Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

419 lines
14 KiB

  1. #include "stdafx.h"
  2. #pragma hdrstop
  3. /*
  4. * jidctfst.c
  5. *
  6. * Copyright (C) 1994-1996, Thomas G. Lane.
  7. * This file is part of the Independent JPEG Group's software.
  8. * For conditions of distribution and use, see the accompanying README file.
  9. *
  10. * This file contains a fast, not so accurate integer implementation of the
  11. * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
  12. * must also perform dequantization of the input coefficients.
  13. *
  14. * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  15. * on each row (or vice versa, but it's more convenient to emit a row at
  16. * a time). Direct algorithms are also available, but they are much more
  17. * complex and seem not to be any faster when reduced to code.
  18. *
  19. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  20. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  21. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  22. * JPEG textbook (see REFERENCES section in file README). The following code
  23. * is based directly on figure 4-8 in P&M.
  24. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  25. * possible to arrange the computation so that many of the multiplies are
  26. * simple scalings of the final outputs. These multiplies can then be
  27. * folded into the multiplications or divisions by the JPEG quantization
  28. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  29. * to be done in the DCT itself.
  30. * The primary disadvantage of this method is that with fixed-point math,
  31. * accuracy is lost due to imprecise representation of the scaled
  32. * quantization values. The smaller the quantization table entry, the less
  33. * precise the scaled value, so this implementation does worse with high-
  34. * quality-setting files than with low-quality ones.
  35. */
  36. #define JPEG_INTERNALS
  37. #include "jinclude.h"
  38. #include "jpeglib.h"
  39. #include "jdct.h" /* Private declarations for DCT subsystem */
  40. #ifdef DCT_IFAST_SUPPORTED
  41. /*
  42. * This module is specialized to the case DCTSIZE = 8.
  43. */
  44. #if DCTSIZE != 8
  45. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  46. #endif
  47. /* Scaling decisions are generally the same as in the LL&M algorithm;
  48. * see jidctint.c for more details. However, we choose to descale
  49. * (right shift) multiplication products as soon as they are formed,
  50. * rather than carrying additional fractional bits into subsequent additions.
  51. * This compromises accuracy slightly, but it lets us save a few shifts.
  52. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  53. * everywhere except in the multiplications proper; this saves a good deal
  54. * of work on 16-bit-int machines.
  55. *
  56. * The dequantized coefficients are not integers because the AA&N scaling
  57. * factors have been incorporated. We represent them scaled up by PASS1_BITS,
  58. * so that the first and second IDCT rounds have the same input scaling.
  59. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
  60. * avoid a descaling shift; this compromises accuracy rather drastically
  61. * for small quantization table entries, but it saves a lot of shifts.
  62. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
  63. * so we use a much larger scaling factor to preserve accuracy.
  64. *
  65. * A final compromise is to represent the multiplicative constants to only
  66. * 8 fractional bits, rather than 13. This saves some shifting work on some
  67. * machines, and may also reduce the cost of multiplication (since there
  68. * are fewer one-bits in the constants).
  69. */
  70. #if BITS_IN_JSAMPLE == 8
  71. #define CONST_BITS 8
  72. #define PASS1_BITS 2
  73. #else
  74. #define CONST_BITS 8
  75. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  76. #endif
  77. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  78. * causing a lot of useless floating-point operations at run time.
  79. * To get around this we use the following pre-calculated constants.
  80. * If you change CONST_BITS you may want to add appropriate values.
  81. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  82. */
  83. #if CONST_BITS == 8
  84. #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
  85. #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
  86. #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
  87. #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
  88. #else
  89. #define FIX_1_082392200 FIX(1.082392200)
  90. #define FIX_1_414213562 FIX(1.414213562)
  91. #define FIX_1_847759065 FIX(1.847759065)
  92. #define FIX_2_613125930 FIX(2.613125930)
  93. #endif
  94. /* We can gain a little more speed, with a further compromise in accuracy,
  95. * by omitting the addition in a descaling shift. This yields an incorrectly
  96. * rounded result half the time...
  97. */
  98. #ifndef USE_ACCURATE_ROUNDING
  99. #undef DESCALE
  100. #define DESCALE(x,n) RIGHT_SHIFT(x, n)
  101. #endif
  102. //#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
  103. /* Multiply a DCTELEM variable by an INT32 constant, and immediately
  104. * descale to yield a DCTELEM result.
  105. */
  106. //#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
  107. #define MULTIPLY(var,const) ((DCTELEM) ((var) * (const)))
  108. /* Dequantize a coefficient by multiplying it by the multiplier-table
  109. * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
  110. * multiplication will do. For 12-bit data, the multiplier table is
  111. * declared INT32, so a 32-bit multiply will be used.
  112. */
  113. #if BITS_IN_JSAMPLE == 8
  114. //#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
  115. #define DEQUANTIZE(coef,quantval) (((coef)) * (quantval))
  116. #else
  117. #define DEQUANTIZE(coef,quantval) \
  118. DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
  119. #endif
  120. /* Like DESCALE, but applies to a DCTELEM and produces an int.
  121. * We assume that int right shift is unsigned if INT32 right shift is.
  122. */
  123. #ifdef RIGHT_SHIFT_IS_UNSIGNED
  124. #define ISHIFT_TEMPS DCTELEM ishift_temp;
  125. #if BITS_IN_JSAMPLE == 8
  126. #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
  127. #else
  128. #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
  129. #endif
  130. #define IRIGHT_SHIFT(x,shft) \
  131. ((ishift_temp = (x)) < 0 ? \
  132. (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
  133. (ishift_temp >> (shft)))
  134. #else
  135. #define ISHIFT_TEMPS
  136. #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
  137. #endif
  138. #ifdef USE_ACCURATE_ROUNDING
  139. #define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
  140. #else
  141. #define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
  142. #endif
  143. #ifdef USECSOURCE
  144. GLOBAL(void)
  145. jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  146. JCOEFPTR coef_block,
  147. JSAMPARRAY output_buf, JDIMENSION output_col)
  148. {
  149. DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  150. DCTELEM tmp10, tmp11, tmp12, tmp13;
  151. DCTELEM z5, z10, z11, z12, z13;
  152. JCOEFPTR inptr;
  153. JSAMPROW outptr;
  154. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  155. int ctr;
  156. int workspace[DCTSIZE2]; /* buffers data between passes */
  157. SHIFT_TEMPS /* for DESCALE */
  158. ISHIFT_TEMPS /* for IDESCALE */
  159. IFAST_MULT_TYPE * quantptr;
  160. int *wsptr;
  161. /* Pass 1: process columns from input, store into work array. */
  162. inptr = coef_block;
  163. quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
  164. wsptr = workspace;
  165. for (ctr = DCTSIZE; ctr > 0; ctr--) {
  166. /* Due to quantization, we will usually find that many of the input
  167. * coefficients are zero, especially the AC terms. We can exploit this
  168. * by short-circuiting the IDCT calculation for any column in which all
  169. * the AC terms are zero. In that case each output is equal to the
  170. * DC coefficient (with scale factor as needed).
  171. * With typical images and quantization tables, half or more of the
  172. * column DCT calculations can be simplified this way.
  173. */
  174. if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
  175. inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
  176. inptr[DCTSIZE*7]) == 0) {
  177. /* AC terms all zero */
  178. int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  179. wsptr[DCTSIZE*0] = dcval;
  180. wsptr[DCTSIZE*1] = dcval;
  181. wsptr[DCTSIZE*2] = dcval;
  182. wsptr[DCTSIZE*3] = dcval;
  183. wsptr[DCTSIZE*4] = dcval;
  184. wsptr[DCTSIZE*5] = dcval;
  185. wsptr[DCTSIZE*6] = dcval;
  186. wsptr[DCTSIZE*7] = dcval;
  187. inptr++; /* advance pointers to next column */
  188. quantptr++;
  189. wsptr++;
  190. continue;
  191. }
  192. /* Even part */
  193. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
  194. tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
  195. tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
  196. tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
  197. tmp10 = tmp0 + tmp2; /* phase 3 */
  198. tmp11 = tmp0 - tmp2;
  199. tmp13 = tmp1 + tmp3; /* phases 5-3 */
  200. tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
  201. tmp0 = tmp10 + tmp13; /* phase 2 */
  202. tmp3 = tmp10 - tmp13;
  203. tmp1 = tmp11 + tmp12;
  204. tmp2 = tmp11 - tmp12;
  205. /* Odd part */
  206. tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
  207. tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
  208. tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
  209. tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
  210. z13 = tmp6 + tmp5; /* phase 6 */
  211. z10 = tmp6 - tmp5;
  212. z11 = tmp4 + tmp7;
  213. z12 = tmp4 - tmp7;
  214. tmp7 = z11 + z13; /* phase 5 */
  215. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
  216. z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
  217. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
  218. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
  219. tmp6 = tmp12 - tmp7; /* phase 2 */
  220. tmp5 = tmp11 - tmp6;
  221. tmp4 = tmp10 + tmp5;
  222. wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
  223. wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
  224. wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
  225. wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
  226. wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
  227. wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
  228. wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
  229. wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
  230. inptr++; /* advance pointers to next column */
  231. quantptr++;
  232. wsptr++;
  233. }
  234. /* Pass 2: process rows from work array, store into output array. */
  235. /* Note that we must descale the results by a factor of 8 == 2**3, */
  236. /* and also undo the PASS1_BITS scaling. */
  237. wsptr = workspace;
  238. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  239. outptr = output_buf[ctr] + output_col;
  240. /* Rows of zeroes can be exploited in the same way as we did with columns.
  241. * However, the column calculation has created many nonzero AC terms, so
  242. * the simplification applies less often (typically 5% to 10% of the time).
  243. * On machines with very fast multiplication, it's possible that the
  244. * test takes more time than it's worth. In that case this section
  245. * may be commented out.
  246. */
  247. #ifndef NO_ZERO_ROW_TEST
  248. if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
  249. wsptr[7]) == 0) {
  250. /* AC terms all zero */
  251. JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
  252. & RANGE_MASK];
  253. outptr[0] = dcval;
  254. outptr[1] = dcval;
  255. outptr[2] = dcval;
  256. outptr[3] = dcval;
  257. outptr[4] = dcval;
  258. outptr[5] = dcval;
  259. outptr[6] = dcval;
  260. outptr[7] = dcval;
  261. wsptr += DCTSIZE; /* advance pointer to next row */
  262. continue;
  263. }
  264. #endif
  265. /* Even part */
  266. tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
  267. tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
  268. tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
  269. tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
  270. - tmp13;
  271. tmp0 = tmp10 + tmp13;
  272. tmp3 = tmp10 - tmp13;
  273. tmp1 = tmp11 + tmp12;
  274. tmp2 = tmp11 - tmp12;
  275. /* Odd part */
  276. z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
  277. z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
  278. z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
  279. z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
  280. tmp7 = z11 + z13; /* phase 5 */
  281. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
  282. z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
  283. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
  284. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
  285. tmp6 = tmp12 - tmp7; /* phase 2 */
  286. tmp5 = tmp11 - tmp6;
  287. tmp4 = tmp10 + tmp5;
  288. /* Final output stage: scale down by a factor of 8 and range-limit */
  289. outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
  290. & RANGE_MASK];
  291. outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
  292. & RANGE_MASK];
  293. outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
  294. & RANGE_MASK];
  295. outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
  296. & RANGE_MASK];
  297. outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
  298. & RANGE_MASK];
  299. outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
  300. & RANGE_MASK];
  301. outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
  302. & RANGE_MASK];
  303. outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
  304. & RANGE_MASK];
  305. wsptr += DCTSIZE; /* advance pointer to next row */
  306. }
  307. }
  308. #else
  309. extern void midct8x8aan(short* dctcoeff, short* tempcoeff, short* quantptr,
  310. JSAMPARRAY output_buf, JDIMENSION output_col,
  311. JSAMPLE *range_limit ) ;
  312. extern void pidct8x8aan(short* dctcoeff, short* tempcoeff, short* quantptr,
  313. JSAMPARRAY output_buf, JDIMENSION output_col,
  314. JSAMPLE *range_limit ) ;
  315. /*
  316. * Perform dequantization and inverse DCT on one block of coefficients.
  317. */
  318. GLOBAL(void)
  319. jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  320. JCOEFPTR coef_block,
  321. JSAMPARRAY output_buf, JDIMENSION output_col)
  322. {
  323. short * quantptr;
  324. short * wsptr;
  325. JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  326. short aworkspace[DCTSIZE2+8] ;
  327. // ensure that the temporary working space is quad aligned
  328. wsptr = (short *)((INT32)(aworkspace) + 0x8) ;
  329. wsptr = (short *)((INT32)(wsptr) & 0xfffffff8) ;
  330. quantptr = (short *) compptr->dct_table;
  331. // do the 2-Dal idct and store the corresponding results
  332. // from the range_limit array
  333. if(vfMMXMachine) {
  334. midct8x8aan(coef_block, wsptr, quantptr, output_buf, output_col, range_limit) ;
  335. }
  336. else {
  337. pidct8x8aan(coef_block, wsptr, quantptr, output_buf, output_col, range_limit) ;
  338. }
  339. }
  340. #endif //USECSOURCE
  341. #endif /* DCT_IFAST_SUPPORTED */