TempPkt->Next = NULL; FreePacketChain(TempPkt); } else { if (BytesToCopy < SrcPkt->ContigSize) { //
// We have a contiguous region, easy to skip forward.
//
AdjustPacketParams(SrcPkt, BytesToCopy); } else { //
// REVIEW: This method isn't very efficient.
//
PositionPacketAt(SrcPkt, SrcPkt->Position + BytesToCopy); } }
// Now check the destination pointer, and update it if we need to.
if ((DestSize -= BytesToCopy) == 0) { uint DestAvail;
// Exhausted this buffer. See if there's another one.
DestAvail = DestReq->trr_size - DestReq->trr_amt; DestBuf = NDIS_BUFFER_LINKAGE(DestBuf);
if (DestBuf != NULL && (DestAvail != 0)) { // Have another buffer in the chain. Update things.
DestSize = MIN(NdisBufferLength(DestBuf), DestAvail); DestPtr = (uchar *)NdisBufferVirtualAddress(DestBuf); } else { // No more buffers in the chain. See if we have another buffer
// on the list.
DestReq->trr_flags |= TRR_PUSHED;
// If we've been told there's to be no back traffic, get an ACK
// going right away.
if (DestReq->trr_flags & TDI_RECEIVE_NO_RESPONSE_EXP) DelayAction(RcvTCB, NEED_ACK);
RcvCmpltd = TRUE; DestReq = DestReq->trr_next; if (DestReq != NULL) { DestBuf = DestReq->trr_buffer; DestSize = MIN(NdisBufferLength(DestBuf), DestReq->trr_size); DestPtr = (uchar *)NdisBufferVirtualAddress(DestBuf);
// If we have more to put into here, set the flags.
if (Copied != Size) DestReq->trr_flags |= Flags;
} else { // All out of buffer space. Reset the data handler pointer.
break; } } } else // Current buffer not empty yet.
DestPtr += BytesToCopy;
// If we've copied all that we need to, we're done.
} while (Copied != Size);
//
// We've finished copying, and have a few more things to do. We need to
// update the current rcv. pointer and possibly the offset in the
// recv. request. If we need to complete any receives we have to schedule
// that. If there's any data we couldn't copy we'll need to dispose of it.
//
RcvTCB->tcb_currcv = DestReq; if (DestReq != NULL) { DestReq->trr_buffer = DestBuf; DestReq->trr_offset = (uint) (DestPtr - (uchar *) NdisBufferVirtualAddress(DestBuf)); RcvTCB->tcb_rcvhndlr = BufferData; } else RcvTCB->tcb_rcvhndlr = PendData;
RcvTCB->tcb_indicated -= MIN(Copied, RcvTCB->tcb_indicated);
if (Size != Copied) { IPv6Packet *NewPkt, *LastPkt;
ASSERT(DestReq == NULL);
// We have data to dispose of. Update the first buffer of the chain
// with the current src pointer and size, and copy it.
ASSERT(SrcSize <= SrcPkt->TotalSize);
NewPkt = CovetPacketChain(SrcPkt, &LastPkt, Size - Copied); if (NewPkt != NULL) { // We managed to copy the chain. Push it on the pending queue.
if (RcvTCB->tcb_pendhead == NULL) { RcvTCB->tcb_pendhead = NewPkt; RcvTCB->tcb_pendtail = LastPkt; } else { LastPkt->Next = RcvTCB->tcb_pendhead; RcvTCB->tcb_pendhead = NewPkt; } RcvTCB->tcb_pendingcnt += Size - Copied; Copied = Size;
CheckPacketList(RcvTCB->tcb_pendhead, RcvTCB->tcb_pendingcnt);
} else FreePacketChain(SrcPkt); } else { // We copied Size bytes, but the chain could be longer than that. Free
// it if we need to.
if (SrcPkt != NULL) FreePacketChain(SrcPkt); }
if (RcvCmpltd != 0) { DelayAction(RcvTCB, NEED_RCV_CMPLT); } else { START_TCB_TIMER(RcvTCB->tcb_pushtimer, PUSH_TO); }
return Copied; }
//* IndicateData - Indicate incoming data to a client.
//
// Called when we need to indicate data to an upper layer client. We'll pass
// up a pointer to whatever we have available, and the client may take some
// or all of it.
//
uint // Returns: Number of bytes of data taken.
IndicateData( TCB *RcvTCB, // TCB on which to receive the data.
uint RcvFlags, // TCP receive flags for the incoming packet.
IPv6Packet *InPacket, // Input buffer of packet.
uint Size) // Size in bytes of data in InPacket.
{ TDI_STATUS Status; PRcvEvent Event; PVOID EventContext, ConnContext; uint BytesTaken = 0; EventRcvBuffer *ERB = NULL; PTDI_REQUEST_KERNEL_RECEIVE RequestInformation; PIO_STACK_LOCATION IrpSp; TCPRcvReq *RcvReq; ulong IndFlags;
CHECK_STRUCT(RcvTCB, tcb); ASSERT(Size > 0); ASSERT(InPacket != NULL); ASSERT(RcvTCB->tcb_refcnt != 0); ASSERT(RcvTCB->tcb_fastchk & TCP_FLAG_IN_RCV); ASSERT(RcvTCB->tcb_rcvind != NULL); ASSERT(RcvTCB->tcb_rcvhead == NULL); ASSERT(RcvTCB->tcb_rcvhndlr == IndicateData);
RcvReq = GetRcvReq(); if (RcvReq != NULL) { //
// The indicate handler is saved in the TCB. Just call up into it.
//
Event = RcvTCB->tcb_rcvind; EventContext = RcvTCB->tcb_ricontext; ConnContext = RcvTCB->tcb_conncontext;
RcvTCB->tcb_indicated = Size; RcvTCB->tcb_flags |= IN_RCV_IND;
KeReleaseSpinLockFromDpcLevel(&RcvTCB->tcb_lock);
//
// If we're at the end of a contigous data region,
// move forward to the next one. This prevents us
// from making nonsensical zero byte indications.
//
if (InPacket->ContigSize == 0) { PacketPullupSubr(InPacket, 0, 1, 0); }
IF_TCPDBG(TCP_DEBUG_RECEIVE) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "Indicating %lu bytes, %lu available\n", MIN(InPacket->ContigSize, Size), Size)); }
#if TCP_FLAG_PUSH >= TDI_RECEIVE_ENTIRE_MESSAGE
IndFlags = TDI_RECEIVE_COPY_LOOKAHEAD | TDI_RECEIVE_NORMAL | TDI_RECEIVE_AT_DISPATCH_LEVEL | ((RcvFlags & TCP_FLAG_PUSH) >> ((TCP_FLAG_PUSH / TDI_RECEIVE_ENTIRE_MESSAGE) - 1)); #else
IndFlags = TDI_RECEIVE_COPY_LOOKAHEAD | TDI_RECEIVE_NORMAL | TDI_RECEIVE_AT_DISPATCH_LEVEL | ((RcvFlags & TCP_FLAG_PUSH) << ((TDI_RECEIVE_ENTIRE_MESSAGE / TCP_FLAG_PUSH) - 1)); #endif
Status = (*Event)(EventContext, ConnContext, IndFlags, MIN(InPacket->ContigSize, Size), Size, &BytesTaken, InPacket->Data, &ERB);
IF_TCPDBG(TCP_DEBUG_RECEIVE) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "%lu bytes taken, status %lx\n", BytesTaken, Status)); }
//
// See what the client did. If the return status is MORE_PROCESSING,
// we've been given a buffer. In that case put it on the front of the
// buffer queue, and if all the data wasn't taken go ahead and copy
// it into the new buffer chain.
//
// Note that the size and buffer chain we're concerned with here is
// the one that we passed to the client. Since we're in a recieve
// handler, any data that has come in would have been put on the
// reassembly queue.
//
if (Status == TDI_MORE_PROCESSING) {
ASSERT(ERB != NULL);
IrpSp = IoGetCurrentIrpStackLocation(ERB);
Status = TCPPrepareIrpForCancel( (PTCP_CONTEXT) IrpSp->FileObject->FsContext, ERB, TCPCancelRequest);
if (NT_SUCCESS(Status)) {
RequestInformation = (PTDI_REQUEST_KERNEL_RECEIVE) &(IrpSp->Parameters);
RcvReq->trr_rtn = TCPDataRequestComplete; RcvReq->trr_context = ERB; RcvReq->trr_buffer = ERB->MdlAddress; RcvReq->trr_size = RequestInformation->ReceiveLength; RcvReq->trr_uflags = (ushort *) &(RequestInformation->ReceiveFlags); RcvReq->trr_flags = (uint)(RequestInformation->ReceiveFlags); RcvReq->trr_offset = 0; RcvReq->trr_amt = 0;
KeAcquireSpinLockAtDpcLevel(&RcvTCB->tcb_lock);
RcvTCB->tcb_flags &= ~IN_RCV_IND;
ASSERT(RcvTCB->tcb_rcvhndlr == IndicateData);
// Push him on the front of the rcv. queue.
ASSERT((RcvTCB->tcb_currcv == NULL) || (RcvTCB->tcb_currcv->trr_amt == 0));
if (RcvTCB->tcb_rcvhead == NULL) { RcvTCB->tcb_rcvhead = RcvReq; RcvTCB->tcb_rcvtail = RcvReq; RcvReq->trr_next = NULL; } else { RcvReq->trr_next = RcvTCB->tcb_rcvhead; RcvTCB->tcb_rcvhead = RcvReq; }
RcvTCB->tcb_currcv = RcvReq; RcvTCB->tcb_rcvhndlr = BufferData;
ASSERT(BytesTaken <= Size);
RcvTCB->tcb_indicated -= BytesTaken; if ((Size -= BytesTaken) != 0) { //
// Not everything was taken.
// Adjust the buffer chain to point beyond what was taken.
//
InPacket = TrimPacket(InPacket, BytesTaken);
ASSERT(InPacket != NULL);
//
// We've adjusted the buffer chain.
// Call the BufferData handler.
//
BytesTaken += BufferData(RcvTCB, RcvFlags, InPacket, Size);
} else { // All of the data was taken. Free the buffer chain.
FreePacketChain(InPacket); }
return BytesTaken; } else { //
// The IRP was cancelled before it was handed back to us.
// We'll pretend we never saw it. TCPPrepareIrpForCancel
// already completed it. The client may have taken data,
// so we will act as if success was returned.
//
ERB = NULL; Status = TDI_SUCCESS; } }
KeAcquireSpinLockAtDpcLevel(&RcvTCB->tcb_lock);
RcvTCB->tcb_flags &= ~IN_RCV_IND;
//
// Status is not more processing. If it's not SUCCESS, the client
// didn't take any of the data. In either case we now need to
// see if all of the data was taken. If it wasn't, we'll try and
// push it onto the front of the pending queue.
//
FreeRcvReq(RcvReq); // This won't be needed.
if (Status == TDI_NOT_ACCEPTED) BytesTaken = 0;
ASSERT(BytesTaken <= Size);
RcvTCB->tcb_indicated -= BytesTaken;
ASSERT(RcvTCB->tcb_rcvhndlr == IndicateData);
// Check to see if a rcv. buffer got posted during the indication.
// If it did, reset the receive handler now.
if (RcvTCB->tcb_rcvhead != NULL) RcvTCB->tcb_rcvhndlr = BufferData;
// See if all of the data was taken.
if (BytesTaken == Size) { ASSERT(RcvTCB->tcb_indicated == 0);
FreePacketChain(InPacket); return BytesTaken; // It was all taken.
}
//
// It wasn't all taken. Adjust for what was taken, and push
// on the front of the pending queue. We also need to check to
// see if a receive buffer got posted during the indication. This
// would be weird, but not impossible.
//
InPacket = TrimPacket(InPacket, BytesTaken); if (RcvTCB->tcb_rcvhead == NULL) { IPv6Packet *LastPkt, *NewPkt;
RcvTCB->tcb_rcvhndlr = PendData; NewPkt = CovetPacketChain(InPacket, &LastPkt, Size - BytesTaken); if (NewPkt != NULL) { // We have a duplicate chain. Push it on the front of the
// pending q.
if (RcvTCB->tcb_pendhead == NULL) { RcvTCB->tcb_pendhead = NewPkt; RcvTCB->tcb_pendtail = LastPkt; } else { LastPkt->Next = RcvTCB->tcb_pendhead; RcvTCB->tcb_pendhead = NewPkt; } RcvTCB->tcb_pendingcnt += Size - BytesTaken; BytesTaken = Size; } else { FreePacketChain(InPacket); } return BytesTaken; } else { //
// Just great. There's now a receive buffer on the TCB.
// Call the BufferData handler now.
//
ASSERT(RcvTCB->tcb_rcvhndlr = BufferData);
BytesTaken += BufferData(RcvTCB, RcvFlags, InPacket, Size - BytesTaken); return BytesTaken; }
} else { //
// Couldn't get a receive request. We must be really low on resources,
// so just bail out now.
//
FreePacketChain(InPacket); return 0; } }
//* IndicatePendingData - Indicate pending data to a client.
//
// Called when we need to indicate pending data to an upper layer client,
// usually because data arrived when we were in a state that it couldn't
// be indicated.
//
// Many of the comments in the BufferData header about the consistency of
// tcb_pendingcnt apply here also.
//
void // Returns: Nothing.
IndicatePendingData( TCB *RcvTCB, // TCB on which to indicate the data.
TCPRcvReq *RcvReq, // Receive request to use to indicate it.
KIRQL PreLockIrql) // IRQL prior to acquiring TCB lock.
{ TDI_STATUS Status; PRcvEvent Event; PVOID EventContext, ConnContext; uint BytesTaken = 0; EventRcvBuffer *ERB = NULL; PTDI_REQUEST_KERNEL_RECEIVE RequestInformation; PIO_STACK_LOCATION IrpSp; IPv6Packet *NewPkt; uint Size; uint BytesIndicated; uint BytesAvailable; uchar* DataBuffer;
CHECK_STRUCT(RcvTCB, tcb);
ASSERT(RcvTCB->tcb_refcnt != 0); ASSERT(RcvTCB->tcb_rcvind != NULL); ASSERT(RcvTCB->tcb_rcvhead == NULL); ASSERT(RcvTCB->tcb_pendingcnt != 0); ASSERT(RcvReq != NULL);
for (;;) { ASSERT(RcvTCB->tcb_rcvhndlr == PendData);
// The indicate handler is saved in the TCB. Just call up into it.
Event = RcvTCB->tcb_rcvind; EventContext = RcvTCB->tcb_ricontext; ConnContext = RcvTCB->tcb_conncontext; BytesIndicated = RcvTCB->tcb_pendhead->ContigSize; BytesAvailable = RcvTCB->tcb_pendingcnt; DataBuffer = RcvTCB->tcb_pendhead->Data; RcvTCB->tcb_indicated = RcvTCB->tcb_pendingcnt; RcvTCB->tcb_flags |= IN_RCV_IND;
KeReleaseSpinLock(&RcvTCB->tcb_lock, PreLockIrql);
IF_TCPDBG(TCPDebug & TCP_DEBUG_RECEIVE) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "Indicating pending %d bytes, %d available\n", BytesIndicated, BytesAvailable)); }
Status = (*Event)(EventContext, ConnContext, TDI_RECEIVE_COPY_LOOKAHEAD | TDI_RECEIVE_NORMAL | TDI_RECEIVE_ENTIRE_MESSAGE, BytesIndicated, BytesAvailable, &BytesTaken, DataBuffer, &ERB);
IF_TCPDBG(TCPDebug & TCP_DEBUG_RECEIVE) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "%d bytes taken\n", BytesTaken)); }
//
// See what the client did. If the return status is MORE_PROCESSING,
// we've been given a buffer. In that case put it on the front of the
// buffer queue, and if all the data wasn't taken go ahead and copy
// it into the new buffer chain.
//
if (Status == TDI_MORE_PROCESSING) {
IF_TCPDBG(TCP_DEBUG_RECEIVE) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_TCPDBG, "more processing on receive\n")); }
ASSERT(ERB != NULL);
IrpSp = IoGetCurrentIrpStackLocation(ERB);
Status = TCPPrepareIrpForCancel( (PTCP_CONTEXT) IrpSp->FileObject->FsContext, ERB, TCPCancelRequest);
if (NT_SUCCESS(Status)) {
RequestInformation = (PTDI_REQUEST_KERNEL_RECEIVE) &(IrpSp->Parameters);
RcvReq->trr_rtn = TCPDataRequestComplete; RcvReq->trr_context = ERB; RcvReq->trr_buffer = ERB->MdlAddress; RcvReq->trr_size = RequestInformation->ReceiveLength; RcvReq->trr_uflags = (ushort *) &(RequestInformation->ReceiveFlags); RcvReq->trr_flags = (uint)(RequestInformation->ReceiveFlags); RcvReq->trr_offset = 0; RcvReq->trr_amt = 0;
KeAcquireSpinLock(&RcvTCB->tcb_lock, &PreLockIrql); RcvTCB->tcb_flags &= ~IN_RCV_IND;
// Push him on the front of the receive queue.
ASSERT((RcvTCB->tcb_currcv == NULL) || (RcvTCB->tcb_currcv->trr_amt == 0));
if (RcvTCB->tcb_rcvhead == NULL) { RcvTCB->tcb_rcvhead = RcvReq; RcvTCB->tcb_rcvtail = RcvReq; RcvReq->trr_next = NULL; } else { RcvReq->trr_next = RcvTCB->tcb_rcvhead; RcvTCB->tcb_rcvhead = RcvReq; }
RcvTCB->tcb_currcv = RcvReq; RcvTCB->tcb_rcvhndlr = BufferData;
//
// Have to pick up the new size and pointers now, since things
// could have changed during the upcall.
//
Size = RcvTCB->tcb_pendingcnt; NewPkt = RcvTCB->tcb_pendhead; RcvTCB->tcb_pendingcnt = 0; RcvTCB->tcb_pendhead = NULL;
ASSERT(BytesTaken <= Size);
RcvTCB->tcb_indicated -= BytesTaken; if ((Size -= BytesTaken) != 0) { //
// Not everything was taken. Adjust the buffer chain to
// point beyond what was taken.
//
NewPkt = TrimPacket(NewPkt, BytesTaken);
ASSERT(NewPkt != NULL);
//
// We've adjusted the buffer chain.
// Call the BufferData handler.
//
(void)BufferData(RcvTCB, TCP_FLAG_PUSH, NewPkt, Size); KeReleaseSpinLock(&RcvTCB->tcb_lock, PreLockIrql);
} else { //
// All of the data was taken. Free the buffer chain.
// Since we were passed a buffer chain which we put on the
// head of the list, leave the rcvhandler pointing at
// BufferData.
//
ASSERT(RcvTCB->tcb_rcvhndlr == BufferData); ASSERT(RcvTCB->tcb_indicated == 0); ASSERT(RcvTCB->tcb_rcvhead != NULL);
KeReleaseSpinLock(&RcvTCB->tcb_lock, PreLockIrql); FreePacketChain(NewPkt); }
return; } else { //
// The IRP was cancelled before it was handed back to us.
// We'll pretend we never saw it. TCPPrepareIrpForCancel
// already completed it. The client may have taken data,
// so we will act as if success was returned.
//
ERB = NULL; Status = TDI_SUCCESS; } }
KeAcquireSpinLock(&RcvTCB->tcb_lock, &PreLockIrql);
RcvTCB->tcb_flags &= ~IN_RCV_IND;
//
// Status is not more processing. If it's not SUCCESS, the client
// didn't take any of the data. In either case we now need to
// see if all of the data was taken. If it wasn't, we're done.
//
if (Status == TDI_NOT_ACCEPTED) BytesTaken = 0;
ASSERT(RcvTCB->tcb_rcvhndlr == PendData);
RcvTCB->tcb_indicated -= BytesTaken; Size = RcvTCB->tcb_pendingcnt; NewPkt = RcvTCB->tcb_pendhead;
ASSERT(BytesTaken <= Size);
// See if all of the data was taken.
if (BytesTaken == Size) { // It was all taken. Zap the pending data information.
RcvTCB->tcb_pendingcnt = 0; RcvTCB->tcb_pendhead = NULL;
ASSERT(RcvTCB->tcb_indicated == 0); if (RcvTCB->tcb_rcvhead == NULL) { if (RcvTCB->tcb_rcvind != NULL) RcvTCB->tcb_rcvhndlr = IndicateData; } else RcvTCB->tcb_rcvhndlr = BufferData;
KeReleaseSpinLock(&RcvTCB->tcb_lock, PreLockIrql); FreePacketChain(NewPkt); break; }
//
// It wasn't all taken. Adjust for what was taken; we also need to
// check to see if a receive buffer got posted during the indication.
// This would be weird, but not impossible.
//
NewPkt = TrimPacket(NewPkt, BytesTaken);
ASSERT(RcvTCB->tcb_rcvhndlr == PendData);
if (RcvTCB->tcb_rcvhead == NULL) { RcvTCB->tcb_pendhead = NewPkt; RcvTCB->tcb_pendingcnt -= BytesTaken; if (RcvTCB->tcb_indicated != 0 || RcvTCB->tcb_rcvind == NULL) { KeReleaseSpinLock(&RcvTCB->tcb_lock, PreLockIrql); break; }
// From here, we'll loop around and indicate the new data that
// presumably came in during the previous indication.
} else { //
// Just great. There's now a receive buffer on the TCB.
// Call the BufferData handler now.
//
RcvTCB->tcb_rcvhndlr = BufferData; RcvTCB->tcb_pendingcnt = 0; RcvTCB->tcb_pendhead = NULL; BytesTaken += BufferData(RcvTCB, TCP_FLAG_PUSH, NewPkt, Size - BytesTaken); KeReleaseSpinLock(&RcvTCB->tcb_lock, PreLockIrql); break; }
} // for (;;)
FreeRcvReq(RcvReq); // This isn't needed anymore.
}
//* DeliverUrgent - Deliver urgent data to a client.
//
// Called to deliver urgent data to a client. We assume the input
// urgent data is in a buffer we can keep. The buffer can be NULL, in
// which case we'll just look on the urgent pending queue for data.
//
void // Returns: Nothing.
DeliverUrgent( TCB *RcvTCB, // TCB to deliver on.
IPv6Packet *RcvPkt, // Packet for urgent data.
uint Size, // Number of bytes of urgent data to deliver.
KIRQL *pTCBIrql) // Location of KIRQL prior to acquiring TCB lock.
{ KIRQL Irql1, Irql2, Irql3; // One per lock nesting level.
TCPRcvReq *RcvReq, *PrevReq; uint BytesTaken = 0; IPv6Packet *LastPkt; EventRcvBuffer *ERB; PRcvEvent ExpRcv; PVOID ExpRcvContext; PVOID ConnContext; TDI_STATUS Status;
CHECK_STRUCT(RcvTCB, tcb); ASSERT(RcvTCB->tcb_refcnt != 0);
CheckPacketList(RcvTCB->tcb_urgpending, RcvTCB->tcb_urgcnt);
//
// See if we have new data, or are processing old data.
//
if (RcvPkt != NULL) { //
// We have new data. If the pending queue is not NULL, or we're
// already in this routine, just put the buffer on the end of the
// queue.
//
if (RcvTCB->tcb_urgpending != NULL || (RcvTCB->tcb_flags & IN_DELIV_URG)) { IPv6Packet *PrevRcvPkt;
// Put him on the end of the queue.
PrevRcvPkt = CONTAINING_RECORD(&RcvTCB->tcb_urgpending, IPv6Packet, Next); while (PrevRcvPkt->Next != NULL) PrevRcvPkt = PrevRcvPkt->Next;
PrevRcvPkt->Next = RcvPkt; return; } } else { //
// The input buffer is NULL. See if we have existing data, or are in
// this routine. If we have no existing data or are in this routine
// just return.
//
if (RcvTCB->tcb_urgpending == NULL || (RcvTCB->tcb_flags & IN_DELIV_URG)) { return; } else { RcvPkt = RcvTCB->tcb_urgpending; Size = RcvTCB->tcb_urgcnt; RcvTCB->tcb_urgpending = NULL; RcvTCB->tcb_urgcnt = 0; } }
ASSERT(RcvPkt != NULL); ASSERT(!(RcvTCB->tcb_flags & IN_DELIV_URG));
//
// We know we have data to deliver, and we have a pointer and a size.
// Go into a loop, trying to deliver the data. On each iteration, we'll
// try to find a buffer for the data. If we find one, we'll copy and
// complete it right away. Otherwise we'll try and indicate it. If we
// can't indicate it, we'll put it on the pending queue and leave.
//
RcvTCB->tcb_flags |= IN_DELIV_URG; RcvTCB->tcb_slowcount++; RcvTCB->tcb_fastchk |= TCP_FLAG_SLOW; CheckTCBRcv(RcvTCB);
do { CheckPacketList(RcvTCB->tcb_urgpending, RcvTCB->tcb_urgcnt);
BytesTaken = 0;
// First check the expedited queue.
if ((RcvReq = RcvTCB->tcb_exprcv) != NULL) RcvTCB->tcb_exprcv = RcvReq->trr_next; else { //
// Nothing in the expedited receive queue. Walk down the ordinary
// receive queue, looking for a buffer that we can steal.
//
PrevReq = CONTAINING_RECORD(&RcvTCB->tcb_rcvhead, TCPRcvReq, trr_next); RcvReq = PrevReq->trr_next; while (RcvReq != NULL) { CHECK_STRUCT(RcvReq, trr); if (RcvReq->trr_flags & TDI_RECEIVE_EXPEDITED) { // This is a candidate.
if (RcvReq->trr_amt == 0) {
ASSERT(RcvTCB->tcb_rcvhndlr == BufferData);
//
// And he has nothing currently in him.
// Pull him out of the queue.
//
if (RcvTCB->tcb_rcvtail == RcvReq) { if (RcvTCB->tcb_rcvhead == RcvReq) RcvTCB->tcb_rcvtail = NULL; else RcvTCB->tcb_rcvtail = PrevReq; }
PrevReq->trr_next = RcvReq->trr_next; if (RcvTCB->tcb_currcv == RcvReq) { RcvTCB->tcb_currcv = RcvReq->trr_next; if (RcvTCB->tcb_currcv == NULL) { //
// We've taken the last receive from the list.
// Reset the rcvhndlr.
//
if (RcvTCB->tcb_rcvind != NULL && RcvTCB->tcb_indicated == 0) RcvTCB->tcb_rcvhndlr = IndicateData; else RcvTCB->tcb_rcvhndlr = PendData; } }
break; } } PrevReq = RcvReq; RcvReq = PrevReq->trr_next; } }
//
// We've done our best to get a buffer. If we got one, copy into it
// now, and complete the request.
//
if (RcvReq != NULL) { // Got a buffer.
KeReleaseSpinLock(&RcvTCB->tcb_lock, *pTCBIrql); BytesTaken = CopyPacketToNdis(RcvReq->trr_buffer, RcvPkt, Size, 0, RcvPkt->Position); (*RcvReq->trr_rtn)(RcvReq->trr_context, TDI_SUCCESS, BytesTaken); FreeRcvReq(RcvReq); KeAcquireSpinLock(&RcvTCB->tcb_lock, pTCBIrql); RcvTCB->tcb_urgind -= MIN(RcvTCB->tcb_urgind, BytesTaken); } else { // No posted buffer. If we can indicate, do so.
if (RcvTCB->tcb_urgind == 0) { TCPConn *Conn;
// See if he has an expedited rcv handler.
ConnContext = RcvTCB->tcb_conncontext; KeReleaseSpinLock(&RcvTCB->tcb_lock, *pTCBIrql); KeAcquireSpinLock(&AddrObjTableLock, &Irql1); KeAcquireSpinLock( &ConnTable[CONN_BLOCKID(RcvTCB->tcb_connid)]->cb_lock, &Irql2); KeAcquireSpinLock(&RcvTCB->tcb_lock, pTCBIrql); if ((Conn = RcvTCB->tcb_conn) != NULL) { CHECK_STRUCT(Conn, tc); ASSERT(Conn->tc_tcb == RcvTCB); KeReleaseSpinLock(&RcvTCB->tcb_lock, *pTCBIrql); if (Conn->tc_ao != NULL) { AddrObj *AO;
AO = Conn->tc_ao; KeAcquireSpinLock(&AO->ao_lock, &Irql3); if (AO_VALID(AO) && (ExpRcv = AO->ao_exprcv) != NULL) { ExpRcvContext = AO->ao_exprcvcontext; KeReleaseSpinLock(&AO->ao_lock, Irql3);
// We're going to indicate.
RcvTCB->tcb_urgind = Size; KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql2); KeReleaseSpinLock(&AddrObjTableLock, Irql1);
Status = (*ExpRcv)(ExpRcvContext, ConnContext, TDI_RECEIVE_COPY_LOOKAHEAD | TDI_RECEIVE_ENTIRE_MESSAGE | TDI_RECEIVE_EXPEDITED, MIN(RcvPkt->ContigSize, Size), Size, &BytesTaken, RcvPkt->Data, &ERB);
KeAcquireSpinLock(&RcvTCB->tcb_lock, pTCBIrql);
// See what he did with it.
if (Status == TDI_MORE_PROCESSING) { uint CopySize;
// He gave us a buffer.
if (BytesTaken == Size) { //
// He gave us a buffer, but took all of
// it. We'll just return it to him.
//
CopySize = 0; } else { // We have some data to copy in.
RcvPkt = TrimPacket(RcvPkt, BytesTaken); ASSERT(RcvPkt->TotalSize != 0); CopySize = CopyPacketToNdis( ERB->MdlAddress, RcvPkt, MIN(Size - BytesTaken, TCPGetMdlChainByteCount( ERB->MdlAddress)), 0, RcvPkt->Position); } BytesTaken += CopySize; RcvTCB->tcb_urgind -= MIN(RcvTCB->tcb_urgind, BytesTaken); KeReleaseSpinLock(&RcvTCB->tcb_lock, *pTCBIrql);
ERB->IoStatus.Status = TDI_SUCCESS; ERB->IoStatus.Information = CopySize; IoCompleteRequest(ERB, 2);
KeAcquireSpinLock(&RcvTCB->tcb_lock, pTCBIrql);
} else {
// No buffer to deal with.
if (Status == TDI_NOT_ACCEPTED) BytesTaken = 0;
RcvTCB->tcb_urgind -= MIN(RcvTCB->tcb_urgind, BytesTaken); } goto checksize; } else { // No receive handler.
KeReleaseSpinLock(&AO->ao_lock, Irql3); } } // Conn->tc_ao == NULL.
KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql2); KeReleaseSpinLock(&AddrObjTableLock, Irql1); KeAcquireSpinLock(&RcvTCB->tcb_lock, pTCBIrql); } else { // RcvTCB has invalid index.
KeReleaseSpinLock( &ConnTable[CONN_BLOCKID(RcvTCB->tcb_connid)]->cb_lock, *pTCBIrql); KeReleaseSpinLock(&AddrObjTableLock, Irql2); *pTCBIrql = Irql1; } }
//
// For whatever reason we couldn't indicate the data. At this
// point we hold the lock on the TCB. Push the buffer onto the
// pending queue and return.
//
CheckPacketList(RcvTCB->tcb_urgpending, RcvTCB->tcb_urgcnt);
LastPkt = FindLastPacket(RcvPkt); LastPkt->Next = RcvTCB->tcb_urgpending; RcvTCB->tcb_urgpending = RcvPkt; RcvTCB->tcb_urgcnt += Size; break; }
checksize: //
// See how much we took. If we took it all, check the pending queue.
// At this point, we should hold the lock on the TCB.
//
if (Size == BytesTaken) { // Took it all.
FreePacketChain(RcvPkt); RcvPkt = RcvTCB->tcb_urgpending; Size = RcvTCB->tcb_urgcnt; } else { //
// We didn't manage to take it all. Free what we did take,
// and then merge with the pending queue.
//
RcvPkt = TrimPacket(RcvPkt, BytesTaken); Size = Size - BytesTaken + RcvTCB->tcb_urgcnt; if (RcvTCB->tcb_urgpending != NULL) { //
// Find the end of the current Packet chain, so we can merge.
//
LastPkt = FindLastPacket(RcvPkt); LastPkt->Next = RcvTCB->tcb_urgpending; } }
RcvTCB->tcb_urgpending = NULL; RcvTCB->tcb_urgcnt = 0;
} while (RcvPkt != NULL);
CheckPacketList(RcvTCB->tcb_urgpending, RcvTCB->tcb_urgcnt);
RcvTCB->tcb_flags &= ~IN_DELIV_URG; if (--(RcvTCB->tcb_slowcount) == 0) { RcvTCB->tcb_fastchk &= ~TCP_FLAG_SLOW; CheckTCBRcv(RcvTCB); } }
//* PushData - Push all data back to the client.
//
// Called when we've received a FIN and need to push data to the client.
//
void // Returns: Nothing.
PushData( TCB *PushTCB) // TCB to be pushed.
{ TCPRcvReq *RcvReq;
CHECK_STRUCT(PushTCB, tcb);
RcvReq = PushTCB->tcb_rcvhead; while (RcvReq != NULL) { CHECK_STRUCT(RcvReq, trr); RcvReq->trr_flags |= TRR_PUSHED; RcvReq = RcvReq->trr_next; }
RcvReq = PushTCB->tcb_exprcv; while (RcvReq != NULL) { CHECK_STRUCT(RcvReq, trr); RcvReq->trr_flags |= TRR_PUSHED; RcvReq = RcvReq->trr_next; }
if (PushTCB->tcb_rcvhead != NULL || PushTCB->tcb_exprcv != NULL) DelayAction(PushTCB, NEED_RCV_CMPLT); }
//* SplitPacket - Split an IPv6Packet into three pieces.
//
// This function takes an input IPv6Packet and splits it into three pieces.
// The first piece is the input buffer, which we just skip over. The second
// and third pieces are actually copied, even if we already own them, so
// that they may go to different places.
//
// Note: *SecondBuf and *ThirdBuf are set to NULL if we can't allocate
// memory for them.
//
void // Returns: Nothing.
SplitPacket( IPv6Packet *Packet, // Packet chain to be split.
uint Size, // Total size in bytes of packet chain.
uint Offset, // Offset to skip over.
uint SecondSize, // Size in bytes of second piece.
IPv6Packet **SecondPkt, // Where to return second packet pointer.
IPv6Packet **ThirdPkt) // Where to return third packet pointer.
{ IPv6Packet *Temp; uint ThirdSize;
ASSERT(Offset < Size); ASSERT(((Offset + SecondSize) < Size) || (((Offset + SecondSize) == Size) && ThirdPkt == NULL)); ASSERT(Packet != NULL);
//
// Packet points at the packet to copy from, and Offset is the offset into
// this packet to copy from.
//
if (SecondPkt != NULL) { //
// We need to allocate memory for a second packet.
//
Temp = ExAllocatePoolWithTagPriority(NonPagedPool, sizeof(IPv6Packet) + SecondSize, TCP6_TAG, LowPoolPriority); if (Temp != NULL) { Temp->Next = NULL; Temp->Position = 0; Temp->FlatData = (uchar *)(Temp + 1); Temp->Data = Temp->FlatData; Temp->ContigSize = SecondSize; Temp->TotalSize = SecondSize; Temp->NdisPacket = NULL; Temp->AuxList = NULL; Temp->Flags = PACKET_OURS; CopyPacketToBuffer(Temp->Data, Packet, SecondSize, Packet->Position + Offset); *SecondPkt = Temp; } else { *SecondPkt = NULL; if (ThirdPkt != NULL) *ThirdPkt = NULL; return; } }
if (ThirdPkt != NULL) { //
// We need to allocate memory for a third buffer.
//
ThirdSize = Size - (Offset + SecondSize); Temp = ExAllocatePoolWithTagPriority(NonPagedPool, sizeof(IPv6Packet) + ThirdSize, TCP6_TAG, LowPoolPriority);
if (Temp != NULL) { Temp->Next = NULL; Temp->Position = 0; Temp->FlatData = (uchar *)(Temp + 1); Temp->Data = Temp->FlatData; Temp->ContigSize = ThirdSize; Temp->TotalSize = ThirdSize; Temp->NdisPacket = NULL; Temp->AuxList = NULL; Temp->Flags = PACKET_OURS; CopyPacketToBuffer(Temp->Data, Packet, ThirdSize, Packet->Position + Offset + SecondSize); *ThirdPkt = Temp; } else *ThirdPkt = NULL; } }
//* HandleUrgent - Handle urgent data.
//
// Called when an incoming segment has urgent data in it. We make sure there
// really is urgent data in the segment, and if there is we try to dispose
// of it either by putting it into a posted buffer or calling an exp. rcv.
// indication handler.
//
// This routine is called at DPC level, and with the TCP locked.
//
// Urgent data handling is a little complicated. Each TCB has the starting
// and ending sequence numbers of the 'current' (last received) bit of urgent
// data. It is possible that the start of the current urgent data might be
// greater than tcb_rcvnext, if urgent data came in, we handled it, and then
// couldn't take the preceding normal data. The urgent valid flag is cleared
// when the next byte of data the user would read (rcvnext - pendingcnt) is
// greater than the end of urgent data - we do this so that we can correctly
// support SIOCATMARK. We always seperate urgent data out of the data stream.
// If the urgent valid field is set when we get into this routing we have
// to play a couple of games. If the incoming segment starts in front of the
// current urgent data, we truncate it before the urgent data, and put any
// data after the urgent data on the reassemble queue. These gyrations are
// done to avoid delivering the same urgent data twice. If the urgent valid
// field in the TCB is set and the segment starts after the current urgent
// data the new urgent information will replace the current urgent
// information.
//
void // Returns: Nothing.
HandleUrgent( TCB *RcvTCB, // TCB to recv the data on.
TCPRcvInfo *RcvInfo, // RcvInfo structure for the incoming segment.
IPv6Packet *RcvPkt, // Packet chain containing the incoming segment.
uint *Size) // Size in bytes of data in the segment.
{ uint BytesInFront; // Bytes in front of the urgent data.
uint BytesInBack; // Bytes in back of the urgent data.
uint UrgSize; // Size in bytes of urgent data.
SeqNum UrgStart, UrgEnd; IPv6Packet *EndPkt, *UrgPkt; TCPRcvInfo NewRcvInfo; KIRQL TCBIrql;
CHECK_STRUCT(RcvTCB, tcb); ASSERT(RcvTCB->tcb_refcnt != 0); ASSERT(RcvInfo->tri_flags & TCP_FLAG_URG); ASSERT(SEQ_EQ(RcvInfo->tri_seq, RcvTCB->tcb_rcvnext));
// First, validate the urgent pointer.
if (RcvTCB->tcb_flags & BSD_URGENT) { //
// We're using BSD style urgent data. We assume that the urgent
// data is one byte long, and that the urgent pointer points one
// after the urgent data instead of at the last byte of urgent data.
// See if the urgent data is in this segment.
//
if (RcvInfo->tri_urgent == 0 || RcvInfo->tri_urgent > *Size) { //
// Not in this segment. Clear the urgent flag and return.
//
RcvInfo->tri_flags &= ~TCP_FLAG_URG; return; }
UrgSize = 1; BytesInFront = RcvInfo->tri_urgent - 1;
} else { //
// This is not BSD style urgent. We assume that the urgent data
// starts at the front of the segment and the last byte is pointed
// to by the urgent data pointer.
//
BytesInFront = 0; UrgSize = MIN(RcvInfo->tri_urgent + 1, *Size); }
BytesInBack = *Size - BytesInFront - UrgSize;
//
// UrgStart and UrgEnd are the first and last sequence numbers of the
// urgent data in this segment.
//
UrgStart = RcvInfo->tri_seq + BytesInFront; UrgEnd = UrgStart + UrgSize - 1;
if (!(RcvTCB->tcb_flags & URG_INLINE)) { EndPkt = NULL;
// Now see if this overlaps with any urgent data we've already seen.
if (RcvTCB->tcb_flags & URG_VALID) { //
// We have some urgent data still around. See if we've advanced
// rcvnext beyond the urgent data. If we have, this is new urgent
// data, and we can go ahead and process it (although anyone doing
// an SIOCATMARK socket command might get confused). If we haven't
// consumed the data in front of the existing urgent data yet,
// we'll truncate this seg. to that amount and push the rest onto
// the reassembly queue. Note that rcvnext should never fall
// between tcb_urgstart and tcb_urgend.
//
ASSERT(SEQ_LT(RcvTCB->tcb_rcvnext, RcvTCB->tcb_urgstart) || SEQ_GT(RcvTCB->tcb_rcvnext, RcvTCB->tcb_urgend));
if (SEQ_LT(RcvTCB->tcb_rcvnext, RcvTCB->tcb_urgstart)) { //
// There appears to be some overlap in the data stream.
// Split the buffer up into pieces that come before the current
// urgent data and after the current urgent data, putting the
// latter on the reassembly queue.
//
UrgSize = RcvTCB->tcb_urgend - RcvTCB->tcb_urgstart + 1;
BytesInFront = MIN(RcvTCB->tcb_urgstart - RcvTCB->tcb_rcvnext, (int) *Size);
if (SEQ_GT(RcvTCB->tcb_rcvnext + *Size, RcvTCB->tcb_urgend)) { // We have data after this piece of urgent data.
BytesInBack = RcvTCB->tcb_rcvnext + *Size - RcvTCB->tcb_urgend; } else BytesInBack = 0;
SplitPacket(RcvPkt, *Size, BytesInFront, UrgSize, NULL, (BytesInBack ? &EndPkt : NULL));
if (EndPkt != NULL) { NewRcvInfo.tri_seq = RcvTCB->tcb_urgend + 1; if (UrgEnd > RcvTCB->tcb_urgend) { NewRcvInfo.tri_flags = RcvInfo->tri_flags; NewRcvInfo.tri_urgent = UrgEnd - NewRcvInfo.tri_seq; if (RcvTCB->tcb_flags & BSD_URGENT) NewRcvInfo.tri_urgent++; } else { NewRcvInfo.tri_flags = RcvInfo->tri_flags & ~TCP_FLAG_URG; } NewRcvInfo.tri_ack = RcvInfo->tri_ack; NewRcvInfo.tri_window = RcvInfo->tri_window; PutOnRAQ(RcvTCB, &NewRcvInfo, EndPkt, BytesInBack); FreePacketChain(EndPkt); }
*Size = BytesInFront; RcvInfo->tri_flags &= ~TCP_FLAG_URG; return; } }
//
// We have urgent data we can process now. Split it into its component
// parts, the first part, the urgent data, and the stuff after the
// urgent data.
//
SplitPacket(RcvPkt, *Size, BytesInFront, UrgSize, &UrgPkt, (BytesInBack ? &EndPkt : NULL));
//
// If we managed to split out the end stuff, put it on the queue now.
//
if (EndPkt != NULL) { NewRcvInfo.tri_seq = RcvInfo->tri_seq + BytesInFront + UrgSize; NewRcvInfo.tri_flags = RcvInfo->tri_flags & ~TCP_FLAG_URG; NewRcvInfo.tri_ack = RcvInfo->tri_ack; NewRcvInfo.tri_window = RcvInfo->tri_window; PutOnRAQ(RcvTCB, &NewRcvInfo, EndPkt, BytesInBack); FreePacketChain(EndPkt); }
if (UrgPkt != NULL) { // We succesfully split the urgent data out.
if (!(RcvTCB->tcb_flags & URG_VALID)) { RcvTCB->tcb_flags |= URG_VALID; RcvTCB->tcb_slowcount++; RcvTCB->tcb_fastchk |= TCP_FLAG_SLOW; CheckTCBRcv(RcvTCB); } RcvTCB->tcb_urgstart = UrgStart; RcvTCB->tcb_urgend = UrgEnd; TCBIrql = DISPATCH_LEVEL; DeliverUrgent(RcvTCB, UrgPkt, UrgSize, &TCBIrql); }
*Size = BytesInFront;
} else { //
// Urgent data is to be processed inline. We just need to remember
// where it is and treat it as normal data. If there's already urgent
// data, we remember the latest urgent data.
//
RcvInfo->tri_flags &= ~TCP_FLAG_URG;
if (RcvTCB->tcb_flags & URG_VALID) { //
// There is urgent data. See if this stuff comes after the
// existing urgent data.
//
if (SEQ_LTE(UrgEnd, RcvTCB->tcb_urgend)) { //
// The existing urgent data completely overlaps this stuff,
// so ignore this.
//
return; } } else { RcvTCB->tcb_flags |= URG_VALID; RcvTCB->tcb_slowcount++; RcvTCB->tcb_fastchk |= TCP_FLAG_SLOW; CheckTCBRcv(RcvTCB); }
RcvTCB->tcb_urgstart = UrgStart; RcvTCB->tcb_urgend = UrgEnd; }
return; }
//* TdiReceive - Process a receive request.
//
// This is the main TDI receive request handler. We validate the connection
// and make sure that we have a TCB in the proper state, then we try to
// allocate a receive request structure. If that succeeds, we'll look and
// see what's happening on the TCB - if there's pending data, we'll put it
// in the buffer. Otherwise we'll just queue the receive for later.
//
TDI_STATUS // Returns: TDI_STATUS of request.
TdiReceive( PTDI_REQUEST Request, // TDI_REQUEST structure for this request.
ushort *Flags, // Pointer to flags word.
uint *RcvLength, // Pointer to length in bytes of receive buffer.
PNDIS_BUFFER Buffer) // Pointer to buffer to take data.
{ TCPConn *Conn; TCB *RcvTCB; TCPRcvReq *RcvReq; KIRQL Irql0, Irql1; // One per lock nesting level.
TDI_STATUS Error; ushort UFlags;
Conn = GetConnFromConnID(PtrToUlong(Request->Handle.ConnectionContext), &Irql0);
if (Conn != NULL) { CHECK_STRUCT(Conn, tc);
RcvTCB = Conn->tc_tcb; if (RcvTCB != NULL) { CHECK_STRUCT(RcvTCB, tcb); KeAcquireSpinLock(&RcvTCB->tcb_lock, &Irql1); KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql1); UFlags = *Flags;
//
// Verify that the cached RCE is still valid.
//
RcvTCB->tcb_rce = ValidateRCE(RcvTCB->tcb_rce); ASSERT(RcvTCB->tcb_rce != NULL);
//
// Fail new receive requests for TCBs in an invalid state
// and for TCBs with a disconnected outgoing interface
// (except when a loopback route is used).
//
if ((DATA_RCV_STATE(RcvTCB->tcb_state) || (RcvTCB->tcb_pendingcnt != 0 && (UFlags & TDI_RECEIVE_NORMAL)) || (RcvTCB->tcb_urgcnt != 0 && (UFlags & TDI_RECEIVE_EXPEDITED))) && !CLOSING(RcvTCB) && !IsDisconnectedAndNotLoopbackRCE(RcvTCB->tcb_rce)) { //
// We have a TCB, and it's valid. Get a receive request now.
//
CheckPacketList(RcvTCB->tcb_pendhead, RcvTCB->tcb_pendingcnt);
RcvReq = GetRcvReq(); if (RcvReq != NULL) { RcvReq->trr_rtn = Request->RequestNotifyObject; RcvReq->trr_context = Request->RequestContext; RcvReq->trr_buffer = Buffer; RcvReq->trr_size = *RcvLength; RcvReq->trr_uflags = Flags; RcvReq->trr_offset = 0; RcvReq->trr_amt = 0; RcvReq->trr_flags = (uint)UFlags; if ((UFlags & (TDI_RECEIVE_NORMAL | TDI_RECEIVE_EXPEDITED)) != TDI_RECEIVE_EXPEDITED) { //
// This is not an expedited only receive.
// Put it on the normal receive queue.
//
RcvReq->trr_next = NULL; if (RcvTCB->tcb_rcvhead == NULL) { // The receive queue is empty.
// Put it on the front.
RcvTCB->tcb_rcvhead = RcvReq; RcvTCB->tcb_rcvtail = RcvReq; } else { RcvTCB->tcb_rcvtail->trr_next = RcvReq; RcvTCB->tcb_rcvtail = RcvReq; }
//
// If this receive is for zero length, complete this
// and indicate pending data again, if any.
//
if (RcvReq->trr_size == 0) { RcvTCB->tcb_refcnt++; RcvReq->trr_flags |= TRR_PUSHED; KeReleaseSpinLock(&RcvTCB->tcb_lock, Irql0); CompleteRcvs(RcvTCB); KeAcquireSpinLock(&RcvTCB->tcb_lock, &Irql0); DerefTCB(RcvTCB, Irql0); return TDI_PENDING; }
//
// If this receive can't hold urgent data or there
// isn't any pending urgent data continue processing.
//
if (!(UFlags & TDI_RECEIVE_EXPEDITED) || RcvTCB->tcb_urgcnt == 0) { //
// If tcb_currcv is NULL, there is no currently
// active receive. In this case, check to see if
// there is pending data and that we are not
// currently in a receive indication handler. If
// both of these are true then deal with the
// pending data.
//
if (RcvTCB->tcb_currcv == NULL) { RcvTCB->tcb_currcv = RcvReq; // No currently active receive.
if (!(RcvTCB->tcb_flags & IN_RCV_IND)) { // Not in a rcv. indication.
RcvTCB->tcb_rcvhndlr = BufferData; if (RcvTCB->tcb_pendhead == NULL) { KeReleaseSpinLock(&RcvTCB->tcb_lock, Irql0); return TDI_PENDING; } else { IPv6Packet *PendPacket; uint PendSize; uint OldRcvWin;
// We have pending data to deal with.
PendPacket = RcvTCB->tcb_pendhead; PendSize = RcvTCB->tcb_pendingcnt; RcvTCB->tcb_pendhead = NULL; RcvTCB->tcb_pendingcnt = 0; RcvTCB->tcb_refcnt++;
//
// We assume that BufferData holds
// the lock (does not yield) during
// this call. If this changes for some
// reason, we'll have to fix the code
// below that does the window update
// check. See the comments in the
// BufferData() routine for more info.
//
(void)BufferData(RcvTCB, TCP_FLAG_PUSH, PendPacket, PendSize); CheckTCBRcv(RcvTCB); //
// Now we need to see if the window
// has changed. If it has, send an
// ACK.
//
OldRcvWin = RcvTCB->tcb_rcvwin; if (OldRcvWin != RcvWin(RcvTCB)) { // The window has changed, so send
// an ACK.
DelayAction(RcvTCB, NEED_ACK); }
DerefTCB(RcvTCB, Irql0); ProcessTCBDelayQ(); return TDI_PENDING; } } //
// In a receive indication. The receive request
// is now on the queue, so just fall through
// to the return.
//
} //
// A receive is currently active. No need to do
// anything else.
//
KeReleaseSpinLock(&RcvTCB->tcb_lock, Irql0); return TDI_PENDING; } else { //
// This buffer can hold urgent data and we have
// some pending. Deliver it now.
//
RcvTCB->tcb_refcnt++; DeliverUrgent(RcvTCB, NULL, 0, &Irql0); DerefTCB(RcvTCB, Irql0); return TDI_PENDING; } } else { TCPRcvReq *Temp;
//
// This is an expedited only receive. Just put it
// on the end of the expedited receive queue.
//
Temp = CONTAINING_RECORD(&RcvTCB->tcb_exprcv, TCPRcvReq, trr_next); while (Temp->trr_next != NULL) Temp = Temp->trr_next;
RcvReq->trr_next = NULL; Temp->trr_next = RcvReq; if (RcvTCB->tcb_urgpending != NULL) { RcvTCB->tcb_refcnt++; DeliverUrgent(RcvTCB, NULL, 0, &Irql0); DerefTCB(RcvTCB, Irql0); return TDI_PENDING; } else Error = TDI_PENDING; } } else { // Couldn't get a receive request.
Error = TDI_NO_RESOURCES; } } else { // The TCB is in an invalid state.
Error = TDI_INVALID_STATE; } KeReleaseSpinLock(&RcvTCB->tcb_lock, Irql0); return Error; } else { // No TCB for connection.
KeReleaseSpinLock(&Conn->tc_ConnBlock->cb_lock, Irql0); Error = TDI_INVALID_STATE; } } else { // No connection.
Error = TDI_INVALID_CONNECTION; }
return Error; }
|