|
|
#include "stdafx.h"
#pragma hdrstop
/*
* jdhuff.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains Huffman entropy decoding routines. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. */
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
#ifdef _M_IX86
#pragma warning(disable:4799)
#endif
/*
* Expanded entropy decoder object for Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */
typedef struct { int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state;
/* This macro is to work around compilers with missing or broken
* structure assignment. You'll need to fix this code if you have * such a compiler and you change MAX_COMPS_IN_SCAN. */
#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE(dest,src) ((dest) = (src))
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src) \
((dest).last_dc_val[0] = (src).last_dc_val[0], \ (dest).last_dc_val[1] = (src).last_dc_val[1], \ (dest).last_dc_val[2] = (src).last_dc_val[2], \ (dest).last_dc_val[3] = (src).last_dc_val[3]) #endif
#endif
typedef struct { struct jpeg_entropy_decoder pub; /* public fields */
/* These fields are loaded into local variables at start of each MCU.
* In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */
/* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; } huff_entropy_decoder;
typedef huff_entropy_decoder * huff_entropy_ptr;
/*
* Initialize for a Huffman-compressed scan. */
METHODDEF(void) start_pass_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info * compptr;
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
* This ought to be an error condition, but we make it a warning because * there are some baseline files out there with all zeroes in these bytes. */ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || cinfo->Ah != 0 || cinfo->Al != 0) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Make sure requested tables are present */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS || cinfo->dc_huff_tbl_ptrs[dctbl] == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0 || actbl >= NUM_HUFF_TBLS || cinfo->ac_huff_tbl_ptrs[actbl] == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_d_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl], & entropy->dc_derived_tbls[dctbl]); jpeg_make_d_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl], & entropy->ac_derived_tbls[actbl]); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; }
/* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer_64 = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->bitstate.printed_eod = FALSE;
/* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; }
/*
* Compute the derived values for a Huffman table. * Note this is also used by jdphuff.c. */
GLOBAL(void) jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl, d_derived_tbl ** pdtbl) { d_derived_tbl *dtbl; int p, i, l, si; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code;
/* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl)); dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ /* Note that this is in code-length order. */
p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++) huffsize[p++] = (char) l; } huffsize[p] = 0; /* Figure C.2: generate the codes themselves */ /* Note that this is in code-length order. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int) huffsize[p]) == si) { huffcode[p++] = code; code++; } code <<= 1; si++; }
/* Figure F.15: generate decoding tables for bit-sequential decoding */
p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */ dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */ p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
/* Compute lookahead tables to speed up decoding.
* First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { dtbl->look_nbits[lookbits] = l; dtbl->look_sym[lookbits] = htbl->huffval[p]; lookbits++; } } } }
/*
* Out-of-line code for bit fetching (shared with jdphuff.c). * See jdhuff.h for info about usage. * Note: current values of get_buffer and bits_left are passed as parameters, * but are returned in the corresponding fields of the state struct. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. */
#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS 15 /* minimum allowable value */
#else
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
#endif
// not used in MMX version
GLOBAL(boolean) jpeg_fill_bit_buffer (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, int nbits) /* Load up the bit buffer to a depth of at least nbits */ { /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET * next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; register int c;
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */
while (bits_left < MIN_GET_BITS) { /* Attempt to read a byte */ if (state->unread_marker != 0) goto no_more_data; /* can't advance past a marker */
if (bytes_in_buffer == 0) { if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) return FALSE; next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++);
/* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { do { if (bytes_in_buffer == 0) { if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo)) return FALSE; next_input_byte = state->cinfo->src->next_input_byte; bytes_in_buffer = state->cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = GETJOCTET(*next_input_byte++); } while (c == 0xFF);
if (c == 0) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. */ /* Better put it back for use later */ state->unread_marker = c;
no_more_data: /* There should be enough bits still left in the data segment; */ /* if so, just break out of the outer while loop. */ if (bits_left >= nbits) break; /* Uh-oh. Report corrupted data to user and stuff zeroes into
* the data stream, so that we can produce some kind of image. * Note that this code will be repeated for each byte demanded * for the rest of the segment. We use a nonvolatile flag to ensure * that only one warning message appears. */ if (! *(state->printed_eod_ptr)) { WARNMS(state->cinfo, JWRN_HIT_MARKER); *(state->printed_eod_ptr) = TRUE; } c = 0; /* insert a zero byte into bit buffer */ } }
/* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; }
/* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->get_buffer = get_buffer; state->bits_left = bits_left;
return TRUE; }
/*
* Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */
GLOBAL(int) jpeg_huff_decode (bitread_working_state * state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl * htbl, int min_bits) { register int l = min_bits; register INT32 code;
/* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */
CHECK_BIT_BUFFER(*state, l, return -1); code = GET_BITS(l);
/* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */
while (code > htbl->maxcode[l]) { code <<= 1; CHECK_BIT_BUFFER(*state, 1, return -1); code |= GET_BITS(1); l++; }
/* Unload the local registers */ state->get_buffer = get_buffer; state->bits_left = bits_left;
/* With garbage input we may reach the sentinel value l = 17. */
if (l > 16) { WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); return 0; /* fake a zero as the safest result */ }
return htbl->pub->huffval[ htbl->valptr[l] + ((int) (code - htbl->mincode[l])) ]; }
/*
* Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */
#ifdef AVOID_TABLES
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
#else
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
static const int extend_test[16] = /* entry n is 2**(n-1) */ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
#endif /* AVOID_TABLES */
/*
* Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */
LOCAL(boolean) process_restart (j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; int ci;
/* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0;
/* Advance past the RSTn marker */ if (! (*cinfo->marker->read_restart_marker) (cinfo)) return FALSE;
/* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0;
/* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval;
/* Next segment can get another out-of-data warning */ entropy->bitstate.printed_eod = FALSE;
return TRUE; }
/*
* Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */
METHODDEF(boolean) decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; register int s, k, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state state; d_derived_tbl * dctbl; d_derived_tbl * actbl; jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (! process_restart(cinfo)) return FALSE; }
/* Load up working state */ BITREAD_LOAD_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(state, entropy->saved);
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no]; actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); }
/* Shortcut if component's values are not interesting */ if (! compptr->component_needed) goto skip_ACs;
/* Convert DC difference to actual value, update last_dc_val */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ (*block)[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */ if (compptr->DCT_scaled_size > 1) {
/* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Output coefficient in natural (dezigzagged) order.
* Note: the extra entries in jpeg_natural_order[] will save us * if k >= DCTSIZE2, which could happen if the data is corrupted. */ (*block)[jpeg_natural_order[k]] = (JCOEF) s; } else { if (r != 15) break; k += 15; } }
} else { skip_ACs:
/* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); DROP_BITS(s); } else { if (r != 15) break; k += 15; } }
} }
/* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo,entropy->bitstate); ASSIGN_STATE(entropy->saved, state);
/* Account for restart interval (no-op if not using restarts) */ entropy->restarts_to_go--;
return TRUE; }
//MMX routines
//new Typedefs necessary for the new decode_mcu_fast to work.
typedef struct jpeg_source_mgr * j_csrc_ptr; //typedef struct jpeg_err_mgr * j_cerr_ptr;
typedef struct jpeg_error_mgr * j_cerr_ptr;
typedef d_derived_tbl * h_pub_ptr; /*
* Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */
const int twoexpnminusone[13] = { 0, 1, 2, 4, 8,16,32,64,128,256,512,1024,2048}; const int oneminustwoexpn[13] = { 0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047};
//
// Need to add #ifdef for Alpha port
//
#if defined (_X86_)
METHODDEF(boolean) decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { // return decode_mcu_inner(cinfo,MCU_data);
//***************************************************************************/
//*
//* INTEL Corporation Proprietary Information
//*
//*
//* Copyright (c) 1996 Intel Corporation.
//* All rights reserved.
//*
//***************************************************************************/
// AUTHOR: Mark Buxton
/***************************************************************************/ // MMX version of the "Huffman Decoder" within the IJG decompressor code.
// // MMX Allocation:
//-------------------------------------------------------------
//// XXXX XXXX | XXXX XXXX
//
// MM0: ------------
// MM1: bit_buffer
// MM2: temp buffer
// MM3: temp buffer
// MM4: 0000 0000 0000 0040
// MM5: ------------ dctbl
// MM6: ------------ actbl
// MM7: ------------ temp_buffer
//
//
// edi - bits left in the Bit Buffer
// //routines to modify: jpeg_huff_decode_fast
// // fill_bit_buffer
//
//
//
// Other available storage locations:
//
// ebp - state
//data declaration:
unsigned char blkn; unsigned char nbits; JBLOCKROW block; huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; jpeg_component_info * compptr; bitread_working_state br_state; savable_state state; d_derived_tbl * dctbl; d_derived_tbl * actbl; d_derived_tbl * htbl; int ci,temp1; int code; int min_bits; __asm { // // Process restart marker if needed// may have to suspend
// if (cinfo->restart_interval) {
mov eax,dword ptr [cinfo] cmp (j_decompress_ptr [eax]).restart_interval,1 jne Skip_Restart //if (entropy->restarts_to_go == 0)
mov eax,dword ptr [entropy] cmp (dword ptr [eax]).restarts_to_go,0 jne Skip_Restart //if (! process_restart(cinfo))
mov eax,dword ptr [cinfo] push eax call process_restart add esp,4 test eax,eax jne Skip_Restart
jmp Return_Fail
Skip_Restart:
// // Load up working state
// br_state.cinfo = cinfop//
// br_state.next_input_byte = cinfop->src->next_input_byte//
// br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer//
// br_state.unread_marker = cinfop->unread_marker//
// get_buffer = entropy->bitstate.get_buffer//
// bits_left = entropy->bitstate.bits_left//
// br_state.printed_eod_ptr = & entropy->bitstate.printed_eod
mov eax,dword ptr [cinfo] mov dword ptr [br_state.cinfo],eax mov ebx,(j_decompress_ptr [eax]).unread_marker mov dword ptr [br_state.unread_marker],ebx mov eax,(j_decompress_ptr [eax]).src mov ebx,(j_csrc_ptr [eax]).next_input_byte mov dword ptr [br_state.next_input_byte],ebx mov ebx,(j_csrc_ptr [eax]).bytes_in_buffer mov dword ptr [br_state.bytes_in_buffer],ebx //pxor mm0,mm0
mov eax,dword ptr[entropy] movq mm1,(qword ptr [eax]).bitstate.get_buffer_64 mov edi,(dword ptr [eax]).bitstate.bits_left lea eax,dword ptr[eax].bitstate.printed_eod mov dword ptr [br_state.printed_eod_ptr],eax
mov ebx,dword ptr [entropy] xor eax,eax mov eax,(dword ptr [ebx]).saved.last_dc_val[0x00] mov dword ptr [state.last_dc_val+0x00],eax mov eax,(dword ptr [ebx]).saved.last_dc_val[0x04] mov dword ptr [state.last_dc_val+0x04],eax mov eax,(dword ptr [ebx]).saved.last_dc_val[0x08] mov dword ptr [state.last_dc_val+0x08],eax mov eax,(dword ptr [ebx]).saved.last_dc_val[0x0C] mov dword ptr [state.last_dc_val+0x0c],eax
//make sure all variables are initalized.
//see map in header for register usage
// // Outer loop handles each block in the MCU
//the address of each block is just MCU_data + blkn<<7 (this is MCU_data * 128, right?)
//ci = cinfo->MCU_membership[blkn];
//compptr = cinfo->cur_comp_info[ci];
//dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
//actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
mov byte ptr [blkn],0 pxor mm5,mm5 pxor mm6,mm6 pxor mm2,mm2 pxor mm3,mm3 pxor mm4,mm4 mov eax,0x40 movd mm4,eax
} One_Block_Loop: block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no]; dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no]; __asm {
movd mm5,[dctbl] movd mm6,[actbl] //// Decode a single block's worth of coefficients
//// Section F.2.2.1: decode the DC coefficient difference
//---------------------------------------------------------------------------------
//DC loop section: there are probably only ~6 to process.
//---------------------------------------------------------------------------------
//set up the MMX registers:
//move the dctbl pointer into MM6
//pxor mm6,mm6
//movd mm6,dword ptr [dctbl]
//movd eax,mm0
cmp edi,8 jl Get_n_bits_DC //normal path
//take a peek at the data in get_buffer.
Got_n_bits_DC: movq mm3,mm1 //copy the Bit-Buffer
psrlq mm1,56 //Extract the MS 8 bits from the Bit Buffer
movd eax,mm5 //load the DC table pointer
movd ecx,mm1 //lsb holds the 8 input bits
movq mm1,mm3 mov ebx,(dword ptr[eax+4*ecx]).look_nbits /*get the number of bits required to represent
this Huffman Code (n) . If the code is > 8 bits, the table entry is Zero*/ test ebx,ebx je Nineplus_Decode_DC//branch taken 3% of the time. If code > 8 bits,
//get it via a slower metho
movd mm2,ebx sub edi,ebx //invalidate n bits from the Bit counter
xor ebx,ebx psllq mm1,mm2 //invalidate n bits from the Bit Buffer
mov bl,(byte ptr[eax+ecx]).look_sym //read in the Run Lenth Code (rrrr|ssss); though for the DC coefct's rrrr=0000
Got_SymbolDC: //return point from the slow Huffman decoder routine (for code length > 8 bits)
cmp edi,ebx //
jl not_enough_bits_DC //If Not enough bits left in the Bit Buffer, Get More
Got_enough_bits_DC: pxor mm2,mm2 sub edi,ebx //invalidate ssss bits from the Bit counter
movd mm2,ebx movq mm3,mm4 //copy #64 into mm3
psubd mm3,mm2 //now mm3 has 64-ssss
movq mm0,mm1 //save a copy of the Bit Buffer
psrlq mm0,mm3 //shift result right
nop
psllq mm1,mm2 //Invalidate ssss bits from the Bit Buffer
movd ecx,mm0
mov eax,(dword ptr[twoexpnminusone+4*ebx]) //load 2^(ssss-1)
cmp ecx,eax //
jge positiv_symDC // If # < 2^(ssss-1), then # = #+(1-2^ssss)
add ecx,(dword ptr [oneminustwoexpn+4*ebx]) //
nop /****************************************/ positiv_symDC: mov eax,dword ptr [compptr] //If !(compptr->compoent_needed), skip AC and DC coefts
mov edx,1 //initalize loop counter for AC coef't loop
cmp (dword ptr [eax]).component_needed,0 je skip_ACs //don't skip the AC coefficients.
mov eax,[ci] mov ebx,[block] //(*block)[0] = (JCOEF) s//
add ecx,(dword ptr[state.last_dc_val+eax*4]) //s += state.last_dc_val[ci]//
pxor mm7,mm7 //cleared for AC_coefficient calculations
mov (dword ptr[state.last_dc_val+eax*4]),ecx //state.last_dc_val[ci] = s//
mov word ptr[ebx],cx //store in (*block)
mov eax,[compptr] cmp (dword ptr[eax]).DCT_scaled_size,1 //if (compptr->DCT_scaled_size > 1) {
jle skip_ACs
// Section F.2.2.2: decode the AC coefficients
// Since zeroes are skipped, output area must be cleared beforehand
//---------------------------------------------------------------------------------
//AC loop section: Active case.
//---------------------------------------------------------------------------------
Get_AC_DCT_loop: cmp edi,8 jl Get_8_bits_ac //take a peek at the data in get_buffer.
Full_8_bits_AC: movq mm3,mm1 //copy Bit Buffer
psrlq mm1,56 //load msb from the Bit Buffer
movd ecx,mm6 //load AC Huffman Table Pointer
movd eax,mm1 //copy into integer reg. for address calculation
movq mm1,mm3 mov ebx,(dword ptr[ecx+4*eax]).look_nbits //If Huffman symbol is contained within 8 bits fetched,
//return the actual length of the sequence. If zero, len>8 bits
test ebx,ebx je Nineplus_decode_AC
sub edi,ebx //invalidate n bits from Bit Counter
movd mm2,ebx psllq mm1,mm2 //invalidate n bits from Bit Buffer
xor ebx,ebx
mov bl,(byte ptr[eax+ecx]).look_sym //load the Huffman Run Length code (rrrr|ssss) for this symbol
Got_SymbolAC: //return point from the slow Huffman routine
mov eax,ebx shr eax,4 //highest nibble is run-length of zeroes (rrrr)
add edx,eax //increment AC coefft counter by the # of zeroes. Assume array is zeroed originally
and ebx,0x000F //isolate the lowest nibble, the bit-length of the actual coeff't (ssss)
jz Special_SymbolAC //a zero for the symbol bit-length indicates it is a special symbol. Ex: 0xF0, 0x00
//test to see if # available bits from bit_buffer are less than required to fill the Huffman symbol
//if insufficient bits, load new bit_buffer through fill_bit_buffer
cmp edi,ebx //ssss in ebx
jl Get_n_bits_ac Got_n_bits_AC: sub edi,ebx //invalidate ssss bits from the Bit counter
movd mm2,ebx
movq mm3,mm4 //copy #64 into mm3
psubd mm3,mm2 //now mm3 has 64-ssss
movq mm0,mm1 //save a copy of the Bit Buffer
psllq mm1,mm2 //Invalidate ssss bits from the Bit Buffer
psrlq mm0,mm3 //shift result right
mov eax,(dword ptr[twoexpnminusone+4*ebx]) //load 2^(ssss-1)
movd ecx,mm0 cmp ecx,eax //
//
jge positiv_symAC // If # < 2^(ssss-1), then # = #+(1-2^ssss)
add ecx,(dword ptr [oneminustwoexpn+4*ebx]) //
positiv_symAC: //don't modify mm3. It has the actual AC-DCT coefficient.
// Output coefficient in natural (dezigzagged) order.
// Note: the extra entries in jpeg_natural_order[] will save us
// if the AC coefct index >= DCTSIZE2 (64), which could happen if the data is corrupted.
mov eax, dword ptr(jpeg_natural_order[4*edx]) //(*block)[jpeg_natural_order[k]]=s;
mov ebx, dword ptr [block]
mov word ptr([ebx+2*eax]),cx ContinueAC: inc edx //Ac coefct index ++
cmp edx,64 //While (index) < 64
jl Get_AC_DCT_loop //imples we are doing the loop 63 times (DC was the first, for 64 total COEFF"s)
Continue_Next_Block_AC: inc byte ptr[blkn] //process the next Coeff. block
xor eax,eax mov al,byte ptr[blkn] mov edx,dword ptr[cinfo] cmp eax,(j_decompress_ptr [edx]).blocks_in_MCU //While [blkn]<= Max number of blocks in MCU:
jge COMPLETED_MCU jmp One_Block_Loop
/***************************************************************************************/ /* DC helper Code */ /***************************************************************************************/
Get_n_bits_DC: xor ebx,ebx//pass nbits in the eax register
call fill_bit_buffer //if zero, it was probably suspended. Therefore suspend the whole DECODE_MCU
test eax,eax je Return_Fail cmp edi,8 jge Got_n_bits_DC //probable and predicted path is up.
mov ebx,1 jmp Slow_Decode_DC
not_enough_bits_DC: call fill_bit_buffer xor ebx,ebx mov bl,byte ptr[nbits] test eax,eax jne Got_enough_bits_DC jmp Return_Fail
Nineplus_Decode_DC: mov ebx,9 Slow_Decode_DC: //aka slow_label. This is the _slow_ huff_decode.
mov eax,[dctbl] mov [htbl],eax call jpeg_huff_decode_fast //assume ebx holds nbits
test eax,eax jl Return_Fail mov ebx,eax jmp Got_SymbolDC /***************************************************************************************/ /* AC helper Code */ /***************************************************************************************/
Special_SymbolAC: cmp al,0x0F jne Continue_Next_Block_AC jmp ContinueAC
Get_n_bits_ac: call fill_bit_buffer xor ebx,ebx mov bl,byte ptr[nbits] test eax,eax jne Got_n_bits_AC jmp Return_Fail
Get_8_bits_ac: call fill_bit_buffer test eax,eax je Return_Fail cmp edi,8 jge Full_8_bits_AC //probable and predicted path is up.
mov ebx,1 jmp Slow_decode_AC
Nineplus_decode_AC: mov ebx,9 Slow_decode_AC: //The slow Huffman Decode. Used when the code length is > 8 bits
mov eax,[actbl] mov [htbl],eax call jpeg_huff_decode_fast //assume ebx holds nbits
test eax,eax jl Return_Fail mov ebx,eax jmp Got_SymbolAC
//Failure, return from the routine
Return_Fail: //do not modify any permanent registers
emms } return FALSE; __asm {
//} else {
//---------------------------------------------------------------------------------
//AC loop section: Ignore case.
//---------------------------------------------------------------------------------
skip_ACs:
// Section F.2.2.2: decode the AC coefficients
// In this path we just discard the values
Ignore_AC_DCT_loop:
cmp edi,8 jl Get_8_bits_acs //take a peek at the data in get_buffer.
Full_8_bits_ACs: movq mm3,mm1 //copy Bit Buffer
psrlq mm1,56 //load msb from the Bit Buffer
movd ecx,mm6 //load AC Huffman Table Pointer
movd eax,mm1 //copy into integer reg. for address calculation
movq mm1,mm3 mov ebx,(dword ptr[ecx+4*eax]).look_nbits //If Huffman symbol is contained within 8 bits fetched,
//return the actual length of the sequence. If zero, len>8 bits
test ebx,ebx je Nineplus_Decode_ACs //If symbol > 8 bits, fetch the slow way. Called 3% of the time
sub edi,ebx //invalidate n bits from Bit Counter
movd mm2,ebx
psllq mm1,mm2 //invalidate n bits from Bit Buffer
xor ebx,ebx
mov bl,(byte ptr[eax+ecx]).look_sym //load the Huffman Run Length code (rrrr|ssss) for this symbol
Got_SymbolACs: //return point from the slow Huffman routine
mov eax,ebx shr eax,4 //highest nibble is run-length of zeroes (rrrr)
add edx,eax //increment AC coefft counter by the # of zeroes. Assume array is zeroed originally
and ebx,0x000F //isolate the lowest nibble, the bit-length of the actual coeff't (ssss)
jz Special_SymbolACs //a zero for the symbol bit-length indicates it is a special symbol. Ex: 0xF0, 0x00
//test to see if # available bits from bit_buffer are less than required to fill the Huffman symbol
//if insufficient bits, load new bit_buffer through fill_bit_buffer
cmp edi,ebx //ssss in ebx
jl Get_n_bits_acs Got_n_bits_acs: sub edi,ebx //invalidate ssss bits from the Bit counter
movd mm2,ebx psllq mm1,mm2 //Invalidate ssss bits from the Bit Buffer
Continue_ACs: inc edx //Ac coefct index ++
cmp edx,64 //While (index) < 64
jl Ignore_AC_DCT_loop //imples we are doing the loop 63 times (DC was the first, for 64 total COEFF"s)
jmp Continue_Next_Block_AC
/***************************************************************************************/ /* Skipped AC helper Code */ /***************************************************************************************/
Special_SymbolACs: cmp al,0x0F jne Continue_Next_Block_AC jmp Continue_ACs
Get_8_bits_acs: call fill_bit_buffer test eax,eax je Return_Fail cmp edi,8 jge Full_8_bits_ACs //probable and predicted path is up.
mov ebx,1 jmp Slow_Decode_ACs Get_n_bits_acs: call fill_bit_buffer xor ebx,ebx mov bl,byte ptr[nbits] test eax,eax jne Got_n_bits_acs jmp Return_Fail Nineplus_Decode_ACs: mov ebx,9 Slow_Decode_ACs: //The slow Huffman Decode. Used when the code length is > 8 bits
mov eax,[actbl] mov [htbl],eax call jpeg_huff_decode_fast //assume ebx holds nbits
test eax,eax jl Return_Fail mov ebx,eax jmp Got_SymbolACs
//} else {
COMPLETED_MCU: // Completed MCU, so update state
//BITREAD_SAVE_STATE(cinfo,entropy->bitstate)//
//#define BITREAD_SAVE_STATE(cinfop,permstate)
// cinfo->src->next_input_byte = br_state.next_input_byte
// cinfo->src->bytes_in_buffer = br_state.bytes_in_buffer
// cinfo->unread_marker = br_state.unread_marker
// entropy->bitstate.get_buffer_64 = mm1
// entropy->bitstate.bits_left = mm0
mov eax,dword ptr [br_state.unread_marker] mov ebx,dword ptr [cinfo] mov (j_decompress_ptr [ebx]).unread_marker,eax mov eax,dword ptr [br_state.next_input_byte] mov ebx,(j_decompress_ptr [ebx]).src mov (j_csrc_ptr [ebx]).next_input_byte,eax
mov eax,dword ptr [br_state.bytes_in_buffer] mov (j_csrc_ptr [ebx]).bytes_in_buffer,eax
mov eax,dword ptr [entropy] movq (qword ptr [eax]).bitstate.get_buffer_64,mm1 mov (dword ptr [eax]).bitstate.bits_left,edi
mov ebx,dword ptr [entropy] mov eax,dword ptr [state.last_dc_val+0x00] mov (dword ptr [ebx]).saved[0x00],eax mov eax,dword ptr [state.last_dc_val+0x04] mov (dword ptr [ebx]).saved[0x04],eax mov eax,dword ptr [state.last_dc_val+0x08] mov (dword ptr [ebx]).saved[0x08],eax mov eax,dword ptr [state.last_dc_val+0x0C] mov (dword ptr [ebx]).saved[0x0C],eax
// Account for restart interval (no-op if not using restarts)
emms } entropy->restarts_to_go--; return TRUE;
//----------------------------------------------------------------------
/***************************************************************************
fill_bit_buffer: Assembly procedure to decode Huffman coefficients longer than 8 bits. Also called near the end of a data segment.
Input Parameters al: minimum number of bits to get
various MMX registers and local variables must be defined; see _decode_one_mcu_inner above
This code is called very frequently ****************************************************************************/ __asm { fill_bit_buffer:
//use ecx to store bytes_in_buffer
//use ebx to store next_input_byte
//edi to store Bit Buffer length
//---------------------------------------------Main Looop----------
mov dword ptr [temp1],edx mov byte ptr[nbits],bl //number of bits to get
//format the bit buffer: shift to the right by
//64-nbits
movd mm0,edi movq mm7,mm4
mov ecx,dword ptr[br_state.bytes_in_buffer] psubd mm7,mm0
psrlq mm1,mm7 mov ebx,dword ptr[br_state.next_input_byte] //mov eax,8
//movd mm4,eax
// Attempt to read a byte */
cmp [br_state.unread_marker],0 jne no_more_data
test ecx,ecx je call_load_more_bytes //determine if there are enough bytes in the i/o buffer
continue_reading: //decrement bytes_in_buffer//
dec ecx js call_load_more_bytes //load new data
xor eax,eax mov al,byte ptr[ebx] //update next_input_byte pointer
inc ebx cmp eax,0xFF //compare ebx to FF
je got_FF
stuff_byte: psllq mm1,8 movd mm7,eax
add edi,8 por mm1,mm7
//determine if we've read enough bytes
cmp edi,56 jle continue_reading done_loading: //were done loading data.
//stuff values for bytes_in_buffer, next_input_byte
mov [br_state.next_input_byte],ebx mov [br_state.bytes_in_buffer],ecx //finish formatting the bit_register
movd mm7,edi movq mm0,mm4
psubd mm0,mm7 mov eax,0xFF
psllq mm1,mm0 mov edx, dword ptr [temp1]
ret
call_load_more_bytes: call load_more_bytes jmp continue_reading //---------------------------------------End Main Loop-----------
got_FF: //test to see if there are enough bytes in input_buffer
test ecx,ecx jne continue_reading_2 call load_more_bytes continue_reading_2: //decrement bytes_in_buffer//
dec ecx //load new data
xor eax,eax mov al,[ebx] //update next_input_byte pointer
inc ebx //do this twice?
cmp eax,0xff je got_FF test eax,eax jne eod_marker mov eax,0xFF jmp stuff_byte //stuff an 'FF'
eod_marker: //byte was an end-of-data marker
mov [br_state.unread_marker],eax //if we have enough bits in the input buffer to cover the required bits, ok.
//otherwise, warn the sytem about corrupt data.
no_more_data: movd ebx,mm0 cmp bl,[nbits] jl corrupt_data //ok, have enough data,
jmp stuff_byte_corrupt
corrupt_data: //this junk is the WARNMS macro
mov eax,dword ptr [br_state.printed_eod_ptr] cmp dword ptr [eax],0x00 jne continue_corrupt
mov eax,dword ptr [cinfo] mov eax,(j_decompress_ptr [eax]).err //the err struct is the first memer of state->cinfo
mov (j_cerr_ptr [eax]).msg_code,JWRN_HIT_MARKER push 0xffffffff
mov eax,dword ptr [cinfo] push eax
mov eax,dword ptr[cinfo] //the err struct is the first member of state->cinfo
mov eax,(j_decompress_ptr [eax]).err call (j_cerr_ptr [eax]).emit_message //call dword ptr[eax]
add esp,8 mov eax, dword ptr[br_state.printed_eod_ptr] mov dword ptr [eax],1 continue_corrupt: xor eax,eax jmp stuff_byte_corrupt
stuff_byte_corrupt: psllq mm1,8 movd mm7,eax add edi,8 por mm1,mm7
//determine if we've read enough bytes
cmp edi,56 jle stuff_byte_corrupt jmp done_loading
load_more_bytes: movd mm0,edi mov [br_state.next_input_byte],ebx mov eax,[br_state.cinfo] push eax mov eax,[br_state.cinfo] mov eax,(j_decompress_ptr[eax]).src movd mm0,edi call (j_csrc_ptr [eax]).fill_input_buffer add esp,4 //eax has the return value. If zero, bomb out
test eax,eax je return_4 //update next_input_byte and bytes_in_buffer.
mov eax,[br_state.cinfo] mov eax,(j_decompress_ptr[eax]).src mov ebx,(j_csrc_ptr [eax]).next_input_byte; mov ecx,(j_csrc_ptr [eax]).bytes_in_buffer; movd edi,mm0 mov edx,dword ptr[temp1] ret
return_4: mov eax,0x40 movd mm4,eax mov eax,0 mov edx,[temp1] emms ret
//End fill_bit_buffer--------------------------------------------------
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
/***************************************************************************
Jpeg_huff_decode_fast. Assembly procedure to decode Huffman coefficients longer than 8 bits. Also called near the end of a data segment.
Input Parameters eax: minimum number of bits for the next huffman code.
various MMX registers and local variables must be defined; see _decode_one_mcu_inner above
This code is infrequently called ****************************************************************************/
jpeg_huff_decode_fast: /* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */ push edx mov [min_bits],ebx
cmp edi,ebx jl Fill_Input_Buffer Filled_Up: sub edi,ebx movq mm3,mm4
movd mm7,ebx movq mm2,mm1 psubd mm3,mm7 psllq mm1,mm7 psrlq mm2,mm3 movd ecx,mm2 Continue_Tedious_1: //now mm7 holds the most recent code
/* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16 in the JPEG spec. */ mov eax,dword ptr [min_bits] mov edx,dword ptr [htbl] //mov ecx,dword ptr [code]
mov ebx,dword ptr [edx+eax*4].maxcode cmp ebx,ecx jge Continue_Tedious_2b
//while (code > htbl->maxcode[min_bits]) {
//movd eax,mm0
cmp edi,1 jl Fill_Input_Buffer_2 Filled_Up_2:
dec edi movq mm3,mm1
psrlq mm3,63 movd mm7,ecx psllq mm1,1 psllq mm7,1 inc [min_bits] por mm7,mm3 movd ecx,mm7 jmp Continue_Tedious_1
Fill_Input_Buffer: //al should hold the number of valid bits;
//mov eax,ebx
call fill_bit_buffer //if it returned a zero, exit with a -1.
test eax,eax je Suspend_Label //we were able to fill it with (some) data.
//jump back to the continuation of this loop:
xor ebx,ebx mov ebx,[min_bits] jmp Filled_Up
Fill_Input_Buffer_2: mov ebx,1 mov [code],ecx call fill_bit_buffer //if it returned a zero, exit with a -1.
test eax,eax je Suspend_Label //we were able to fill it with (some) data.
//jump back to the continuation of this loop:
mov ecx,[code] jmp Filled_Up_2
Continue_Tedious_2b: push edi /* With garbage input we may reach the sentinel value l = 17. */ } if (min_bits > 16) { WARNMS(br_state.cinfo, JWRN_HUFF_BAD_CODE); __asm { pop edi xor eax,eax pop edx ret } } /*code= htbl->pub->huffval[ htbl->valptr[min_bits] +
((int) (code - htbl->mincode[min_bits])) ];*/ __asm{ pop edi mov eax,dword ptr [min_bits] mov ebx,dword ptr [htbl] sub ecx,(dword ptr [ebx+eax*4]).mincode add ecx,(dword ptr [ebx+eax*4]).valptr mov ebx,(h_pub_ptr [ebx]).pub xor eax,eax mov al,(byte ptr [ecx+ebx]).huffval pop edx ret
Suspend_Label: mov eax,1 pop edx ret } } //End jpeg_huff_decode_fast-------------------------------------------------
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
#endif // defined (_X86_)
/*
* Module initialization routine for Huffman entropy decoding. */
GLOBAL(void) jinit_huff_decoder (j_decompress_ptr cinfo) { huff_entropy_ptr entropy; int i;
entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; entropy->pub.start_pass = start_pass_huff_decoder; //
// Need to add #ifdef for Alpha port
//
#if defined (_X86_)
if (vfMMXMachine) { entropy->pub.decode_mcu = decode_mcu_fast; } else #endif
{ entropy->pub.decode_mcu = decode_mcu; }
/* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } }
|