|
|
#include "precomp.h"
//
// BCD.CPP
// Bitmap Compression-Decompression
//
// Copyright(c) Microsoft 1997-
//
#define MLZ_FILE_ZONE ZONE_ORDER
//
// Introduction
//
// These functions take a bitmap and encode it according to the codes
// defined in bcd.h. Although there are some complexities in the
// encoding (particularly with the "sliding palette" encoding for
// compressing 8 bit down to 4 bit) the encodings should be self
// explanatory. bcd describes some nuances of the encoding scheme.
//
// The important thing to note is that, when used in conjunction with a
// dictionary based compression scheme the objective of this function is
// not to minimize the output but to "prime" it such that the GDC can
// perform faster and more effectively on the data.
//
// Specifically we must NOT encode short runs in the data, even though we
// know that they reduce the output from this stage, as they will
// invariably reduce the efficiency of the GDC compression by a greater
// factor! The break even point seems to be about a 5/6 byte run. To
// illustrate this, consider the following run
// xxxxyyyyyxxxyyyxxxxxyyyyyyxxxyyyxxxxyyy We would encode this as
// 4x5y3x3y5x5y3x3y4x3y The compression factor is only *2 and yet the
// output data is now much more random - the tokenized look of the input
// has been lost.
//
// Encodings that are not context independent are particularly bad. A FG
// run in one position may become a SET+FG run in another position, thus
// "randomizing" the data.
//
// Bottom line is that all of the apparently arbitrary numbers below have
// been carefully tuned to prep the data for input to GDC. Screwing them
// down does increase the compression of this stage in some cases by as
// much as 20%, but loses about 20% post GDC. Frustrating! Be warned.
//
//
//
// BCD_ShareStarting()
// Creates resources needed for bitmap compression/decompression
//
BOOL ASShare::BCD_ShareStarting(void) { BOOL rc = FALSE;
DebugEntry(ASShare::BCD_ShareStarting);
// Allocate BCD scratch buffers
m_abNormal = new BYTE[BCD_NORMALSIZE]; if (!m_abNormal) { ERROR_OUT(("BCD_ShareStarting: failed to alloc m_abNormal")); DC_QUIT; }
m_abXor = new BYTE[BCD_XORSIZE]; if (!m_abXor) { ERROR_OUT(("BCD_ShareStarting: failed to alloc m_abXor")); DC_QUIT; }
m_amatch = new MATCH[BCD_MATCHCOUNT]; if (!m_amatch) { ERROR_OUT(("BCD_ShareStarting: failed to alloc m_amatch")); DC_QUIT; }
rc = TRUE;
DC_EXIT_POINT: DebugExitBOOL(ASShare::BCD_ShareStarting, rc); return(rc); }
//
// BCD_ShareEnded()
//
void ASShare::BCD_ShareEnded(void) { DebugEntry(ASShare::BCD_ShareEnded);
//
// Free the BCD scratch buffers
//
if (m_amatch) { delete[] m_amatch; m_amatch = NULL; }
if (m_abXor) { delete[] m_abXor; m_abXor = NULL; }
if (m_abNormal) { delete[] m_abNormal; m_abNormal = NULL; }
DebugExitVOID(ASShare::BCD_ShareEnded); }
//
// BC_CompressBitmap(..)
//
BOOL ASShare::BC_CompressBitmap ( LPBYTE pSrcBitmap, LPBYTE pDstBuffer, LPUINT pDstBufferSize, UINT bitmapWidth, UINT bitmapHeight, UINT cBpp, LPBOOL pLossy ) { BOOL fCompressedData = FALSE; UINT cbScanWidth; PCD_HEADER pCompDataHeader; LPBYTE pCompData; UINT cbUncompressedDataSize; UINT cbFreeDstBytes; UINT cbCompFirstRowSize; UINT cbCompMainBodySize;
DebugEntry(ASShare::BC_CompressBitmap);
//
// We support 4 and 8 bpp only
//
if ((cBpp != 4) && (cBpp != 8)) { TRACE_OUT(("BC_CompressBitmap: No compression at %d bpp", cBpp)); DC_QUIT; }
//
// If we don't have scratch buffers, can't do it either
// But for now, we just won't enter into a share if we can't allocate
// themm.
//
ASSERT(m_abNormal); ASSERT(m_abXor); ASSERT(m_amatch);
cbScanWidth = BYTES_IN_SCANLINE(bitmapWidth, cBpp);
//
// Take a local copy of the destination buffer size.
//
cbFreeDstBytes = *pDstBufferSize;
//
// Calculate the size of the uncompressed src data.
//
cbUncompressedDataSize = cbScanWidth * bitmapHeight;
//
// Check that the size of the uncompressed data is less than our max.
//
ASSERT(cbUncompressedDataSize < TSHR_MAX_SEND_PKT);
//
// We write a compressed data header at the start of the dst buffer.
// Reserve space for it now, and fill in the size of the uncompressed
// data.
//
if (sizeof(CD_HEADER) >= cbFreeDstBytes) { WARNING_OUT(("BC_CompressBitmap: Dest buffer too small: %d", cbFreeDstBytes)); DC_QUIT; }
pCompDataHeader = (PCD_HEADER)pDstBuffer; pCompDataHeader->cbUncompressedSize = (TSHR_UINT16)cbUncompressedDataSize; pCompData = ((LPBYTE)pCompDataHeader) + sizeof(CD_HEADER); cbFreeDstBytes -= sizeof(CD_HEADER);
//
// Compress the bitmap data.
// We just pass the complete image into the compression function.
// The header size in the packet is set to 0 and the whole thing
// flows as the main body
//
cbCompFirstRowSize = 0; // lonchanc: a must for V2
cbCompMainBodySize = CompressV2Int(pSrcBitmap, pCompData, bitmapWidth*bitmapHeight, cBpp, cbScanWidth, cbFreeDstBytes, pLossy, m_abNormal, m_abXor, m_amatch);
if (cbCompMainBodySize == 0) { WARNING_OUT(("BC_CompressBitmap: Compression failed")); DC_QUIT; }
//
// Fill in the compressed data header.
//
pCompDataHeader->cbCompFirstRowSize = (TSHR_UINT16)cbCompFirstRowSize; pCompDataHeader->cbCompMainBodySize = (TSHR_UINT16)cbCompMainBodySize; pCompDataHeader->cbScanWidth = (TSHR_UINT16)cbScanWidth;
ASSERT(IsV2CompressedDataHeader(pCompDataHeader));
//
// Write back the new (compressed) packet size.
//
*pDstBufferSize = sizeof(CD_HEADER) + cbCompFirstRowSize + cbCompMainBodySize;
TRACE_OUT(("Bitmap Compressed %u bytes to %u", cbUncompressedDataSize, *pDstBufferSize));
fCompressedData = TRUE;
DC_EXIT_POINT: DebugExitBOOL(ASShare::BC_CompressBitmap, fCompressedData); return(fCompressedData); }
//
// BD_DecompressBitmap(..)
//
BOOL ASShare::BD_DecompressBitmap ( LPBYTE pCompressedData, LPBYTE pDstBitmap, UINT cbSrcData, UINT bitmapWidth, UINT bitmapHeight, UINT cBpp ) { BOOL fDecompressedData = FALSE; PCD_HEADER pCompDataHeader; LPBYTE pCompDataFirstRow; LPBYTE pCompDataMainBody; UINT decompSize;
DebugEntry(ASShare::BD_DecompressBitmap);
//
// We currently support 4 and 8 bpp bitmaps only
//
if ((cBpp != 4) && (cBpp != 8)) { ERROR_OUT(("BD_DecompressBitmap: Unsupported bpp %d", cBpp)); DC_QUIT; }
//
// Work out the location in the source data of each component.
//
pCompDataHeader = (PCD_HEADER)pCompressedData;
pCompDataFirstRow = (LPBYTE)pCompDataHeader + sizeof(CD_HEADER); pCompDataMainBody = pCompDataFirstRow + pCompDataHeader->cbCompFirstRowSize; ASSERT(IsV2CompressedDataHeader(pCompDataHeader));
TRACE_OUT(( "FirstRowSize(%u) MainBodySize(%u) ScanWidth(%u)", pCompDataHeader->cbCompFirstRowSize, pCompDataHeader->cbCompMainBodySize, pCompDataHeader->cbScanWidth ));
//
// Check that the supplied data size matches our expectations.
//
if (cbSrcData != sizeof(CD_HEADER) + pCompDataHeader->cbCompFirstRowSize + pCompDataHeader->cbCompMainBodySize ) { ERROR_OUT(("BD_DecompressBitmap: Supplied packet size %u does not match bitmap header", cbSrcData)); DC_QUIT; }
//
// As with compression, the V2 decompression function just takes
// the whole image for decompression.
// THE ABSENCE OF A FIRST LINE COUNT DOES, IN FACT, INDICATE TO US
// THAT THIS IS A V2 COMPRESSED BITMAP.
//
if (pCompDataHeader->cbCompFirstRowSize != 0) { ERROR_OUT(("BD_DecompressBitmap: Bogus header data")); } else { ASSERT(m_abXor);
decompSize = DecompressV2Int(pCompDataFirstRow, pDstBitmap, pCompDataHeader->cbCompMainBodySize, cBpp, pCompDataHeader->cbScanWidth, m_abXor);
TRACE_OUT(("Bitmap Exploded %u bytes from %u", decompSize, cbSrcData));
fDecompressedData = TRUE; }
DC_EXIT_POINT: DebugExitBOOL(ASShare::BD_DecompressBitmap, fDecompressedData); return(fDecompressedData); }
//
//
// Create a second copy of the source, which consists of all lines XORed,
// if there is a rowDelta specified
//
// Scan both the non-xored and the xored buffers for matches
//
// A best matches are built up in an array which contains an index to the
// match type, together with the match type. Non repetetive sequences are
// stored in this array as color image strings.
//
//
//
// The following constant controls the threshold at which we decide that
// a lossy compress is a pointless overhead. For low bandwidth connections
// DC-Share will always initially request a lossy compress to get some
// data out quickly. If we find that the percentage of COLOR_IMAGE data
// is below this threshold then we turn off lossy compression for this
// bitmap, redo the analysis, perform non-lossy compression and return
// an indication to the caller that the compression was non-lossy.
//
#define LOSSY_THRESHOLD 75
//
// The following functions have been carefully coded to ensure that the
// 16 bit compiler can minimize its switching of segment registers.
// However, this will not impair its performance on 32 bit systems.
//
//
// Utility macros for encoding orders
//
//
// Encode a combined order and set fg color
//
#define ENCODE_SET_ORDER_MEGA(buffer, \
order_code, \ length, \ mega_order_code, \ DEF_LENGTH_ORDER, \ DEF_LENGTH_LONG_ORDER) \ if (length <= DEF_LENGTH_ORDER) \ { \ *buffer++ = (BYTE)((BYTE)order_code | (BYTE)length); \ } \ else \ { \ if (length <= DEF_LENGTH_LONG_ORDER) \ { \ *buffer++ = (BYTE)order_code; \ *buffer++ = (BYTE)(length-DEF_LENGTH_ORDER-1); \ } \ else \ { \ *buffer++ = (BYTE)mega_order_code; \ INSERT_TSHR_UINT16_UA( buffer, (TSHR_UINT16)length); \ buffer += 2; \ } \ } \ *buffer++ = fgChar;
//
// Encode a combined order and set fg color for a special FGBG image
//
#define ENCODE_SET_ORDER_MEGA_FGBG(buffer, \
order_code, \ length, \ mega_order_code, \ DEF_LENGTH_ORDER, \ DEF_LENGTH_LONG_ORDER) \ if (((length & 0x0007) == 0) && \ (length <= DEF_LENGTH_ORDER)) \ { \ *buffer++ = (BYTE)((BYTE)order_code | (BYTE)(length/8));\ } \ else \ { \ if (length <= DEF_LENGTH_LONG_ORDER) \ { \ *buffer++ = (BYTE)order_code; \ *buffer++ = (BYTE)(length-1); \ } \ else \ { \ *buffer++ = (BYTE)mega_order_code; \ INSERT_TSHR_UINT16_UA( buffer, (TSHR_UINT16)length); \ buffer += 2; \ } \ } \ *buffer++ = fgChar;
//
// Encode an order for a standard run
//
#define ENCODE_ORDER_MEGA(buffer, \
order_code, \ length, \ mega_order_code, \ DEF_LENGTH_ORDER, \ DEF_LENGTH_LONG_ORDER) \ if (length <= DEF_LENGTH_ORDER) \ { \ *buffer++ = (BYTE)((BYTE)order_code | (BYTE)length); \ } \ else \ { \ if (length <= DEF_LENGTH_LONG_ORDER) \ { \ *buffer++ = (BYTE)order_code; \ *buffer++ = (BYTE)(length-DEF_LENGTH_ORDER-1); \ } \ else \ { \ *buffer++ = (BYTE)mega_order_code; \ INSERT_TSHR_UINT16_UA( buffer, (TSHR_UINT16)length); \ buffer += 2; \ } \ }
//
// Encode a special FGBG image
//
#define ENCODE_ORDER_MEGA_FGBG(buffer, \
order_code, \ length, \ mega_order_code, \ DEF_LENGTH_ORDER, \ DEF_LENGTH_LONG_ORDER) \ if (((length & 0x0007) == 0) && \ (length <= DEF_LENGTH_ORDER)) \ { \ *buffer++ = (BYTE)((BYTE)order_code | (BYTE)(length/8));\ } \ else \ { \ if (length <= DEF_LENGTH_LONG_ORDER) \ { \ *buffer++ = (BYTE)order_code; \ *buffer++ = (BYTE)(length-1); \ } \ else \ { \ *buffer++ = (BYTE)mega_order_code; \ INSERT_TSHR_UINT16_UA( buffer, (TSHR_UINT16)length); \ buffer += 2; \ } \ }
//
// Macros to extract the length from order codes
//
#define EXTRACT_LENGTH(buffer, length) \
length = *buffer++ & MAX_LENGTH_ORDER; \ if (length == 0) \ { \ length = *buffer++ + MAX_LENGTH_ORDER + 1; \ }
#define EXTRACT_LENGTH_LITE(buffer, length) \
length = *buffer++ & MAX_LENGTH_ORDER_LITE; \ if (length == 0) \ { \ length = *buffer++ + MAX_LENGTH_ORDER_LITE + 1; \ }
#define EXTRACT_LENGTH_FGBG(buffer, length) \
length = *buffer++ & MAX_LENGTH_ORDER; \ if (length == 0) \ { \ length = *buffer++ + 1; \ } \ else \ { \ length = length << 3; \ }
#define EXTRACT_LENGTH_FGBG_LITE(buffer, length) \
length = *buffer++ & MAX_LENGTH_ORDER_LITE; \ if (length == 0) \ { \ length = *buffer++ + 1; \ } \ else \ { \ length = length << 3; \ }
//
// RunSingle
//
// Determine the length of the current run
//
// RunSingle may only be called if the buffer has at least four
// consecutive identical bytes from the start position
//
// For 16 bit processing there are two versions of this macro. For 32
// bit the nulling of NEAR/FAR will make them the same.
//
#define RUNSINGLE_XOR(buffer, length, result) \
{ \ BYTE NEAR *buf = buffer+4; \ BYTE NEAR *endbuf = buffer+length-4; \ while ((buf < endbuf) && \ (EXTRACT_TSHR_UINT32_UA(buf) == EXTRACT_TSHR_UINT32_UA(buf-4))) \ { \ buf += 4; \ } \ endbuf += 4; \ while(buf < endbuf && (*buf == *(buf-1))) \ { \ buf++; \ } \ result = (DWORD)(buf - (buffer)); \ }
#define RUNSINGLE_NRM(buffer, length, result) \
{ \ BYTE FAR *buf = buffer+4; \ BYTE FAR *endbuf = buffer+length-4; \ while ((buf < endbuf) && \ (EXTRACT_TSHR_UINT32_UA(buf) == EXTRACT_TSHR_UINT32_UA(buf-4))) \ { \ buf += 4; \ } \ endbuf += 4; \ while(buf < endbuf && (*buf == *(buf-1))) \ { \ buf++; \ } \ result = (DWORD)(buf - (buffer)); \ }
//
// RunDouble
//
// Determine the length of the current run of paired bytes
//
#define RunDouble(buffer, length, result) \
{ \ int len = ((int)length); \ BYTE FAR *buf = buffer; \ BYTE testchar1 = *buf; \ BYTE testchar2 = *(buf+1); \ result = 0; \ while(len > 1) \ { \ if (*buf++ != testchar1) \ { \ break; \ } \ if (*buf++ != testchar2) \ { \ break; \ } \ result += 2; \ len -= 2; \ } \ }
//
// RUNFGBG
//
// Determine the length of the run of bytes that consist
// only of black or a single FG color
// We exit the loop when
// - the next character is not a fg or bg color
// - we hit a run of 24 of the FG or BG color
// 24 may seem excessive, but note the following sample compression:
// 12 16 20 24 28
// Pre GDC 3845 3756 3712 3794 3822
// Post GDC 2401 2313 2286 2189 2209
//
//
#define RUNFGBG(buffer, length, result, work) \
{ \ BYTE NEAR *buf = buffer; \ BYTE NEAR *endbuf = buffer + length; \ result = 0; \ work = *buf; \ while (TRUE) \ { \ buf++; \ result++; \ if (buf >= endbuf) \ { \ break; \ } \ \ if ((*buf != work) && (*buf != 0)) \ { \ break; \ } \ \ if ((result & 0x0007) == 0) \ { \ if ((*buf == *(buf+1)) && \ (EXTRACT_TSHR_UINT16_UA(buf) == \ EXTRACT_TSHR_UINT16_UA(buf+ 2)) && \ (EXTRACT_TSHR_UINT32_UA(buf) == \ EXTRACT_TSHR_UINT32_UA(buf+ 4)) && \ (EXTRACT_TSHR_UINT32_UA(buf) == \ EXTRACT_TSHR_UINT32_UA(buf+ 8)) && \ (EXTRACT_TSHR_UINT32_UA(buf) == \ EXTRACT_TSHR_UINT32_UA(buf+12)) && \ (EXTRACT_TSHR_UINT32_UA(buf) == \ EXTRACT_TSHR_UINT32_UA(buf+16)) && \ (EXTRACT_TSHR_UINT32_UA(buf) == \ EXTRACT_TSHR_UINT32_UA(buf+20)) ) \ { \ break; \ } \ } \ } \ }
//
// Determine whether a run is better than any previous run
// For efficiency we take any run of 32 pels or more without looking
// further.
//
#define CHECK_BEST_RUN(run_type, run_length, bestrun_length, bestrun_type) \
if (run_length > bestrun_length) \ { \ bestrun_length = run_length; \ bestrun_type = run_type; \ if (bestrun_length >= 32) \ { \ break; \ } \ }
//
// SETFGCHAR
//
// Set up a new value in fgChar and recalculate the shift
//
#define CHECK_WORK(workchar)
#define SETFGCHAR(newchar, curchar, curshift) \
curchar = newchar; \ { \ BYTE workchar = curchar; \ curshift = 0; \ CHECK_WORK(workchar); \ while ((workchar & 0x01) == 0) \ { \ curshift++; \ workchar = (BYTE)(workchar>>1); \ } \ }
//
// Macro to store an FGBG image
//
#define STORE_FGBG(xorbyte, fgbgChar, fgChar, bits) \
{ \ UINT numbits = bits; \ if (fgbgChar & 0x01) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x02) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x04) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x08) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x10) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x20) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x40) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ if (--numbits > 0) \ { \ if (fgbgChar & 0x80) \ { \ *destbuf++ = (BYTE)(xorbyte ^ fgChar); \ } \ else \ { \ *destbuf++ = xorbyte; \ } \ } \ } \ } \ } \ } \ } \ } \ }
//
// ENCODEFGBG
//
// Encode 8 bytes of FG and black into a one byte bitmap representation
//
// The FgChar will always be non-zero, and therefore must have at least one
// bit set.
//
// We arrange that all bytes have this bit in their lowest position
//
// The zero pels will still have a 0 in the lowest bit.
//
// Getting the result is a 4 stage process
//
// 1) Get the wanted bits into bit 0 of each byte
//
// <***************work1*****************>
// 31 0
// 0000 000d 0000 000c 0000 000b 0000 000a
// ^ ^ ^ ^
// <***************work2*****************>
// 31 0
// 0000 000h 0000 000g 0000 000f 0000 000e
// ^ ^ ^ ^
//
// a..h = bits that we want to output
//
// We just need to collect the indicated bits and squash them into a single
// byte.
//
// 2) Compress down to 32 bits
//
// <***************work1*****************>
// 31 0
// 000h 000d 000g 000c 000f 000b 000e 000a
// ^ ^ ^ ^ ^ ^ ^ ^
//
// 3) Compress down to 16 bits
//
// <******work*******>
// 15 0
// 0h0f 0d0b 0g0e 0c0a
// ^ ^ ^ ^
//
// 4) Compress down to 8 bits
//
// hgfedcba
//
#define ENCODEFGBG(result) \
{ \ UINT work1; \ UINT work2; \ UINT work; \ \ work1 = (((UINT)(xorbuf[srcOffset]) ) | \ ((UINT)(xorbuf[srcOffset+1]) << 8) | \ ((UINT)(xorbuf[srcOffset+2]) << 16) | \ ((UINT)(xorbuf[srcOffset+3]) << 24)); \ work2 = (((UINT)(xorbuf[srcOffset+4]) ) | \ ((UINT)(xorbuf[srcOffset+5]) << 8) | \ ((UINT)(xorbuf[srcOffset+6]) << 16) | \ ((UINT)(xorbuf[srcOffset+7]) << 24)); \ \ work1 = (work1 >> fgShift) & 0x01010101; \ work2 = (work2 >> fgShift) & 0x01010101; \ \ work1 = (work2 << 4) | work1; \ \ work = work1 | (work1 >> 14); \ \ result = ((BYTE)(((BYTE)(work>>7)) | ((BYTE)work))); \ }
//
// Unpack4bpp
//
// Convert a 4bpp bitmap into an 8bpp one
//
void Unpack4bpp(LPBYTE destbuf, LPBYTE srcbuf, UINT srclen) { do { *destbuf++ = (BYTE)((*srcbuf) >> 4); *destbuf++ = (BYTE)((*srcbuf) & 0x0F); srcbuf++; } while (--srclen > 0); }
//
// Pack4bpp
//
// Convert an 8bpp bitmap back to 4bpp
//
void Pack4bpp(LPBYTE destbuf, LPBYTE srcbuf, UINT srclen) { BYTE work1, work2;
DebugEntry(Pack4bpp);
while (srclen > 1) { work1 = (BYTE)(*srcbuf++ << 4); work2 = (BYTE)(*srcbuf++ & 0x0F); *destbuf++ = (BYTE)(work1 | work2); srclen -= 2; } if (srclen > 0) { *destbuf++ = (BYTE)(*srcbuf++ << 4); }
DebugExitVOID(Pack4bpp); }
//
// XORBuffer
//
// Create an XOR image of the input bitmap
//
// Note: This function assumes that rowDelta is always a multiple of 4, and
// that destbuf and srcbuf start on a 4 byte boundary. It does not deal
// with unaligned accesses if this is not true.
//
void XORBuffer(BYTE NEAR *destbuf, BYTE FAR *srcbuf, UINT srclen, int rowDelta) { UINT NEAR *dwdest = (UINT NEAR *)destbuf;
DebugEntry(XORBuffer);
ASSERT((rowDelta % 4 == 0)); ASSERT((((UINT_PTR)destbuf) % 4 == 0)); ASSERT((((UINT_PTR)srcbuf) % 4 == 0));
while (srclen > 8) { *dwdest++ = *((LPUINT)srcbuf) ^ *((LPUINT)(srcbuf+rowDelta)); srclen -= 4; srcbuf += 4; *dwdest++ = *((LPUINT)srcbuf) ^ *((LPUINT)(srcbuf+rowDelta)); srclen -= 4; srcbuf += 4; } if (srclen) { destbuf = (BYTE NEAR *)dwdest; while(srclen) { *destbuf++ = (BYTE)(*srcbuf++ ^ *(srcbuf+rowDelta)); srclen--; } }
DebugExitVOID(XORBuffer); }
//
// CompressV2Int
//
// Internal compresssion function
//
// The work buffer addresses are moved onto the stack, thus eliminating any
// need to use DS to address the default data segment. This allows the
// compiler to perform more general optimizations.
//
UINT CompressV2Int(LPBYTE pSrc, LPBYTE pDst, UINT numPels, UINT bpp, UINT rowDelta, UINT dstBufferSize, LPBOOL pLossy, LPBYTE nrmbuf, LPBYTE xorbuf, MATCH FAR *match) {
int i; UINT srcOffset; UINT matchindex; UINT bestRunLength; UINT nextRunLength; UINT runLength; UINT bestFGRunLength; UINT checkFGBGLength; UINT scanCount; BOOL firstLine; UINT saveNumPels; BOOL saveLossy; BOOL lossy; BYTE bestRunType = 0; LPBYTE destbuf = pDst; BYTE fgChar = 0xFF; BYTE fgCharWork = 0xFF; BYTE fgShift = 0; BOOL lossyStarted = FALSE; BOOL inColorRun = FALSE; UINT compressedLength = 0;
DebugEntry(CompressV2Int);
//
// Validate the line length
//
if ((numPels < rowDelta) || (rowDelta & 0x0003) || (numPels & 0x0003)) { WARNING_OUT(( "Lines must be a multiple of 4 pels")); DC_QUIT; }
//
// First create the character and XOR buffers
//
if (bpp == 4) { Unpack4bpp(nrmbuf, pSrc, numPels/2);
} else { nrmbuf = pSrc; }
//
// Set up the first portion of the XORBUF to contain the source buffer
//
memcpy(xorbuf, nrmbuf, rowDelta);
//
// Calculate the rest of the XOR buffer
//
XORBuffer( xorbuf+rowDelta, nrmbuf+rowDelta, numPels-rowDelta, -(int)rowDelta);
//
// Loop processing the input
// We perform the loop twice, the first time for the non-xor portion
// of the buffer and the second for the XOR portion
// Note that we start the run at a match index of 2 to avoid having
// to special case the startup condition in some of the match
// merging code
// The first time through is always a non-lossy pass. If we find
// enough incompressible data then we redo the compression in lossy
// mode. To achieve this we set saveLossy = FALSE here and reset it
// following the first scan.
//
saveLossy = FALSE;
RESTART_COMPRESSION_IN_LOSSY_MODE: srcOffset = 0; firstLine = TRUE; match[0].type = 0; match[1].type = 0; matchindex = 2; saveNumPels = numPels;
//
// Until we enter XOR mode we do not allow lossy compression on a
// non-XOR request so set up to process just the first line.
// Also, if the user is requesting a lossy compression then we
// perform an initial full non-lossy pass to see if the request is
// worthwhile.
//
lossy = FALSE; numPels = rowDelta;
for (scanCount = 0; scanCount < 2; scanCount++) {
while (srcOffset < numPels) { //
// Give up if we are nearing the end of the match array
//
if (matchindex >= BCD_MATCHCOUNT) { DC_QUIT; }
//
// Start a while loop to allow a more structured break when we
// hit the first run type we want to encode (We can't afford
// the overheads of a function call to provide the scope here.)
//
while (TRUE) { bestRunLength = 0; bestFGRunLength = 0;
//
// If we are hitting the end of the buffer then just take
// color characters now - take them one at a time so that
// lossy encoding still works. We will only hit this
// condition if we break out of a run just before the end
// of the buffer, so this should not be too common a
// situation, which is good given that we are encoding the
// final 6 bytes uncompressed.
//
if (srcOffset+6 >= numPels) { bestRunType = IMAGE_COLOR; bestRunLength = 1; break; }
//
// First do the scans on the XOR buffer. Look for a
// character run or a BG run. Note that if there is no row
// delta then xorbuf actually points to the normal buffer.
// We must do the test independent of how long the run
// might be because even for a 1 pel BG run our later logic
// requires that we detect it seperately. This code is
// absolute main path so fastpath as much as possible. In
// particular detect short bg runs early and allow
// RunSingle to presuppose at least 4 matching bytes
//
if (xorbuf[srcOffset] == 0x00) { if (((srcOffset+1) >= numPels) || (xorbuf[srcOffset+1] != 0x00)) { bestRunType = RUN_BG; bestRunLength = 1; if (!inColorRun) { break; } } else { if (((srcOffset+2) >= numPels) || (xorbuf[srcOffset+2] != 0x00)) { bestRunType = RUN_BG; bestRunLength = 2; if (!inColorRun) { break; } } else { if (((srcOffset+3) >= numPels) || (xorbuf[srcOffset+3] != 0x00)) { bestRunType = RUN_BG; bestRunLength = 3; if (!inColorRun) { break; } } else { RUNSINGLE_XOR(xorbuf+srcOffset, numPels-srcOffset, bestFGRunLength); CHECK_BEST_RUN(RUN_BG, bestFGRunLength, bestRunLength, bestRunType); if (!inColorRun) { break; } } } } } else { //
// No point in starting if FG run less than 4 bytes so
// check the first dword as quickly as possible Note
// that we don't need to check for an end-buffer
// condition here because our XOR buffer always has
// some free space at the end and the RUNSINGLE_XOR
// will break at the correct place
//
if ( (xorbuf[srcOffset] == xorbuf[srcOffset+1]) && (xorbuf[srcOffset] == xorbuf[srcOffset+2]) && (xorbuf[srcOffset] == xorbuf[srcOffset+3]) ) { RUNSINGLE_XOR(xorbuf+srcOffset, numPels-srcOffset, bestFGRunLength); //
// Don't permit a short FG run to prevent a FGBG
// image from starting up. Only take if >= 5
//
if (bestFGRunLength > 5) { CHECK_BEST_RUN(RUN_FG, bestFGRunLength, bestRunLength, bestRunType); } } }
//
// Look for sequences in the non XOR buffer In this case we
// insist upon a run of at least 6 pels
//
if ( (nrmbuf[srcOffset] == nrmbuf[srcOffset + 2]) && (nrmbuf[srcOffset] == nrmbuf[srcOffset + 4]) && (nrmbuf[srcOffset + 1] == nrmbuf[srcOffset + 3]) && (nrmbuf[srcOffset + 1] == nrmbuf[srcOffset + 5]) ) { //
// Now do the scan on the normal buffer for a character
// run Don't bother if first line because we will have
// found it already in the XOR buffer, since we just
// copy nrmbuf to xorbuf for the first line
//
if (*(nrmbuf+srcOffset) == *(nrmbuf+srcOffset+1)) { if (!firstLine) { RUNSINGLE_NRM(nrmbuf+srcOffset, numPels-srcOffset, nextRunLength); if (nextRunLength > 5) { CHECK_BEST_RUN(RUN_COLOR, nextRunLength, bestRunLength, bestRunType); } } } else { //
// Look for a dither on the nrm buffer Dithers are
// not very efficient for short runs so only take
// if 8 or longer
//
RunDouble(nrmbuf+srcOffset, numPels-srcOffset, nextRunLength); if (nextRunLength > 9) { CHECK_BEST_RUN(RUN_DITHER, nextRunLength, bestRunLength, bestRunType); } } }
//
// If nothing so far then look for a FGBG run (The 6 is
// carefully tuned!)
//
if (bestRunLength < 6) { //
// But first look for a single fg bit breaking up a BG
// run. If so then encode a BG run. Careful of the
// enforced BG run break across the first line
// non-XOR/XOR boundary.
//
if ((EXTRACT_TSHR_UINT32_UA(xorbuf+srcOffset+1) == 0) && (*(xorbuf+srcOffset) == fgChar) && (match[matchindex-1].type == RUN_BG) && (srcOffset != (TSHR_UINT16)rowDelta)) { RUNSINGLE_XOR(xorbuf+srcOffset+1, numPels-srcOffset-1, nextRunLength); nextRunLength++; CHECK_BEST_RUN(RUN_BG_PEL, nextRunLength, bestRunLength, bestRunType); } else { //
// If we have not found a run then look for a FG/BG
// image. The disruptive effect of a short FGBG
// run on GDC is such that it is worth preventing
// one unless we are certain of the benefits.
// However, if the alternative is a color run then
// allow a lower value.
//
RUNFGBG( xorbuf+srcOffset, numPels-srcOffset, nextRunLength, fgCharWork );
checkFGBGLength = 48; if (fgCharWork == fgChar) { checkFGBGLength -= 16; } if ((nextRunLength & 0x0007) == 0) { checkFGBGLength -= 8; } if (nextRunLength >= checkFGBGLength) { CHECK_BEST_RUN(IMAGE_FGBG, nextRunLength, bestRunLength, bestRunType); } } }
//
// If nothing useful so far then allow a short run, if any
// Don't do this if we are accumulating a color run because
// it will really screw up GDC compression if we allow lots
// of little runs. Also require that it is a regular short
// run, rather than one that disturbs the fgChar
//
if (!inColorRun) { if (bestRunLength < 6) { if ((bestFGRunLength > 4) && (xorbuf[srcOffset] == fgChar)) { if (match[matchindex-1].type == RUN_FG) { match[matchindex-1].length += (WORD)bestFGRunLength; srcOffset += bestFGRunLength; continue; } else { bestRunLength = bestFGRunLength; bestRunType = RUN_FG; }
} else { //
// If we decided to take a run earlier then
// allow it now. (May be a short BG run, for
// example) If nothing so far then take color
// image)
//
if (bestRunLength == 0) { bestRunType = IMAGE_COLOR; bestRunLength = 1; }
} } } else { //
// May seem restrictive, but it is important for our
// lossy compression that a color run is rather
// "sticky", in particular not broken by random FGBG
// runs which do appear from time to time.
//
if (lossy) { if ((bestRunLength < 8) || ((bestRunType == IMAGE_FGBG) && (bestRunLength < 16)))
{ bestRunType = IMAGE_COLOR; bestRunLength = 1; } } else { if ((bestRunLength < 6) || ((bestRunType != RUN_BG) && (bestRunLength < 8))) { bestRunType = IMAGE_COLOR; bestRunLength = 1; } } }
break; }
//
// When we get here we have found the best run. Now check for
// various amalamation conditions with the previous run type.
// Note that we may already have done amalgamation of short
// runs, but we had to do multiple samples for the longer runs
// so we repeat the checks here
//
//
// If we are encoding a color run then
// - process it for lossy compression
// - combine it with an existing run if possible
//
if (bestRunType == IMAGE_COLOR) { //
// Flag that we are within a color run
//
inColorRun = TRUE;
//
// If we are doing a lossy compression then process
// even/odd lines differently
//
if (lossy) { //
// For even lines duplicate every other character,
// discarding the original value
//
if (((srcOffset/rowDelta)%2) == 0) { if ((match[matchindex-1].type == IMAGE_COLOR) && (match[matchindex-1].length%2 == 1)) { nrmbuf[srcOffset] = nrmbuf[srcOffset-1]; //
// If we are not on the final line of the
// bitmap then propagate the update down to the
// next XORed line
//
if (numPels-srcOffset > rowDelta) { xorbuf[srcOffset+rowDelta] = (BYTE)(nrmbuf[srcOffset+rowDelta] ^ nrmbuf[srcOffset]); } } } else { //
// For odd lines we will just encode nulls which
// will replicate the previous line. However, if
// the last run was a BG run then we will
// inadvertently insert a pel, so if we hit this
// situation then leave a single color char
//
bestRunType = IMAGE_LOSSY_ODD;
//
// No need to adjust the buffers for this, except
// to update the next XOR line to reflect the fact
// that the decoder will be operating on a
// replicated line. Therefore we replace the
// character in the next line of the XOR buffer
// with the value it would have if the current line
// was identical with the previous line
//
if (numPels-srcOffset > (TSHR_UINT16)rowDelta) { xorbuf[srcOffset+rowDelta] = (BYTE)(nrmbuf[srcOffset+rowDelta] ^ nrmbuf[srcOffset-rowDelta]); } } }
//
// Merge the color run immediately, if possible
//
if (match[matchindex-1].type == bestRunType) { match[matchindex-1].length += (WORD)bestRunLength; srcOffset += bestRunLength; continue; } } else { //
// We are no longer encoding a COLOR_IMAGE of any kind
//
inColorRun = FALSE;
//
// Keep track of the fg Color The macro that searches for
// FGBG runs leaves the character in fgCharWork.
//
if (bestRunType == RUN_FG) { fgChar = xorbuf[srcOffset]; } else { if (bestRunType == IMAGE_FGBG) { fgChar = fgCharWork; } } }
//
// If we can amalgamate the entry then do so without creating a
// new array entry. We must amalgamate a lossy ODD with a
// RUN_BG because otherwise the lossy would trigger a pel
// insertion. Our search for FGBG runs is dependent upon that
// type of run being amalgamated because we break every 64
// characters so that our mode switch detection works OK.
//
// Take care not to merge across the non-xor/xor boundary
//
if (srcOffset == (TSHR_UINT16)rowDelta) { //
// Just bump the source offset
//
srcOffset += bestRunLength; } else { //
// Bump srcOffset and try a merge
//
srcOffset += bestRunLength;
//
// The simpler merges are where the types are identical
//
if (bestRunType == match[matchindex-1].type) { //
// COLOR IMAGES and BG images are trivial
//
if ((bestRunType == IMAGE_LOSSY_ODD) || (bestRunType == RUN_BG)) { match[matchindex-1].length += (WORD)bestRunLength; continue; }
//
// FG runs and FGBG images merge if fgChars match
//
if (((bestRunType == RUN_FG) || (bestRunType == IMAGE_FGBG)) && (fgChar == match[matchindex-1].fgChar)) { match[matchindex-1].length += (WORD)bestRunLength; TRACE_OUT(( "Merged %u with preceding, giving %u", match[matchindex-1].type, match[matchindex-1].length)); continue; } }
//
// BG RUNs merge with LOSSY odd lines It is important that
// we do this merging because otherwise we will get
// inadvertent pel insertion due to the broken BG runs.
//
if (((bestRunType == RUN_BG) || (bestRunType == IMAGE_LOSSY_ODD)) && ((match[matchindex-1].type == RUN_BG) || (match[matchindex-1].type == IMAGE_LOSSY_ODD) || (match[matchindex-1].type == RUN_BG_PEL))) { match[matchindex-1].length += (WORD)bestRunLength; continue; }
//
// If it is a normal FGBG run which follows a short BG run
// then it is better to merge them.
//
if ((bestRunType == IMAGE_FGBG) && (match[matchindex-1].type == RUN_BG) && (match[matchindex-1].length < 8)) { match[matchindex-1].type = IMAGE_FGBG; match[matchindex-1].length += (WORD)bestRunLength; match[matchindex-1].fgChar = fgChar; TRACE_OUT(( "Merged FGBG with preceding BG run -> %u", match[matchindex-1].length)); continue;
}
//
// If it is a BG run following a FGBG run then merge in the
// pels to make the FGBG a multiple of 8 bits. The if the
// remaining BG run is < 16 merge it in also otherwise just
// write the shortened BG run
//
if (((bestRunType == RUN_BG) || (bestRunType == RUN_BG_PEL)) && (match[matchindex-1].type == IMAGE_FGBG) && (match[matchindex-1].length & 0x0007)) { UINT mergelen = 8 - (match[matchindex-1].length & 0x0007); if (mergelen > bestRunLength) { mergelen = bestRunLength; } match[matchindex-1].length += (WORD)mergelen; bestRunLength -= mergelen; TRACE_OUT(( "Added %u pels to FGBG giving %u leaving %u", mergelen, match[matchindex-1].length,bestRunLength));
if (bestRunLength < 9) { match[matchindex-1].length += (WORD)bestRunLength; TRACE_OUT(( "Merged BG with preceding FGBG gives %u", match[matchindex-1].length)); continue; } }
//
// Finally, if it is a color run spanning any kind of
// single pel entity then merge that last two entries.
//
if ((bestRunType == IMAGE_COLOR) && (match[matchindex-2].type == IMAGE_COLOR) && (match[matchindex-1].length == 1)) { match[matchindex-2].length += bestRunLength + 1; matchindex--; TRACE_OUT(( "Merged color with preceding color gives %u", match[matchindex-1].length)); continue; } }
//
// Handle runs that will not amalgamate by adding a new array
// entry
//
match[matchindex].type = bestRunType; match[matchindex].length = (WORD)bestRunLength; match[matchindex].fgChar = fgChar;
TRACE_OUT(( "Best run of type %u (index %u) has length %u", match[matchindex-1].type, matchindex-1, match[matchindex-1].length)); TRACE_OUT(( "Trying run of type %u (index %u) length %u", match[matchindex].type, matchindex, match[matchindex].length));
matchindex++;
}
//
// If we have just done our scan of the first line then now do the
// rest of the buffer. Reset our saved pel count.
//
numPels = saveNumPels; lossy = saveLossy; firstLine = FALSE; } //
// END OF INITIAL TWO PASS SCAN OF THE INPUT
//
//
// We have parsed the buffer so now we can go ahead and encode it.
// First we should check to see whether we want to redo the encoding
// in lossy mode. We only do this if requested and worthwhile.
//
if (!saveLossy && (pLossy != NULL) && *pLossy) { UINT lossyCharCount = 0; UINT divisor; for (i = 2; i < (int)matchindex; i++) { if ((match[i].type == IMAGE_COLOR) || (match[i].type == IMAGE_LOSSY_ODD)) { lossyCharCount += match[i].length; } } divisor = max(numPels/100, 1); if (lossyCharCount/divisor > LOSSY_THRESHOLD) { saveLossy = TRUE; goto RESTART_COMPRESSION_IN_LOSSY_MODE; } else { *pLossy = FALSE; } }
//
// Now do the encoding
//
srcOffset = 0; firstLine = TRUE; lossy = FALSE; fgChar = 0xFF;
for (i = 2; i < (int)matchindex; i++) { //
// First check for our approaching the end of the destination
// buffer and get out if this is the case. We allow for the
// largest general run order (a mega-mega set run = 4 bytes).
// Orders which may be larger are checked within the case arm
//
if ((UINT)(destbuf - pDst + 4) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; }
//
// While we are encoding the first line keep checking for the end
// of line to switch encoding states
//
if (firstLine) { if (srcOffset >= rowDelta) { firstLine = FALSE; lossy = saveLossy; } }
switch (match[i].type) { //
// BG_RUN, FG_RUN, COLOR, PACKED COLOR and FGBG are normal
// precision codes
//
case RUN_BG: case RUN_BG_PEL: ENCODE_ORDER_MEGA(destbuf, CODE_BG_RUN, match[i].length, CODE_MEGA_MEGA_BG_RUN, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "BG RUN %u",match[i].length)); srcOffset += match[i].length; break;
case IMAGE_LOSSY_ODD: //
// For a lossy odd line we encode a background run
// Note that we do not need to encode a start lossy
// because the decode does not need to distinguish this
// from a regular bg run
//
ENCODE_ORDER_MEGA(destbuf, CODE_BG_RUN, match[i].length, CODE_MEGA_MEGA_BG_RUN, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "BG RUN %u",match[i].length)); srcOffset += match[i].length; break;
case RUN_FG: //
// If the fg char is not yet set then encode a set+run code
//
if (fgChar != match[i].fgChar) { SETFGCHAR(match[i].fgChar, fgChar, fgShift); //
// Encode the order
//
ENCODE_SET_ORDER_MEGA(destbuf, CODE_SET_FG_FG_RUN, match[i].length, CODE_MEGA_MEGA_SET_FG_RUN, MAX_LENGTH_ORDER_LITE, MAX_LENGTH_LONG_ORDER_LITE); TRACE_OUT(( "SET_FG_FG_RUN %u",match[i].length)); srcOffset += match[i].length; } else { ENCODE_ORDER_MEGA(destbuf, CODE_FG_RUN, match[i].length, CODE_MEGA_MEGA_FG_RUN, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "FG_RUN %u",match[i].length)); srcOffset += match[i].length; } break;
case IMAGE_FGBG: //
// IMAGE_FGBG
//
runLength = match[i].length;
//
// First check for our approaching the end of the
// destination buffer and get out if this is the case.
//
if ((destbuf-pDst+(runLength+7)/8+4) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; }
//
// We need to convert FGBG runs into the pixel form
//
if (fgChar != match[i].fgChar) { SETFGCHAR(match[i].fgChar, fgChar, fgShift);
ENCODE_SET_ORDER_MEGA_FGBG(destbuf, CODE_SET_FG_FG_BG, runLength, CODE_MEGA_MEGA_SET_FGBG, MAX_LENGTH_FGBG_ORDER_LITE, MAX_LENGTH_LONG_FGBG_ORDER); TRACE_OUT(( "SET_FG_FG_BG %u",match[i].length)); while (runLength >= 8) { ENCODEFGBG(*destbuf); destbuf++; srcOffset += 8; runLength -= 8; } if (runLength) { ENCODEFGBG(*destbuf); //
// Keep the final partial byte clean to help GDC
// packing
//
*destbuf &= ((0x01 << runLength) - 1); destbuf++; srcOffset += runLength; } } else {
if (runLength == 8) { BYTE fgbgChar; //
// See if it is one of the high probability bytes
//
ENCODEFGBG(fgbgChar);
//
// Check for single byte encoding of FGBG images
//
switch (fgbgChar) { case SPECIAL_FGBG_CODE_1: *destbuf++ = CODE_SPECIAL_FGBG_1; break; case SPECIAL_FGBG_CODE_2: *destbuf++ = CODE_SPECIAL_FGBG_2; break; default:
ENCODE_ORDER_MEGA_FGBG(destbuf, CODE_FG_BG_IMAGE, runLength, CODE_MEGA_MEGA_FGBG, MAX_LENGTH_FGBG_ORDER, MAX_LENGTH_LONG_FGBG_ORDER); *destbuf++ = fgbgChar; break; } srcOffset += 8; } else { //
// Encode as standard FGBG
//
ENCODE_ORDER_MEGA_FGBG(destbuf, CODE_FG_BG_IMAGE, runLength, CODE_MEGA_MEGA_FGBG, MAX_LENGTH_FGBG_ORDER, MAX_LENGTH_LONG_FGBG_ORDER); TRACE_OUT(( "FG_BG %u",match[i].length)); while (runLength >= 8) { ENCODEFGBG(*destbuf); destbuf++; srcOffset += 8; runLength -= 8; } if (runLength) { ENCODEFGBG(*destbuf); *destbuf &= ((0x01 << runLength) - 1); destbuf++; srcOffset += runLength; } } } break;
case RUN_COLOR: //
// COLOR RUN
//
ENCODE_ORDER_MEGA(destbuf, CODE_COLOR_RUN, match[i].length, CODE_MEGA_MEGA_COLOR_RUN, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "COLOR_RUN %u",match[i].length)); *destbuf++ = nrmbuf[srcOffset]; srcOffset += match[i].length; break;
case RUN_DITHER: //
// DITHERED RUN
//
{ UINT ditherlen = match[i].length/2; ENCODE_ORDER_MEGA(destbuf, CODE_DITHERED_RUN, ditherlen, CODE_MEGA_MEGA_DITHER, MAX_LENGTH_ORDER_LITE, MAX_LENGTH_LONG_ORDER_LITE); TRACE_OUT(( "DITHERED_RUN %u",match[i].length)); //
// First check for our approaching the end of the
// destination buffer and get out if this is the case.
//
if ((UINT)(destbuf - pDst + 2) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; } *destbuf++ = nrmbuf[srcOffset]; *destbuf++ = nrmbuf[srcOffset+1]; srcOffset += match[i].length; } break;
case IMAGE_COLOR: //
// IMAGE_COLOR
//
//
// A length of 1 can possibly be encoded as a single
// "BLACK"
//
if (match[i].length == 1) { if (nrmbuf[srcOffset] == 0x00) { *destbuf++ = CODE_BLACK; srcOffset++; break; } if (nrmbuf[srcOffset] == 0xFF) { *destbuf++ = CODE_WHITE; srcOffset++; break; } }
//
// If lossy compression is requested then indicate it
// immediately we get a color image to encode here
//
if (lossy & !lossyStarted) { lossyStarted = TRUE; *destbuf++ = CODE_START_LOSSY; }
//
// For 4bpp data pack color runs into nibbles
//
if (bpp == 4) { //
// Store the data in packed format
//
ENCODE_ORDER_MEGA(destbuf, CODE_PACKED_COLOR_IMAGE, match[i].length, CODE_MEGA_MEGA_PACKED_CLR, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "PACKED COLOR %u",match[i].length));
//
// If we are not doing lossy compress then just copy
// the data over, packing two to a byte
//
if (!lossy) { //
// First check for our approaching the end of the
// destination buffer and get out if this is the
// case.
//
if ((destbuf - pDst + (UINT)(match[i].length + 1) / 2) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; }
Pack4bpp(destbuf, nrmbuf+srcOffset, match[i].length); destbuf += (match[i].length+1)/2; srcOffset += match[i].length; } else { //
// First check for our approaching the end of the
// destination buffer and get out if this is the
// case.
//
if ((destbuf - pDst + (UINT)(match[i].length + 3) / 4) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; }
//
// For a lossy compress we need to discard every
// even byte
//
while (match[i].length > 2) { *destbuf++ = (BYTE)((*(nrmbuf+srcOffset)<<4) | (*(nrmbuf+srcOffset+2) & 0x0F)); if (match[i].length > 3) { srcOffset += 4; match[i].length -= 4; } else { srcOffset += 3; match[i].length -= 3; } } if (match[i].length > 0) { *destbuf++ = (BYTE)(*(nrmbuf+srcOffset)<<4); srcOffset += match[i].length; } } } else { //
// For 8bpp we don't bother trying to detect packed
// data. Doing so disturbs GDC.
//
if (!lossy) { //
// Store the data in non-compressed form
//
ENCODE_ORDER_MEGA(destbuf, CODE_COLOR_IMAGE, match[i].length, CODE_MEGA_MEGA_CLR_IMG, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "COLOR_IMAGE %u",match[i].length));
//
// First check for our approaching the end of the
// destination buffer and get out if this is the
// case.
//
if ((destbuf - pDst + (UINT)match[i].length) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; }
//
// Now just copy the data over
//
memcpy(destbuf, nrmbuf+srcOffset, match[i].length); destbuf += match[i].length; srcOffset += match[i].length; } else { //
// Lossy compression - store the data with
// discarding
//
ENCODE_ORDER_MEGA(destbuf, CODE_COLOR_IMAGE, match[i].length, CODE_MEGA_MEGA_CLR_IMG, MAX_LENGTH_ORDER, MAX_LENGTH_LONG_ORDER); TRACE_OUT(( "COLOR_IMAGE %u",match[i].length));
//
// First check for our approaching the end of the
// destination buffer and get out if this is the
// case.
//
if ((destbuf - pDst + (UINT)(match[i].length + 1) / 2) > dstBufferSize) { //
// We are about to blow it so just get out
//
DC_QUIT; }
//
// For a lossy compress we need to discard every
// even byte
//
while (match[i].length > 1) { *destbuf++ = *(nrmbuf+srcOffset); srcOffset += 2; match[i].length -= 2; } if (match[i].length == 1) { *destbuf++ = *(nrmbuf+srcOffset); srcOffset++; } } } break;
default: ERROR_OUT(( "Invalid run type %u",match[i].type)); } }
//
// return the size of the compressed buffer
//
compressedLength = (UINT)(destbuf-pDst);
DC_EXIT_POINT: DebugExitDWORD(CompressV2Int, compressedLength); return(compressedLength); }
//
// DecompressV2Int
//
UINT DecompressV2Int(LPBYTE pSrc, LPBYTE pDst, UINT bytes, UINT bpp, UINT rowDelta, LPBYTE nrmbuf) { UINT codeLength; BYTE codeByte; BYTE codeByte2; BYTE decode; BYTE decodeLite; BYTE decodeMega; BYTE fgChar = 0xFF; BYTE NEAR *destbuf = nrmbuf; LPBYTE endSrc = pSrc + bytes; BOOL backgroundNeedsPel = FALSE; BOOL lossyStarted = FALSE; UINT resultSize = 0; BOOL firstLine = TRUE;
DebugEntry(DecompressV2Int);
//
// Loop processing the input
//
while(pSrc < endSrc) {
//
// While we are processing the first line we should keep a look out
// for the end of the line
//
if (firstLine) { if ((UINT)(destbuf - nrmbuf) >= rowDelta) { firstLine = FALSE; backgroundNeedsPel = FALSE; } }
//
// Trace out the source data for debugging
//
TRACE_OUT(( "Next code is %2.2x%2.2x%2.2x%2.2x", *pSrc, *(pSrc+1), *(pSrc+2), *(pSrc+3)));
//
// Get the decode
//
decode = (BYTE)(*pSrc & CODE_MASK); decodeLite = (BYTE)(*pSrc & CODE_MASK_LITE); decodeMega = (BYTE)(*pSrc);
//
// BG RUN
//
if ((decode == CODE_BG_RUN) || (decodeMega == CODE_MEGA_MEGA_BG_RUN)) { if (decode == CODE_BG_RUN) { EXTRACT_LENGTH(pSrc, codeLength); } else { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } TRACE_OUT(( "Background run %u",codeLength));
if (!firstLine) { if (backgroundNeedsPel) { *destbuf++ = (BYTE)(*(destbuf - rowDelta) ^ fgChar); codeLength--; } while (codeLength-- > 0) { *destbuf++ = *(destbuf - rowDelta); } } else { if (backgroundNeedsPel) { *destbuf++ = fgChar; codeLength--; } while (codeLength-- > 0) { *destbuf++ = 0x00; } } //
// A follow on BG run will need a pel inserted
//
backgroundNeedsPel = TRUE; continue; }
//
// For any of the other runtypes a follow on BG run does not need
// a FG pel inserted
//
backgroundNeedsPel = FALSE;
//
// FGBG IMAGE
//
if ((decode == CODE_FG_BG_IMAGE) || (decodeLite == CODE_SET_FG_FG_BG) || (decodeMega == CODE_MEGA_MEGA_FGBG) || (decodeMega == CODE_MEGA_MEGA_SET_FGBG)) { if ((decodeMega == CODE_MEGA_MEGA_FGBG) || (decodeMega == CODE_MEGA_MEGA_SET_FGBG)) { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } else { if (decode == CODE_FG_BG_IMAGE) { EXTRACT_LENGTH_FGBG(pSrc, codeLength); } else { EXTRACT_LENGTH_FGBG_LITE(pSrc, codeLength); } }
if ((decodeLite == CODE_SET_FG_FG_BG) || (decodeMega == CODE_MEGA_MEGA_SET_FGBG)) { fgChar = *pSrc++; TRACE_OUT(( "Set FGBG image %u",codeLength)); } else { TRACE_OUT(( "FGBG image %u",codeLength)); }
while (codeLength > 8) { codeByte = *pSrc++; if (firstLine) { STORE_FGBG(0x00, codeByte, fgChar, 8); } else { STORE_FGBG(*(destbuf - rowDelta), codeByte, fgChar, 8); } codeLength -= 8; } if (codeLength > 0) { codeByte = *pSrc++; if (firstLine) { STORE_FGBG(0x00, codeByte, fgChar, codeLength); } else { STORE_FGBG(*(destbuf - rowDelta), codeByte, fgChar, codeLength); } } continue; }
//
// FG RUN
//
if ((decode == CODE_FG_RUN) || (decodeLite == CODE_SET_FG_FG_RUN) || (decodeMega == CODE_MEGA_MEGA_FG_RUN) || (decodeMega == CODE_MEGA_MEGA_SET_FG_RUN)) {
if ((decodeMega == CODE_MEGA_MEGA_FG_RUN) || (decodeMega == CODE_MEGA_MEGA_SET_FG_RUN)) { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } else { if (decode == CODE_FG_RUN) { EXTRACT_LENGTH(pSrc, codeLength); } else { EXTRACT_LENGTH_LITE(pSrc, codeLength); } }
//
// Push the old fgChar down to the ALT position
//
if ((decodeLite == CODE_SET_FG_FG_RUN) || (decodeMega == CODE_MEGA_MEGA_SET_FG_RUN)) { TRACE_OUT(( "Set FG run %u",codeLength)); fgChar = *pSrc++; } else { TRACE_OUT(( "FG run %u",codeLength)); }
while (codeLength-- > 0) { if (!firstLine) { *destbuf++ = (BYTE)(*(destbuf - rowDelta) ^ fgChar); } else { *destbuf++ = fgChar; } } continue; }
//
// DITHERED RUN
//
if ((decodeLite == CODE_DITHERED_RUN) || (decodeMega == CODE_MEGA_MEGA_DITHER)) { if (decodeMega == CODE_MEGA_MEGA_DITHER) { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } else { EXTRACT_LENGTH_LITE(pSrc, codeLength); } TRACE_OUT(( "Dithered run %u",codeLength));
codeByte = *pSrc++; codeByte2 = *pSrc++; while (codeLength-- > 0) { *destbuf++ = codeByte; *destbuf++ = codeByte2; } continue; }
//
// COLOR IMAGE
//
if ((decode == CODE_COLOR_IMAGE) || (decodeMega == CODE_MEGA_MEGA_CLR_IMG)) { if (decodeMega == CODE_MEGA_MEGA_CLR_IMG) { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } else { EXTRACT_LENGTH(pSrc, codeLength); } TRACE_OUT(( "Color image %u",codeLength));
//
// If not doing lossy compression then just copy the bytes
//
if (!lossyStarted) { while (codeLength-- > 0) { //
// Update the target with the character
//
*destbuf++ = *pSrc++; } } else { //
// For lossy compression we must duplicate all the bytes,
// bar the final odd byte
//
while (codeLength > 3) { //
// Dither the bytes unless they are black in which
// case a non-dither is preferable
//
*destbuf++ = *pSrc; if (*pSrc == 0) { *destbuf++ = *(pSrc); *destbuf++ = *(pSrc+1); *destbuf++ = *(pSrc+1); pSrc += 2; } else { *destbuf++ = *(pSrc+1); *destbuf++ = *pSrc++; *destbuf++ = *pSrc++; } codeLength -= 4; } if (codeLength == 3) { *destbuf++ = *pSrc; *destbuf++ = *(pSrc+1); *destbuf++ = *pSrc; pSrc += 2; } else { if (codeLength == 2) { *destbuf++ = *pSrc; *destbuf++ = *pSrc++; } else { if (codeLength == 1) { *destbuf++ = *pSrc++; } } } } continue; }
//
// PACKED COLOR IMAGE
//
if ((decode == CODE_PACKED_COLOR_IMAGE) || (decodeMega == CODE_MEGA_MEGA_PACKED_CLR)) { if (decodeMega == CODE_MEGA_MEGA_PACKED_CLR) { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } else { EXTRACT_LENGTH(pSrc, codeLength); } TRACE_OUT(( "Packed color %u",codeLength));
//
// If not doing lossy compression then we just unpack the 4bpp
// data two pels per byte
//
if (!lossyStarted) { if (bpp == 4) { UINT worklen = (codeLength)/2; BYTE workchar; while (worklen--) { workchar = *pSrc++; *destbuf++ = (BYTE)(workchar>>4); *destbuf++ = (BYTE)(workchar & 0x0F); } if (codeLength & 0x0001) { *destbuf++ = (BYTE)(*pSrc++>>4); } } else { ERROR_OUT(( "Don't support packed color for 8bpp")); } } else { //
// For lossy compression we must duplicate all the bytes,
// bar the final odd byte, again unpacking as we go
//
while (codeLength > 3) { *destbuf++ = (BYTE)((*pSrc) >> 4); *destbuf++ = (BYTE)((*pSrc) >> 4); *destbuf++ = (BYTE)((*pSrc) & 0x0F); *destbuf++ = (BYTE)((*pSrc) & 0x0F); pSrc++; codeLength -= 4; }
if (codeLength > 0) { if (codeLength-- > 0) { *destbuf++ = (BYTE)((*pSrc) >> 4); } if (codeLength-- > 0) { *destbuf++ = (BYTE)((*pSrc) >> 4); } if (codeLength-- > 0) { *destbuf++ = (BYTE)((*pSrc) & 0x0F); } if (codeLength-- > 0) { *destbuf++ = (BYTE)((*pSrc) & 0x0F); } pSrc++; } }
continue; }
//
// COLOR RUN
//
if ((decode == CODE_COLOR_RUN) || (decodeMega == CODE_MEGA_MEGA_COLOR_RUN)) {
if (decodeMega == CODE_MEGA_MEGA_COLOR_RUN) { codeLength = EXTRACT_TSHR_UINT16_UA(pSrc+1); pSrc += 3; } else { EXTRACT_LENGTH(pSrc, codeLength); } TRACE_OUT(( "Color run %u",codeLength));
codeByte = *pSrc++; while (codeLength-- > 0) { *destbuf++ = codeByte; } continue; }
//
// If we get here then the code must be a special one
//
TRACE_OUT(( "Special code %x",decodeMega)); switch (decodeMega) { case CODE_BLACK: *destbuf++ = 0x00; break;
case CODE_WHITE: *destbuf++ = 0xFF; break;
//
// Ignore the unreachable code warnings that follow
// Simply because we use the STORE_FGBG macro with a constant
// value
//
case CODE_SPECIAL_FGBG_1: if (firstLine) { STORE_FGBG(0x00, SPECIAL_FGBG_CODE_1, fgChar, 8); } else { STORE_FGBG(*(destbuf - rowDelta), SPECIAL_FGBG_CODE_1, fgChar, 8); } break;
case CODE_SPECIAL_FGBG_2: if (firstLine) { STORE_FGBG(0x00, SPECIAL_FGBG_CODE_2, fgChar, 8); } else { STORE_FGBG(*(destbuf - rowDelta), SPECIAL_FGBG_CODE_2, fgChar, 8); } break;
case CODE_START_LOSSY: lossyStarted = TRUE; break;
default: ERROR_OUT(( "Invalid compression data %x",decodeMega)); break; } pSrc++;
}
//
// Our final task is to copy the decoded image into the target buffer
// compacting if we are generating a 4bpp image
//
resultSize = (UINT)(destbuf-nrmbuf); if (bpp == 4) { //
// Zero the final byte to eliminate single byte packing problems
//
*destbuf = 0x00;
Pack4bpp(pDst, nrmbuf, resultSize); } else { memcpy(pDst, nrmbuf, resultSize); } TRACE_OUT(( "Returning %u bytes",resultSize));
//
// Return the number of pixels decoded
//
DebugExitDWORD(DecompressV2Int, resultSize); return(resultSize); }
|