|
|
/*++
Copyright (c) 1997 Microsoft Corporation
Module Name:
gart.c
Abstract:
Routines for querying and setting the Intel 440xx GART aperture
Author:
John Vert (jvert) 10/30/1997
Revision History:
--*/ #include "agp440.h"
//
// Local function prototypes
//
NTSTATUS Agp440CreateGart( IN PAGP440_EXTENSION AgpContext, IN ULONG MinimumPages );
PGART_PTE Agp440FindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState );
NTSTATUS Agp440SetRate( IN PVOID AgpContext, IN ULONG AgpRate );
VOID Agp440SetGTLB_Enable( IN PAGP440_EXTENSION AgpContext, IN BOOLEAN Enable );
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, AgpDisableAperture)
#pragma alloc_text(PAGE, AgpQueryAperture)
#pragma alloc_text(PAGE, AgpReserveMemory)
#pragma alloc_text(PAGE, AgpReleaseMemory)
#pragma alloc_text(PAGE, Agp440CreateGart)
#pragma alloc_text(PAGE, AgpMapMemory)
#pragma alloc_text(PAGE, AgpUnMapMemory)
#pragma alloc_text(PAGE, Agp440FindRangeInGart)
#pragma alloc_text(PAGE, AgpFindFreeRun)
#pragma alloc_text(PAGE, AgpGetMappedPages)
#endif
#define Agp440EnableTB(_x_) Agp440SetGTLB_Enable((_x_), TRUE)
#define Agp440DisableTB(_x_) Agp440SetGTLB_Enable((_x_), FALSE)
NTSTATUS AgpQueryAperture( IN PAGP440_EXTENSION AgpContext, OUT PHYSICAL_ADDRESS *CurrentBase, OUT ULONG *CurrentSizeInPages, OUT OPTIONAL PIO_RESOURCE_LIST *pApertureRequirements ) /*++
Routine Description:
Queries the current size of the GART aperture. Optionally returns the possible GART settings.
Arguments:
AgpContext - Supplies the AGP context.
CurrentBase - Returns the current physical address of the GART.
CurrentSizeInPages - Returns the current GART size.
ApertureRequirements - if present, returns the possible GART settings
Return Value:
NTSTATUS
--*/
{ ULONG ApBase; UCHAR ApSize; PIO_RESOURCE_LIST Requirements; ULONG i; ULONG Length;
PAGED_CODE(); //
// Get the current APBASE and APSIZE settings
//
Read440Config(&ApBase, APBASE_OFFSET, sizeof(ApBase)); Read440Config(&ApSize, APSIZE_OFFSET, sizeof(ApSize));
ASSERT(ApBase != 0); CurrentBase->QuadPart = ApBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK;
//
// Convert APSIZE into the actual size of the aperture
//
switch (ApSize) { case AP_SIZE_4MB: *CurrentSizeInPages = 4 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_8MB: *CurrentSizeInPages = 8 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_16MB: *CurrentSizeInPages = 16 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_32MB: *CurrentSizeInPages = 32 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_64MB: *CurrentSizeInPages = 64 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_128MB: *CurrentSizeInPages = 128 * (1024*1024 / PAGE_SIZE); break; case AP_SIZE_256MB: *CurrentSizeInPages = 256 * (1024*1024 / PAGE_SIZE); break;
default: AGPLOG(AGP_CRITICAL, ("AGP440 - AgpQueryAperture - Unexpected value %x for ApSize!\n", ApSize)); ASSERT(FALSE); AgpContext->ApertureStart.QuadPart = 0; AgpContext->ApertureLength = 0; return(STATUS_UNSUCCESSFUL); }
//
// Remember the current aperture settings
//
AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart; AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE;
if (pApertureRequirements != NULL) { ULONG VendorId;
//
// 440 supports 7 different aperture sizes, all must be
// naturally aligned. Start with the largest aperture and
// work downwards so that we get the biggest possible aperture.
//
Requirements = ExAllocatePoolWithTag(PagedPool, sizeof(IO_RESOURCE_LIST) + (AP_SIZE_COUNT-1)*sizeof(IO_RESOURCE_DESCRIPTOR), 'RpgA'); if (Requirements == NULL) { return(STATUS_INSUFFICIENT_RESOURCES); } Requirements->Version = Requirements->Revision = 1; //
// 815 only supports 64MB and 32MB Aperture sizes
//
Read440Config(&VendorId, 0, sizeof(VendorId)); if (VendorId == AGP_815_IDENTIFIER) { Requirements->Count = AP_815_SIZE_COUNT; Length = AP_815_MAX_SIZE; } else { Requirements->Count = AP_SIZE_COUNT; Length = AP_MAX_SIZE; }
for (i=0; i<Requirements->Count; i++) { Requirements->Descriptors[i].Option = IO_RESOURCE_ALTERNATIVE; Requirements->Descriptors[i].Type = CmResourceTypeMemory; Requirements->Descriptors[i].ShareDisposition = CmResourceShareDeviceExclusive; Requirements->Descriptors[i].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Requirements->Descriptors[i].u.Memory.Length = Length; Requirements->Descriptors[i].u.Memory.Alignment = Length; Requirements->Descriptors[i].u.Memory.MinimumAddress.QuadPart = 0; Requirements->Descriptors[i].u.Memory.MaximumAddress.QuadPart = (ULONG)-1;
Length = Length/2; } *pApertureRequirements = Requirements;
} return(STATUS_SUCCESS); }
NTSTATUS AgpSetAperture( IN PAGP440_EXTENSION AgpContext, IN PHYSICAL_ADDRESS NewBase, IN ULONG NewSizeInPages ) /*++
Routine Description:
Sets the GART aperture to the supplied settings
Arguments:
AgpContext - Supplies the AGP context
NewBase - Supplies the new physical memory base for the GART.
NewSizeInPages - Supplies the new size for the GART
Return Value:
NTSTATUS
--*/
{ PACCFG PACConfig; UCHAR ApSize; ULONG ApBase;
//
// Figure out the new APSIZE setting, make sure it is valid.
//
switch (NewSizeInPages) { case 4 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_4MB; break; case 8 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_8MB; break; case 16 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_16MB; break; case 32 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_32MB; break; case 64 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_64MB; break; case 128 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_128MB; break; case 256 * 1024 * 1024 / PAGE_SIZE: ApSize = AP_SIZE_256MB; break; default: AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid GART size of %lx pages specified, aperture at %I64X.\n", NewSizeInPages, NewBase.QuadPart)); ASSERT(FALSE); return(STATUS_INVALID_PARAMETER); }
//
// Make sure the supplied size is aligned on the appropriate boundary.
//
ASSERT(NewBase.HighPart == 0); ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0); if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 ) { AGPLOG(AGP_CRITICAL, ("AgpSetAperture - invalid base %I64X specified for GART aperture of %lx pages\n", NewBase.QuadPart, NewSizeInPages)); return(STATUS_INVALID_PARAMETER); }
//
// Reprogram Special Target settings when the chip
// is powered off, but ignore rate changes as those were already
// applied during MasterInit
//
if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) { AgpSpecialTarget(AgpContext, AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE); } //
// Need to reset the hardware to match the supplied settings
//
// If the aperture is enabled, disable it, write the new settings, then reenable the aperture
//
Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); PACConfig.GlobalEnable = 0; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig));
//
// Write APSIZE first, as this will enable the correct bits in APBASE that need to
// be written next.
//
Write440Config(&ApSize, APSIZE_OFFSET, sizeof(ApSize));
//
// Now we can update APBASE
//
ApBase = NewBase.LowPart & PCI_ADDRESS_MEMORY_ADDRESS_MASK; Write440Config(&ApBase, APBASE_OFFSET, sizeof(ApBase));
#if DBG
//
// Read back what we wrote, make sure it worked
//
{ ULONG DbgBase; UCHAR DbgSize;
Read440Config(&DbgSize, APSIZE_OFFSET, sizeof(ApSize)); Read440Config(&DbgBase, APBASE_OFFSET, sizeof(ApBase)); ASSERT(DbgSize == ApSize); ASSERT((DbgBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK) == ApBase); } #endif
//
// Now enable the aperture if it was enabled before
//
if (AgpContext->GlobalEnable) { Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); ASSERT(PACConfig.GlobalEnable == 0); PACConfig.GlobalEnable = 1; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); }
//
// Update our extension to reflect the new GART setting
//
AgpContext->ApertureStart = NewBase; AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE;
//
// Enable the TB in case we are resuming from S3 or S4
//
Agp440EnableTB(AgpContext);
//
// If the GART has been allocated, rewrite the ATTBASE
//
if (AgpContext->Gart != NULL) { Write440Config(&AgpContext->GartPhysical.LowPart, ATTBASE_OFFSET, sizeof(AgpContext->GartPhysical.LowPart)); }
return(STATUS_SUCCESS); }
VOID AgpDisableAperture( IN PAGP440_EXTENSION AgpContext ) /*++
Routine Description:
Disables the GART aperture so that this resource is available for other devices
Arguments:
AgpContext - Supplies the AGP context
Return Value:
None - this routine must always succeed.
--*/
{ PACCFG PACConfig;
//
// Disable the aperture
//
Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); if (PACConfig.GlobalEnable == 1) { PACConfig.GlobalEnable = 0; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); } AgpContext->GlobalEnable = FALSE;
//
// Nuke the Gart! (It's meaningless now...)
//
if (AgpContext->Gart != NULL) { MmFreeContiguousMemory(AgpContext->Gart); AgpContext->Gart = NULL; AgpContext->GartLength = 0; } }
NTSTATUS AgpReserveMemory( IN PAGP440_EXTENSION AgpContext, IN OUT AGP_RANGE *Range ) /*++
Routine Description:
Reserves a range of memory in the GART.
Arguments:
AgpContext - Supplies the AGP Context
Range - Supplies the AGP_RANGE structure. AGPLIB will have filled in NumberOfPages and Type. This routine will fill in MemoryBase and Context.
Return Value:
NTSTATUS
--*/
{ ULONG Index; ULONG NewState; NTSTATUS Status; PGART_PTE FoundRange; BOOLEAN Backwards;
PAGED_CODE();
ASSERT((Range->Type == MmNonCached) || (Range->Type == MmWriteCombined));
if (Range->NumberOfPages > (AgpContext->ApertureLength / PAGE_SIZE)) { return STATUS_INSUFFICIENT_RESOURCES; }
//
// If we have not allocated our GART yet, now is the time to do so
//
if (AgpContext->Gart == NULL) { ASSERT(AgpContext->GartLength == 0); Status = Agp440CreateGart(AgpContext,Range->NumberOfPages); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_CRITICAL, ("Agp440CreateGart failed %08lx to create GART of size %lx\n", Status, AgpContext->ApertureLength)); return(Status); } } ASSERT(AgpContext->GartLength != 0);
//
// Now that we have a GART, try and find enough contiguous entries to satisfy
// the request. Requests for uncached memory will scan from high addresses to
// low addresses. Requests for write-combined memory will scan from low addresses
// to high addresses. We will use a first-fit algorithm to try and keep the allocations
// packed and contiguous.
//
Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE; FoundRange = Agp440FindRangeInGart(&AgpContext->Gart[0], &AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1], Range->NumberOfPages, Backwards, GART_ENTRY_FREE);
if (FoundRange == NULL) { //
// A big enough chunk was not found.
//
AGPLOG(AGP_CRITICAL, ("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n", Range->NumberOfPages, Range->Type, AgpContext->Gart));
//
// This is where we could try and grow the GART
//
return(STATUS_INSUFFICIENT_RESOURCES); }
AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n", Range->NumberOfPages, FoundRange));
//
// Set these pages to reserved
//
if (Range->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else { NewState = GART_ENTRY_RESERVED_WC; }
for (Index = 0;Index < Range->NumberOfPages; Index++) { ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE); FoundRange[Index].AsUlong = 0; FoundRange[Index].Soft.State = NewState; }
Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart + (FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE; Range->Context = FoundRange;
ASSERT(Range->MemoryBase.HighPart == 0); AGPLOG(AGP_NOISE, ("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n", FoundRange, Range->MemoryBase.LowPart));
return(STATUS_SUCCESS); }
NTSTATUS AgpReleaseMemory( IN PAGP440_EXTENSION AgpContext, IN PAGP_RANGE Range ) /*++
Routine Description:
Releases memory previously reserved with AgpReserveMemory
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the range to be released.
Return Value:
NTSTATUS
--*/
{ PGART_PTE Pte; ULONG Start;
PAGED_CODE();
//
// Go through and free all the PTEs. None of these should still
// be valid at this point.
//
for (Pte = Range->Context; Pte < (PGART_PTE)Range->Context + Range->NumberOfPages; Pte++) { if (Range->Type == MmNonCached) { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC); } else { ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC); } Pte->Soft.State = GART_ENTRY_FREE; }
Range->MemoryBase.QuadPart = 0; return(STATUS_SUCCESS); }
NTSTATUS Agp440CreateGart( IN PAGP440_EXTENSION AgpContext, IN ULONG MinimumPages ) /*++
Routine Description:
Allocates and initializes an empty GART. The current implementation attempts to allocate the entire GART on the first reserve.
Arguments:
AgpContext - Supplies the AGP context
MinimumPages - Supplies the minimum size (in pages) of the GART to be created.
Return Value:
NTSTATUS
--*/
{ PGART_PTE Gart; ULONG GartLength; PHYSICAL_ADDRESS HighestAcceptable; PHYSICAL_ADDRESS LowestAcceptable; PHYSICAL_ADDRESS BoundaryMultiple; PHYSICAL_ADDRESS GartPhysical; ULONG i;
PAGED_CODE();
//
// Try and get a chunk of contiguous memory big enough to map the
// entire aperture.
//
LowestAcceptable.QuadPart = 0; BoundaryMultiple.QuadPart = 0; HighestAcceptable.QuadPart = 0xFFFFFFFF; GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE);
Gart = MmAllocateContiguousMemorySpecifyCache(GartLength, LowestAcceptable, HighestAcceptable, BoundaryMultiple, MmNonCached);
if (Gart == NULL) { AGPLOG(AGP_CRITICAL, ("Agp440CreateGart - MmAllocateContiguousMemorySpecifyCache %lx failed\n", GartLength)); return(STATUS_INSUFFICIENT_RESOURCES); }
//
// We successfully allocated a contiguous chunk of memory.
// It should be page aligned already.
//
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Get the physical address.
//
GartPhysical = MmGetPhysicalAddress(Gart); AGPLOG(AGP_NOISE, ("Agp440CreateGart - GART of length %lx created at VA %08lx, PA %08lx\n", GartLength, Gart, GartPhysical.LowPart)); ASSERT(GartPhysical.HighPart == 0); ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0);
//
// Initialize all the PTEs to free
//
for (i=0; i<GartLength/sizeof(GART_PTE); i++) { Gart[i].Soft.State = GART_ENTRY_FREE; }
Write440Config(&GartPhysical.LowPart, ATTBASE_OFFSET, sizeof(GartPhysical.LowPart));
//
// Update our extension to reflect the current state.
//
AgpContext->Gart = Gart; AgpContext->GartLength = GartLength; AgpContext->GartPhysical = GartPhysical;
return(STATUS_SUCCESS); }
NTSTATUS AgpMapMemory( IN PAGP440_EXTENSION AgpContext, IN PAGP_RANGE Range, IN PMDL Mdl, IN ULONG OffsetInPages, OUT PHYSICAL_ADDRESS *MemoryBase ) /*++
Routine Description:
Maps physical memory into the GART somewhere in the specified range.
Arguments:
AgpContext - Supplies the AGP context
Range - Supplies the AGP range that the memory should be mapped into
Mdl - Supplies the MDL describing the physical pages to be mapped
OffsetInPages - Supplies the offset into the reserved range where the mapping should begin.
MemoryBase - Returns the physical memory in the aperture where the pages were mapped.
Return Value:
NTSTATUS
--*/
{ ULONG PageCount; PGART_PTE Pte; PGART_PTE StartPte; ULONG Index; ULONG TargetState; PPFN_NUMBER Page; BOOLEAN Backwards; GART_PTE NewPte; PACCFG PACConfig;
PAGED_CODE();
ASSERT(Mdl->Next == NULL);
StartPte = Range->Context; PageCount = BYTES_TO_PAGES(Mdl->ByteCount); ASSERT(PageCount <= Range->NumberOfPages); ASSERT(OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages); ASSERT(PageCount > 0);
TargetState = (Range->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC : GART_ENTRY_RESERVED_WC;
Pte = StartPte + OffsetInPages;
//
// We have a suitable range, now fill it in with the supplied MDL.
//
ASSERT(Pte >= StartPte); ASSERT(Pte + PageCount <= StartPte + Range->NumberOfPages); NewPte.AsUlong = 0; NewPte.Soft.State = (Range->Type == MmNonCached) ? GART_ENTRY_VALID_UC : GART_ENTRY_VALID_WC; Page = (PPFN_NUMBER)(Mdl + 1);
//
// Disable the TB as per the 440 spec. This is probably unnecessary
// as there should be no valid entries in this range, and there should
// be no invalid entries still in the TB. So flushing the TB seems
// a little gratuitous but that's what the 440 spec says to do.
//
Agp440DisableTB(AgpContext);
for (Index = 0; Index < PageCount; Index++) { ASSERT(Pte[Index].Soft.State == TargetState);
NewPte.Hard.Page = (ULONG)(*Page++); Pte[Index].AsUlong = NewPte.AsUlong; ASSERT(Pte[Index].Hard.Valid == 1); }
//
// We have filled in all the PTEs. Read back the last one we wrote
// in order to flush the write buffers.
//
NewPte.AsUlong = *(volatile ULONG *)&Pte[PageCount-1].AsUlong;
//
// Re-enable the TB
//
Agp440EnableTB(AgpContext);
//
// If we have not yet gotten around to enabling the GART aperture, do it now.
//
if (!AgpContext->GlobalEnable) { AGPLOG(AGP_NOISE, ("AgpMapMemory - Enabling global aperture access\n"));
Read440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig)); PACConfig.GlobalEnable = 1; Write440Config(&PACConfig, PACCFG_OFFSET, sizeof(PACConfig));
AgpContext->GlobalEnable = TRUE; }
MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE;
return(STATUS_SUCCESS); }
NTSTATUS AgpUnMapMemory( IN PAGP440_EXTENSION AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages ) /*++
Routine Description:
Unmaps previously mapped memory in the GART.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range that the memory should be freed from
NumberOfPages - Supplies the number of pages in the range to be freed.
OffsetInPages - Supplies the offset into the range where the freeing should begin.
Return Value:
NTSTATUS
--*/
{ ULONG i; PGART_PTE Pte; PGART_PTE LastChanged=NULL; PGART_PTE StartPte; ULONG NewState;
PAGED_CODE();
ASSERT(OffsetInPages + NumberOfPages <= AgpRange->NumberOfPages);
StartPte = AgpRange->Context; Pte = &StartPte[OffsetInPages];
if (AgpRange->Type == MmNonCached) { NewState = GART_ENTRY_RESERVED_UC; } else { NewState = GART_ENTRY_RESERVED_WC; }
//
// Disable the TB to flush it
//
Agp440DisableTB(AgpContext); for (i=0; i<NumberOfPages; i++) { if (Pte[i].Hard.Valid) { Pte[i].Soft.State = NewState; LastChanged = Pte; } else { //
// This page is not mapped, just skip it.
//
AGPLOG(AGP_NOISE, ("AgpUnMapMemory - PTE %08lx (%08lx) at offset %d not mapped\n", &Pte[i], Pte[i].AsUlong, i)); ASSERT(Pte[i].Soft.State == NewState); } }
//
// We have invalidated all the PTEs. Read back the last one we wrote
// in order to flush the write buffers.
//
if (LastChanged != NULL) { ULONG Temp; Temp = *(volatile ULONG *)(&LastChanged->AsUlong); }
//
// Reenable the TB
//
Agp440EnableTB(AgpContext);
return(STATUS_SUCCESS); }
PGART_PTE Agp440FindRangeInGart( IN PGART_PTE StartPte, IN PGART_PTE EndPte, IN ULONG Length, IN BOOLEAN SearchBackward, IN ULONG SearchState ) /*++
Routine Description:
Finds a contiguous range in the GART. This routine can search either from the beginning of the GART forwards or the end of the GART backwards.
Arguments:
StartIndex - Supplies the first GART pte to search
EndPte - Supplies the last GART to search (inclusive)
Length - Supplies the number of contiguous free entries to search for.
SearchBackward - TRUE indicates that the search should begin at EndPte and search backwards. FALSE indicates that the search should begin at StartPte and search forwards
SearchState - Supplies the PTE state to look for.
Return Value:
Pointer to the first PTE in the GART if a suitable range is found.
NULL if no suitable range exists.
--*/
{ PGART_PTE Current; PGART_PTE Last; LONG Delta; ULONG Found; PGART_PTE Candidate;
PAGED_CODE();
ASSERT(EndPte >= StartPte); ASSERT(Length <= (ULONG)(EndPte - StartPte + 1)); ASSERT(Length != 0);
if (SearchBackward) { Current = EndPte; Last = StartPte-1; Delta = -1; } else { Current = StartPte; Last = EndPte+1; Delta = 1; }
Found = 0; while (Current != Last) { if (Current->Soft.State == SearchState) { if (++Found == Length) { //
// A suitable range was found, return it
//
if (SearchBackward) { return(Current); } else { return(Current - Length + 1); } } } else { Found = 0; } Current += Delta; }
//
// A suitable range was not found.
//
return(NULL); }
VOID Agp440SetGTLB_Enable( IN PAGP440_EXTENSION AgpContext, IN BOOLEAN Enable ) /*++
Routine Description:
Enables or disables the GTLB by setting or clearing the GTLB_Enable bit in the AGPCTRL register
Arguments:
AgpContext - Supplies the AGP context
Enable - TRUE, GTLB_Enable is set to 1 FALSE, GTLB_Enable is set to 0
Return Value:
None
--*/
{ AGPCTRL AgpCtrl;
Read440Config(&AgpCtrl, AGPCTRL_OFFSET, sizeof(AgpCtrl));
if (Enable) { AgpCtrl.GTLB_Enable = 1; } else { AgpCtrl.GTLB_Enable = 0; } Write440Config(&AgpCtrl, AGPCTRL_OFFSET, sizeof(AgpCtrl)); }
VOID AgpFindFreeRun( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT ULONG *FreePages, OUT ULONG *FreeOffset ) /*++
Routine Description:
Finds the first contiguous run of free pages in the specified part of the reserved range.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the size of the region to be searched for free pages
OffsetInPages - Supplies the start of the region to be searched for free pages
FreePages - Returns the length of the first contiguous run of free pages
FreeOffset - Returns the start of the first contiguous run of free pages
Return Value:
None. FreePages == 0 if there are no free pages in the specified range.
--*/
{ PGART_PTE Pte; ULONG i; Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
//
// Find the first free PTE
//
for (i=0; i<NumberOfPages; i++) { if (Pte[i].Hard.Valid == 0) { //
// Found a free PTE, count the contiguous ones.
//
*FreeOffset = i + OffsetInPages; *FreePages = 0; while ((i<NumberOfPages) && (Pte[i].Hard.Valid == 0)) { *FreePages += 1; ++i; } return; } }
//
// No free PTEs in the specified range
//
*FreePages = 0; return;
}
VOID AgpGetMappedPages( IN PVOID AgpContext, IN PAGP_RANGE AgpRange, IN ULONG NumberOfPages, IN ULONG OffsetInPages, OUT PMDL Mdl ) /*++
Routine Description:
Returns the list of physical pages mapped into the specified range in the GART.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the number of pages to be returned
OffsetInPages - Supplies the start of the region
Mdl - Returns the list of physical pages mapped in the specified range.
Return Value:
None
--*/
{ PGART_PTE Pte; ULONG i; PULONG Pages; ASSERT(NumberOfPages * PAGE_SIZE == Mdl->ByteCount);
Pages = (PULONG)(Mdl + 1); Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
for (i=0; i<NumberOfPages; i++) { ASSERT(Pte[i].Hard.Valid == 1); Pages[i] = Pte[i].Hard.Page; } return; }
NTSTATUS AgpSpecialTarget( IN PAGP440_EXTENSION AgpContext, IN ULONGLONG DeviceFlags ) /*++
Routine Description:
This routine makes "special" tweaks to the AGP chipset
Arguments:
AgpContext - Supplies the AGP context DeviceFlags - Flags indicating what tweaks to perform
Return Value:
STATUS_SUCCESS, or error
--*/ { NTSTATUS Status;
//
// Should we change the AGP rate?
//
if (DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) {
Status = Agp440SetRate(AgpContext, (ULONG)((DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) >> AGP_FLAG_SET_RATE_SHIFT)); if (!NT_SUCCESS(Status)) { return Status; } }
//
// Add more tweaks here...
//
AgpContext->SpecialTarget |= DeviceFlags;
return STATUS_SUCCESS; }
NTSTATUS Agp440SetRate( IN PAGP440_EXTENSION AgpContext, IN ULONG AgpRate ) /*++
Routine Description:
This routine sets the AGP rate
Arguments:
AgpContext - Supplies the AGP context AgpRate - Rate to set
Return Value:
STATUS_SUCCESS, or error status
--*/ { NTSTATUS Status; ULONG TargetEnable; ULONG MasterEnable; PCI_AGP_CAPABILITY TargetCap; PCI_AGP_CAPABILITY MasterCap; BOOLEAN ReverseInit;
//
// Read capabilities
//
Status = AgpLibGetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibGetPciDeviceCapability " "failed %08lx\n", Status)); return Status; }
Status = AgpLibGetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibGetMasterCapability " "failed %08lx\n", Status)); return Status; }
//
// Verify the requested rate is supported by both master and target
//
if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) { return STATUS_INVALID_PARAMETER; }
//
// Disable AGP while the pull the rug out from underneath
//
TargetEnable = TargetCap.AGPCommand.AGPEnable; TargetCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; } MasterEnable = MasterCap.AGPCommand.AGPEnable; MasterCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); return Status; }
//
// Fire up AGP with new rate
//
ReverseInit = (AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) == AGP_FLAG_REVERSE_INITIALIZATION; if (ReverseInit) { MasterCap.AGPCommand.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } }
TargetCap.AGPCommand.Rate = AgpRate; TargetCap.AGPCommand.AGPEnable = TargetEnable; Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetPciDeviceCapability %08lx for " "Target failed %08lx\n", &TargetCap, Status)); return Status; }
if (!ReverseInit) { MasterCap.AGPCommand.Rate = AgpRate; MasterCap.AGPCommand.AGPEnable = MasterEnable; Status = AgpLibSetMasterCapability(AgpContext, &MasterCap); if (!NT_SUCCESS(Status)) { AGPLOG(AGP_WARNING, ("AGP440SetRate: AgpLibSetMasterCapability %08lx failed " "%08lx\n", &MasterCap, Status)); } }
return Status; }
|