Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

11344 lines
362 KiB

  1. /*++
  2. Copyright (c) 1991 Microsoft Corporation
  3. Module Name:
  4. DevIoSup.c
  5. Abstract:
  6. This module implements the low lever disk read/write support for Ntfs
  7. Author:
  8. Brian Andrew BrianAn
  9. Tom Miller TomM
  10. Revision History:
  11. --*/
  12. #include "NtfsProc.h"
  13. #include <ntdskreg.h>
  14. #include <ntddft.h>
  15. #include <ntddvol.h>
  16. #ifdef NTFS_RWC_DEBUG
  17. extern BOOLEAN NtfsBreakOnConflict;
  18. #endif
  19. //
  20. // Number of pages to allocate a mdl on the stack for
  21. //
  22. #define NTFS_MDL_TRANSFER_PAGES 0x10
  23. #ifdef SYSCACHE
  24. //
  25. // Debug routines for syscache testing.
  26. //
  27. //
  28. // Tom's nifty Scsi Analyzer for syscache
  29. //
  30. #define ScsiLines (4096)
  31. ULONG NextLine = 0;
  32. ULONG ScsiAnal[ScsiLines][4];
  33. VOID
  34. CallDisk (
  35. PIRP_CONTEXT IrpContext,
  36. PDEVICE_OBJECT DeviceObject,
  37. PIRP Irp,
  38. IN ULONG Single
  39. )
  40. {
  41. PIO_STACK_LOCATION IrpSp;
  42. PSCB Scb;
  43. ULONG i;
  44. IrpSp = IoGetCurrentIrpStackLocation(Irp);
  45. Scb = (PSCB)IrpContext->OriginatingIrp->Tail.Overlay.OriginalFileObject->FsContext;
  46. if (!FlagOn(Scb->ScbState, SCB_STATE_SYSCACHE_FILE) ||
  47. (IrpSp->MajorFunction != IRP_MJ_WRITE)) {
  48. IoCallDriver( DeviceObject, Irp );
  49. return;
  50. }
  51. i = NextLine++;
  52. if (i >= ScsiLines) {
  53. i = 0;
  54. NextLine = 1;
  55. }
  56. ScsiAnal[i][0] = IrpSp->Parameters.Write.ByteOffset.LowPart;
  57. ScsiAnal[i][2] = IrpSp->Parameters.Write.Length;
  58. ScsiAnal[i][3] = *(PULONG)NtfsMapUserBuffer(Irp);
  59. IrpSp = IoGetNextIrpStackLocation(Irp);
  60. ScsiAnal[i][1] = IrpSp->Parameters.Write.ByteOffset.LowPart;
  61. IoCallDriver( DeviceObject, Irp );
  62. if (Single) {
  63. KeWaitForSingleObject( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  64. Executive,
  65. KernelMode,
  66. FALSE,
  67. NULL );
  68. ScsiAnal[i][2] += Irp->IoStatus.Status << 16;
  69. }
  70. }
  71. #endif SYSCACHE
  72. //
  73. // The Bug check file id for this module
  74. //
  75. #define BugCheckFileId (NTFS_BUG_CHECK_DEVIOSUP)
  76. //
  77. // Local debug trace level
  78. //
  79. #define Dbg (DEBUG_TRACE_DEVIOSUP)
  80. //
  81. // Define a tag for general pool allocations from this module
  82. //
  83. #undef MODULE_POOL_TAG
  84. #define MODULE_POOL_TAG ('DFtN')
  85. //
  86. // We need a special test for success, whenever we are seeing if we should
  87. // hot fix, because the FT driver returns one of two success codes if a read or
  88. // write failed to only one of the members.
  89. //
  90. #define FT_SUCCESS(STS) (NT_SUCCESS(STS) && \
  91. ((STS) != STATUS_FT_READ_RECOVERY_FROM_BACKUP) && \
  92. ((STS) != STATUS_FT_WRITE_RECOVERY))
  93. //
  94. // Boolean to control whether we output HotFix information to the debugger.
  95. //
  96. #if DBG
  97. BOOLEAN NtfsHotFixTrace = FALSE;
  98. #define HotFixTrace(X) {if (NtfsHotFixTrace) KdPrint(X);}
  99. #else
  100. #define HotFixTrace(X) {NOTHING;}
  101. #endif
  102. //
  103. // Boolean to indicate whether to break on a decompress error
  104. //
  105. #ifdef SYSCACHE
  106. BOOLEAN NtfsStopOnDecompressError = TRUE;
  107. BOOLEAN VerifySyscacheData = FALSE;
  108. #else
  109. BOOLEAN NtfsStopOnDecompressError = FALSE;
  110. #endif
  111. //
  112. // Macro to collect the Disk IO stats.
  113. //
  114. #define CollectDiskIoStats(VCB,SCB,FUNCTION,COUNT) { \
  115. PFILESYSTEM_STATISTICS FsStats = &(VCB)->Statistics[KeGetCurrentProcessorNumber()].Common; \
  116. ASSERT((SCB)->Fcb != NULL); \
  117. if (NtfsIsTypeCodeUserData( (SCB)->AttributeTypeCode ) && \
  118. !FlagOn( (SCB)->Fcb->FcbState, FCB_STATE_SYSTEM_FILE )) { \
  119. if ((FUNCTION) == IRP_MJ_WRITE) { \
  120. FsStats->UserDiskWrites += (COUNT); \
  121. } else { \
  122. FsStats->UserDiskReads += (COUNT); \
  123. } \
  124. } else if ((SCB) != (VCB)->LogFileScb) { \
  125. if ((FUNCTION) == IRP_MJ_WRITE) { \
  126. FsStats->MetaDataDiskWrites += (COUNT); \
  127. } else { \
  128. FsStats->MetaDataDiskReads += (COUNT); \
  129. } \
  130. } \
  131. }
  132. //
  133. // Define a context for holding the context the compression state
  134. // for buffers.
  135. //
  136. typedef struct COMPRESSION_CONTEXT {
  137. //
  138. // Pointer to allocated compression buffer, and its length
  139. //
  140. PUCHAR CompressionBuffer;
  141. ULONG CompressionBufferLength;
  142. //
  143. // Saved fields from originating Irp
  144. //
  145. PMDL SavedMdl;
  146. PVOID SavedUserBuffer;
  147. //
  148. // System Buffer pointer and offset in the System (user's) buffer
  149. //
  150. PVOID SystemBuffer;
  151. ULONG SystemBufferOffset;
  152. //
  153. // IoRuns array in use. This array may be extended one time
  154. // in NtfsPrepareBuffers.
  155. //
  156. PIO_RUN IoRuns;
  157. ULONG AllocatedRuns;
  158. //
  159. // Workspace pointer, so that cleanup can occur in the caller.
  160. //
  161. PVOID WorkSpace;
  162. //
  163. // Write acquires the Scb.
  164. //
  165. BOOLEAN ScbAcquired;
  166. BOOLEAN FinishBuffersNeeded;
  167. //
  168. // If this field is TRUE, it means the data has been copied from the
  169. // system buffer to the compression buffer, and further operations,
  170. // like compression, should look to the compression buffer for their
  171. // source data.
  172. //
  173. BOOLEAN DataTransformed;
  174. } COMPRESSION_CONTEXT, *PCOMPRESSION_CONTEXT;
  175. //
  176. // Local support routines
  177. //
  178. VOID
  179. NtfsAllocateCompressionBuffer (
  180. IN PIRP_CONTEXT IrpContext,
  181. IN PSCB ThisScb,
  182. IN PIRP Irp,
  183. IN PCOMPRESSION_CONTEXT CompressionContext,
  184. IN OUT PULONG CompressionBufferLength
  185. );
  186. VOID
  187. NtfsDeallocateCompressionBuffer (
  188. IN PIRP Irp,
  189. IN PCOMPRESSION_CONTEXT CompressionContext,
  190. IN BOOLEAN Reinitialize
  191. );
  192. LONG
  193. NtfsCompressionFilter (
  194. IN PIRP_CONTEXT IrpContext,
  195. IN PEXCEPTION_POINTERS ExceptionPointer
  196. );
  197. ULONG
  198. NtfsPrepareBuffers (
  199. IN PIRP_CONTEXT IrpContext,
  200. IN PIRP Irp,
  201. IN PSCB Scb,
  202. IN PVBO StartingVbo,
  203. IN ULONG ByteCount,
  204. IN ULONG StreamFlags,
  205. IN OUT PBOOLEAN Wait,
  206. OUT PULONG NumberRuns,
  207. OUT PCOMPRESSION_CONTEXT CompressionContext
  208. );
  209. NTSTATUS
  210. NtfsFinishBuffers (
  211. IN PIRP_CONTEXT IrpContext,
  212. IN PIRP Irp,
  213. IN PSCB Scb,
  214. IN PVBO StartingVbo,
  215. IN ULONG ByteCount,
  216. IN ULONG NumberRuns,
  217. IN PCOMPRESSION_CONTEXT CompressionContext,
  218. IN ULONG StreamFlags
  219. );
  220. VOID
  221. NtfsMultipleAsync (
  222. IN PIRP_CONTEXT IrpContext,
  223. IN PDEVICE_OBJECT DeviceObject,
  224. IN PIRP MasterIrp,
  225. IN ULONG MultipleIrpCount,
  226. IN PIO_RUN IoRuns
  227. );
  228. VOID
  229. NtfsSingleAsync (
  230. IN PIRP_CONTEXT IrpContext,
  231. IN PDEVICE_OBJECT DeviceObject,
  232. IN LBO StartingLbo,
  233. IN ULONG ByteCount,
  234. IN PIRP Irp,
  235. IN UCHAR MajorFunction
  236. );
  237. VOID
  238. NtfsWaitSync (
  239. IN PIRP_CONTEXT IrpContext
  240. );
  241. NTSTATUS
  242. NtfsMultiAsyncCompletionRoutine (
  243. IN PDEVICE_OBJECT DeviceObject,
  244. IN PIRP Irp,
  245. IN PVOID Contxt
  246. );
  247. NTSTATUS
  248. NtfsMultiSyncCompletionRoutine (
  249. IN PDEVICE_OBJECT DeviceObject,
  250. IN PIRP Irp,
  251. IN PVOID Contxt
  252. );
  253. NTSTATUS
  254. NtfsSingleAsyncCompletionRoutine (
  255. IN PDEVICE_OBJECT DeviceObject,
  256. IN PIRP Irp,
  257. IN PVOID Contxt
  258. );
  259. NTSTATUS
  260. NtfsSingleSyncCompletionRoutine (
  261. IN PDEVICE_OBJECT DeviceObject,
  262. IN PIRP Irp,
  263. IN PVOID Contxt
  264. );
  265. NTSTATUS
  266. NtfsPagingFileCompletionRoutine (
  267. IN PDEVICE_OBJECT DeviceObject,
  268. IN PIRP Irp,
  269. IN PVOID MasterIrp
  270. );
  271. NTSTATUS
  272. NtfsPagingFileNoAllocCompletionRoutine (
  273. IN PDEVICE_OBJECT DeviceObject,
  274. IN PIRP Irp,
  275. IN PVOID Context
  276. );
  277. VOID
  278. NtfsSingleNonAlignedSync (
  279. IN PIRP_CONTEXT IrpContext,
  280. IN PVCB Vcb,
  281. IN PSCB Scb,
  282. IN PUCHAR Buffer,
  283. IN VBO Vbo,
  284. IN LBO Lbo,
  285. IN ULONG ByteCount,
  286. IN PIRP Irp
  287. );
  288. NTSTATUS
  289. NtfsEncryptBuffers (
  290. IN PIRP_CONTEXT IrpContext,
  291. IN PIRP Irp,
  292. IN PSCB Scb,
  293. IN VBO StartingVbo,
  294. IN ULONG NumberRuns,
  295. IN PCOMPRESSION_CONTEXT CompressionContext
  296. );
  297. VOID
  298. NtfsFixDataError (
  299. IN PIRP_CONTEXT IrpContext,
  300. IN PSCB Scb,
  301. IN PDEVICE_OBJECT DeviceObject,
  302. IN PIRP MasterIrp,
  303. IN ULONG MultipleIrpCount,
  304. IN PIO_RUN IoRuns
  305. );
  306. VOID
  307. NtfsPostHotFix(
  308. IN PIRP Irp,
  309. IN PLONGLONG BadVbo,
  310. IN LONGLONG BadLbo,
  311. IN ULONG ByteLength,
  312. IN BOOLEAN DelayIrpCompletion
  313. );
  314. VOID
  315. NtfsPerformHotFix (
  316. IN PIRP_CONTEXT IrpContext
  317. );
  318. BOOLEAN
  319. NtfsGetReservedBuffer (
  320. IN PFCB ThisFcb,
  321. OUT PVOID *Buffer,
  322. OUT PULONG Length,
  323. IN UCHAR Need2
  324. );
  325. BOOLEAN
  326. NtfsFreeReservedBuffer (
  327. IN PVOID Buffer
  328. );
  329. LONG
  330. NtfsDefragExceptionFilter (
  331. IN PIRP_CONTEXT IrpContext OPTIONAL,
  332. IN PEXCEPTION_POINTERS ExceptionPointer,
  333. IN OUT PULONG DeletePendingFailureCountsLeft
  334. );
  335. #ifdef ALLOC_PRAGMA
  336. //****#pragma alloc_text(PAGE, NtfsCreateMdlAndBuffer)
  337. //****#pragma alloc_text(PAGE, NtfsFixDataError)
  338. //****#pragma alloc_text(PAGE, NtfsMapUserBuffer)
  339. #pragma alloc_text(PAGE, NtfsReadFromPlex)
  340. //****#pragma alloc_text(PAGE, NtfsMultipleAsync)
  341. //****#pragma alloc_text(PAGE, NtfsNonCachedIo)
  342. //****#pragma alloc_text(PAGE, NtfsPrepareBuffers)
  343. //****#pragma alloc_text(PAGE, NtfsFinishBuffers)
  344. //****#pragma alloc_text(PAGE, NtfsNonCachedNonAlignedIo)
  345. //****#pragma alloc_text(PAGE, NtfsPerformHotFix)
  346. //****#pragma alloc_text(PAGE, NtfsSingleAsync)
  347. //****#pragma alloc_text(PAGE, NtfsSingleNonAlignedSync)
  348. //****#pragma alloc_text(PAGE, NtfsTransformUsaBlock)
  349. //****#pragma alloc_text(PAGE, NtfsVerifyAndRevertUsaBlock)
  350. //****#pragma alloc_text(PAGE, NtfsVolumeDasdIo)
  351. //****#pragma alloc_text(PAGE, NtfsWaitSync)
  352. //****#pragma alloc_text(PAGE, NtfsWriteClusters)
  353. #endif
  354. INLINE
  355. BOOLEAN
  356. NtfsZeroEndOfBuffer(
  357. IN PIRP Irp,
  358. IN PNTFS_IO_CONTEXT Context
  359. )
  360. /*++
  361. Routine Description:
  362. This routine Zeros the end of an async transfer. Because the transfer is done
  363. in sector sized chunks there will be garbage data from the end of file size to
  364. the sector boundary. If there are any errors they will stored in the IoStatus field
  365. of the irp
  366. Arguments:
  367. Irp - Pointer to the Irp for which the buffer is to be zeroed
  368. Device - device which contains the vcb
  369. Context - io context which has the original operation bounds
  370. Return Value:
  371. TRUE if successful
  372. --*/
  373. {
  374. PIO_STACK_LOCATION IrpSp;
  375. PDEVICE_OBJECT DeviceObject;
  376. PVCB Vcb;
  377. PVOID SystemBuffer;
  378. ULONG RoundedTransfer;
  379. UCHAR Buffer[sizeof( MDL ) + sizeof( PFN_NUMBER ) * (NTFS_MDL_TRANSFER_PAGES + 1)];
  380. PMDL PartialMdl = (PMDL) &Buffer;
  381. IrpSp = IoGetCurrentIrpStackLocation( Irp );
  382. DeviceObject = IrpSp->DeviceObject;
  383. //
  384. // Zero the difference between filesize and data read if necc. on reads
  385. //
  386. if ((IrpSp->MajorFunction == IRP_MJ_READ) &&
  387. (Context->Wait.Async.RequestedByteCount < IrpSp->Parameters.Read.Length)) {
  388. Vcb = &((PVOLUME_DEVICE_OBJECT) DeviceObject)->Vcb;
  389. ASSERT( Vcb->NodeTypeCode == NTFS_NTC_VCB );
  390. RoundedTransfer = BlockAlign( Context->Wait.Async.RequestedByteCount, (LONG)Vcb->BytesPerSector );
  391. if (RoundedTransfer > Context->Wait.Async.RequestedByteCount) {
  392. MmInitializeMdl( PartialMdl, NULL, NTFS_MDL_TRANSFER_PAGES * PAGE_SIZE );
  393. IoBuildPartialMdl( Irp->MdlAddress, PartialMdl, Add2Ptr( MmGetMdlBaseVa( Irp->MdlAddress ), MmGetMdlByteOffset( Irp->MdlAddress ) + Context->Wait.Async.RequestedByteCount ), RoundedTransfer - Context->Wait.Async.RequestedByteCount );
  394. //
  395. // Now map that last page
  396. //
  397. SystemBuffer = MmGetSystemAddressForMdlSafe( PartialMdl, NormalPagePriority );
  398. if (SystemBuffer == NULL) {
  399. Irp->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
  400. return FALSE;
  401. }
  402. //
  403. // Zero the end of the transfer between expected size and read size. If the mdl is not
  404. // on a page boundary this will all be offset by the MdlByteOffset
  405. //
  406. RtlZeroMemory( SystemBuffer, RoundedTransfer - Context->Wait.Async.RequestedByteCount );
  407. MmPrepareMdlForReuse( PartialMdl );
  408. }
  409. }
  410. return TRUE;
  411. }
  412. VOID
  413. NtfsLockUserBuffer (
  414. IN PIRP_CONTEXT IrpContext,
  415. IN OUT PIRP Irp,
  416. IN LOCK_OPERATION Operation,
  417. IN ULONG BufferLength
  418. )
  419. /*++
  420. Routine Description:
  421. This routine locks the specified buffer for the specified type of
  422. access. The file system requires this routine since it does not
  423. ask the I/O system to lock its buffers for direct I/O. This routine
  424. may only be called from the Fsd while still in the user context.
  425. Arguments:
  426. Irp - Pointer to the Irp for which the buffer is to be locked.
  427. Operation - IoWriteAccess for read operations, or IoReadAccess for
  428. write operations.
  429. BufferLength - Length of user buffer.
  430. Return Value:
  431. None
  432. --*/
  433. {
  434. PMDL Mdl = NULL;
  435. ASSERT_IRP_CONTEXT( IrpContext );
  436. ASSERT_IRP( Irp );
  437. if (Irp->MdlAddress == NULL) {
  438. //
  439. // Allocate the Mdl, and Raise if we fail.
  440. //
  441. Mdl = IoAllocateMdl( Irp->UserBuffer, BufferLength, FALSE, FALSE, Irp );
  442. if (Mdl == NULL) {
  443. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  444. }
  445. //
  446. // Now probe the buffer described by the Irp. If we get an exception,
  447. // deallocate the Mdl and return the appropriate "expected" status.
  448. //
  449. try {
  450. MmProbeAndLockPages( Mdl, Irp->RequestorMode, Operation );
  451. } except(EXCEPTION_EXECUTE_HANDLER) {
  452. NTSTATUS Status;
  453. Status = GetExceptionCode();
  454. IoFreeMdl( Mdl );
  455. Irp->MdlAddress = NULL;
  456. NtfsRaiseStatus( IrpContext,
  457. FsRtlIsNtstatusExpected(Status) ? Status : STATUS_INVALID_USER_BUFFER,
  458. NULL,
  459. NULL );
  460. }
  461. }
  462. //
  463. // And return to our caller
  464. //
  465. return;
  466. }
  467. PVOID
  468. NtfsMapUserBuffer (
  469. IN OUT PIRP Irp
  470. )
  471. /*++
  472. Routine Description:
  473. This routine conditionally maps the user buffer for the current I/O
  474. request in the specified mode. If the buffer is already mapped, it
  475. just returns its address.
  476. Arguments:
  477. Irp - Pointer to the Irp for the request.
  478. Return Value:
  479. Mapped address
  480. --*/
  481. {
  482. PVOID SystemBuffer;
  483. //
  484. // If there is no Mdl, then we must be in the Fsd, and we can simply
  485. // return the UserBuffer field from the Irp.
  486. //
  487. if (Irp->MdlAddress == NULL) {
  488. return Irp->UserBuffer;
  489. } else {
  490. //
  491. // MM can return NULL if there are no system ptes.
  492. //
  493. if ((SystemBuffer = MmGetSystemAddressForMdlSafe( Irp->MdlAddress, NormalPagePriority )) == NULL) {
  494. ExRaiseStatus( STATUS_INSUFFICIENT_RESOURCES );
  495. }
  496. return SystemBuffer;
  497. }
  498. }
  499. NTSTATUS
  500. NtfsVolumeDasdIo (
  501. IN PIRP_CONTEXT IrpContext,
  502. IN PIRP Irp,
  503. IN PVCB Vcb,
  504. IN VBO StartingVbo,
  505. IN ULONG ByteCount
  506. )
  507. /*++
  508. Routine Description:
  509. This routine performs the non-cached disk io for Volume Dasd, as described
  510. in its parameters.
  511. Arguments:
  512. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  513. Irp - Supplies the requesting Irp.
  514. Vcb - Supplies the Vcb for the volume
  515. StartingVbo - Starting offset within the file for the operation.
  516. ByteCount - The lengh of the operation.
  517. Return Value:
  518. The result of the Io operation. STATUS_PENDING if this is an asynchronous
  519. open.
  520. --*/
  521. {
  522. PAGED_CODE();
  523. DebugTrace( +1, Dbg, ("NtfsVolumeDasdIo\n") );
  524. DebugTrace( 0, Dbg, ("Irp = %08lx\n", Irp) );
  525. DebugTrace( 0, Dbg, ("MajorFunction = %08lx\n", IrpContext->MajorFunction) );
  526. DebugTrace( 0, Dbg, ("Vcb = %08lx\n", Vcb) );
  527. DebugTrace( 0, Dbg, ("StartingVbo = %016I64x\n", StartingVbo) );
  528. DebugTrace( 0, Dbg, ("ByteCount = %08lx\n", ByteCount) );
  529. //
  530. // For nonbuffered I/O, we need the buffer locked in all
  531. // cases.
  532. //
  533. // This call may raise. If this call succeeds and a subsequent
  534. // condition is raised, the buffers are unlocked automatically
  535. // by the I/O system when the request is completed, via the
  536. // Irp->MdlAddress field.
  537. //
  538. NtfsLockUserBuffer( IrpContext,
  539. Irp,
  540. (IrpContext->MajorFunction == IRP_MJ_READ) ?
  541. IoWriteAccess : IoReadAccess,
  542. ByteCount );
  543. //
  544. // Read the data and wait for the results
  545. //
  546. NtfsSingleAsync( IrpContext,
  547. Vcb->TargetDeviceObject,
  548. StartingVbo,
  549. ByteCount,
  550. Irp,
  551. IrpContext->MajorFunction );
  552. if (!FlagOn( IrpContext->State, IRP_CONTEXT_STATE_WAIT )) {
  553. //
  554. // We can get rid of the IrpContext now.
  555. //
  556. IrpContext->Union.NtfsIoContext = NULL;
  557. NtfsCleanupIrpContext( IrpContext, TRUE );
  558. DebugTrace( -1, Dbg, ("NtfsVolumeDasdIo -> STATUS_PENDING\n") );
  559. return STATUS_PENDING;
  560. }
  561. NtfsWaitSync( IrpContext );
  562. DebugTrace( -1, Dbg, ("NtfsVolumeDasdIo -> %08lx\n", Irp->IoStatus.Status) );
  563. return Irp->IoStatus.Status;
  564. }
  565. VOID
  566. NtfsPagingFileIoWithNoAllocation (
  567. IN PIRP_CONTEXT IrpContext,
  568. IN PIRP Irp,
  569. IN PSCB Scb,
  570. IN VBO StartingVbo,
  571. IN ULONG ByteCount
  572. )
  573. /*++
  574. Routine Description:
  575. This routine performs the non-cached disk io described in its parameters.
  576. This routine nevers blocks, and should only be used with the paging
  577. file since no completion processing is performed. This version does not allocate
  578. any memory so it guarantees fwd progress
  579. Arguments:
  580. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  581. Irp - Supplies the requesting Irp.
  582. Scb - Supplies the file to act on.
  583. StartingVbo - Starting offset within the file for the operation.
  584. ByteCount - The lengh of the operation.
  585. Return Value:
  586. None.
  587. --*/
  588. {
  589. UCHAR Buffer[sizeof( MDL ) + sizeof( PFN_NUMBER ) * (NTFS_MDL_TRANSFER_PAGES + 1)];
  590. PMDL PartialMdl = (PMDL) &Buffer;
  591. PMDL MasterMdl = Irp->MdlAddress;
  592. LONGLONG ThisClusterCount;
  593. ULONG ThisByteCount;
  594. LCN ThisLcn;
  595. LBO ThisLbo;
  596. VCN ThisVcn;
  597. PIO_STACK_LOCATION IrpSp;
  598. ULONG BufferOffset;
  599. PVCB Vcb = Scb->Vcb;
  600. ULONG ClusterOffset;
  601. VCN BeyondLastCluster;
  602. NTSTATUS Status;
  603. KEVENT Event;
  604. //
  605. // Initialize some locals.
  606. //
  607. BufferOffset = 0;
  608. ClusterOffset = (ULONG) StartingVbo & Vcb->ClusterMask;
  609. BeyondLastCluster = LlClustersFromBytes( Vcb, StartingVbo + ByteCount );
  610. KeInitializeEvent( &Event, SynchronizationEvent, FALSE );
  611. RtlZeroMemory( Buffer, sizeof( Buffer ) );
  612. ThisVcn = LlClustersFromBytesTruncate( Vcb, StartingVbo );
  613. while (ByteCount > 0) {
  614. //
  615. // Try to lookup the next run
  616. // Paging files reads/ writes should always be correct. If
  617. // we didn't find the allocation, something bad has happened.
  618. //
  619. if (!NtfsLookupNtfsMcbEntry( &Scb->Mcb,
  620. ThisVcn,
  621. &ThisLcn,
  622. &ThisClusterCount,
  623. NULL,
  624. NULL,
  625. NULL,
  626. NULL )) {;
  627. NtfsBugCheck( 0, 0, 0 );
  628. }
  629. //
  630. // Adjust from Lcn to Lbo.
  631. //
  632. ThisLbo = LlBytesFromClusters( Vcb, ThisLcn ) + ClusterOffset;
  633. //
  634. // If next run is larger than we need, "ya get what you need".
  635. //
  636. ThisByteCount = BytesFromClusters( Vcb, (ULONG) ThisClusterCount ) - ClusterOffset;
  637. if (ThisVcn + ThisClusterCount >= BeyondLastCluster) {
  638. ThisByteCount = ByteCount;
  639. }
  640. //
  641. // Now that we have properly bounded this piece of the
  642. // transfer, it is time to read/write it NTFS_MDL_TRANSFER_PAGES pages at a time.
  643. //
  644. while (ThisByteCount > 0) {
  645. ULONG TransferSize = min( NTFS_MDL_TRANSFER_PAGES * PAGE_SIZE, ThisByteCount );
  646. //
  647. // The partial mdl is on the stack
  648. //
  649. PartialMdl->Size = sizeof( Buffer );
  650. IoBuildPartialMdl( MasterMdl,
  651. PartialMdl,
  652. Add2Ptr( Irp->UserBuffer, BufferOffset ),
  653. TransferSize );
  654. Irp->MdlAddress = PartialMdl;
  655. IrpSp = IoGetNextIrpStackLocation( Irp );
  656. //
  657. // Setup the Stack location to do a read from the disk driver.
  658. //
  659. IrpSp->MajorFunction = IrpContext->MajorFunction;
  660. IrpSp->Parameters.Read.Length = TransferSize;
  661. IrpSp->Parameters.Read.ByteOffset.QuadPart = ThisLbo;
  662. IoSetCompletionRoutine( Irp, NtfsPagingFileNoAllocCompletionRoutine, &Event, TRUE, TRUE, TRUE );
  663. Status = IoCallDriver( Vcb->TargetDeviceObject, Irp );
  664. if (Status == STATUS_PENDING) {
  665. KeWaitForSingleObject( &Event, Executive, KernelMode, FALSE, NULL );
  666. Status = Irp->IoStatus.Status;
  667. }
  668. ASSERT( Status != STATUS_INSUFFICIENT_RESOURCES );
  669. if (!FT_SUCCESS( Irp->IoStatus.Status )) {
  670. BOOLEAN DataLost = TRUE;
  671. if (!FsRtlIsTotalDeviceFailure( Status ) &&
  672. (Status != STATUS_VERIFY_REQUIRED)) {
  673. //
  674. // We don't want to try to hotfix READ errors on the paging file
  675. // because of deadlock possibilities with MM. Instead we'll just
  676. // return the error for MM to deal with. Chances are that
  677. // MM (eg. MiWaitForInPageComplete) will bugcheck anyway,
  678. // but it's still nicer than walking right into the deadlock.
  679. //
  680. if (IrpSp->MajorFunction != IRP_MJ_READ) {
  681. if ((Irp->IoStatus.Status == STATUS_FT_READ_RECOVERY_FROM_BACKUP) ||
  682. (Irp->IoStatus.Status == STATUS_FT_WRITE_RECOVERY)) {
  683. //
  684. // We got the data down on part of the mirror so we can do the fix
  685. // asynchronously
  686. //
  687. DataLost = FALSE;
  688. }
  689. //
  690. // Start an async hotfix
  691. //
  692. try {
  693. NtfsPostHotFix( Irp,
  694. &StartingVbo,
  695. ThisLbo,
  696. TransferSize,
  697. FALSE );
  698. } except( GetExceptionCode() == STATUS_INSUFFICIENT_RESOURCES ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH ) {
  699. //
  700. // If we don't have enough memory to post the hotfix - so be it
  701. // continue on
  702. //
  703. NtfsMinimumExceptionProcessing( IrpContext );
  704. }
  705. }
  706. }
  707. //
  708. // If mm needs to rewrite the data return back the error
  709. //
  710. if (DataLost) {
  711. Irp->MdlAddress = MasterMdl;
  712. NtfsCompleteRequest( NULL, Irp, Irp->IoStatus.Status );
  713. return;
  714. }
  715. }
  716. //
  717. // Now adjust everything for the next pass through the loop
  718. //
  719. StartingVbo += TransferSize;
  720. BufferOffset += TransferSize;
  721. ByteCount -= TransferSize;
  722. ThisByteCount -= TransferSize;
  723. ThisLbo += TransferSize;
  724. }
  725. //
  726. // Now adjust everything for the next pass through the loop but
  727. // break out now if all the irps have been created for the io.
  728. //
  729. ClusterOffset = 0;
  730. ThisVcn += ThisClusterCount;
  731. }
  732. //
  733. // Finally restore back the fields and complete the original irp
  734. //
  735. Irp->MdlAddress = MasterMdl;
  736. NtfsCompleteRequest( NULL, Irp, Irp->IoStatus.Status );
  737. }
  738. VOID
  739. NtfsPagingFileIo (
  740. IN PIRP_CONTEXT IrpContext,
  741. IN PIRP Irp,
  742. IN PSCB Scb,
  743. IN VBO StartingVbo,
  744. IN ULONG ByteCount
  745. )
  746. /*++
  747. Routine Description:
  748. This routine performs the non-cached disk io described in its parameters.
  749. This routine nevers blocks, and should only be used with the paging
  750. file since no completion processing is performed.
  751. Arguments:
  752. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  753. Irp - Supplies the requesting Irp.
  754. Scb - Supplies the file to act on.
  755. StartingVbo - Starting offset within the file for the operation.
  756. ByteCount - The lengh of the operation.
  757. Return Value:
  758. None.
  759. --*/
  760. {
  761. LONGLONG ThisClusterCount;
  762. ULONG ThisByteCount;
  763. LCN ThisLcn;
  764. LBO ThisLbo;
  765. VCN ThisVcn;
  766. PIRP AssocIrp;
  767. PIRP ContextIrp;
  768. PIO_STACK_LOCATION IrpSp;
  769. ULONG BufferOffset;
  770. PDEVICE_OBJECT DeviceObject;
  771. PFILE_OBJECT FileObject;
  772. PDEVICE_OBJECT OurDeviceObject;
  773. PVCB Vcb = Scb->Vcb;
  774. LIST_ENTRY AssociatedIrps;
  775. ULONG AssociatedIrpCount;
  776. ULONG ClusterOffset;
  777. VCN BeyondLastCluster;
  778. VBO OriginalStartingVbo = StartingVbo;
  779. ULONG OriginalByteCount = ByteCount;
  780. ClearFlag( Vcb->Vpb->RealDevice->Flags, DO_VERIFY_VOLUME ); //****ignore verify for now
  781. //
  782. // Check whether we want to set the low order bit in the Irp to pass
  783. // as a context value to the completion routine.
  784. //
  785. ContextIrp = Irp;
  786. if (FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_HOTFIX_UNDERWAY )) {
  787. SetFlag( ((ULONG_PTR) ContextIrp), 0x1 );
  788. }
  789. //
  790. // Check that we are sector aligned.
  791. //
  792. ASSERT( (((ULONG)StartingVbo) & (Vcb->BytesPerSector - 1)) == 0 );
  793. //
  794. // Initialize some locals.
  795. //
  796. BufferOffset = 0;
  797. ClusterOffset = (ULONG) StartingVbo & Vcb->ClusterMask;
  798. DeviceObject = Vcb->TargetDeviceObject;
  799. BeyondLastCluster = LlClustersFromBytes( Vcb, StartingVbo + ByteCount );
  800. //
  801. // Try to lookup the first run. If there is just a single run,
  802. // we may just be able to pass it on.
  803. //
  804. ThisVcn = LlClustersFromBytesTruncate( Vcb, StartingVbo );
  805. //
  806. // Paging files reads/ writes should always be correct. If we didn't
  807. // find the allocation, something bad has happened.
  808. //
  809. if (!NtfsLookupNtfsMcbEntry( &Scb->Mcb,
  810. ThisVcn,
  811. &ThisLcn,
  812. &ThisClusterCount,
  813. NULL,
  814. NULL,
  815. NULL,
  816. NULL )) {
  817. NtfsRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR, NULL, Scb->Fcb );
  818. }
  819. //
  820. // Adjust from Lcn to Lbo.
  821. //
  822. ThisLbo = LlBytesFromClusters( Vcb, ThisLcn ) + ClusterOffset;
  823. //
  824. // Now set up the Irp->IoStatus. It will be modified by the
  825. // multi-completion routine in case of error or verify required.
  826. //
  827. Irp->IoStatus.Status = STATUS_SUCCESS;
  828. Irp->IoStatus.Information = ByteCount;
  829. //
  830. // Save the FileObject.
  831. //
  832. IrpSp = IoGetCurrentIrpStackLocation( Irp );
  833. FileObject = IrpSp->FileObject;
  834. OurDeviceObject = IrpSp->DeviceObject;
  835. //
  836. // See if the write covers a single valid run, and if so pass
  837. // it on.
  838. //
  839. if (ThisVcn + ThisClusterCount >= BeyondLastCluster) {
  840. DebugTrace( 0, Dbg, ("Passing Irp on to Disk Driver\n") );
  841. //
  842. // We use our stack location to store request information in a
  843. // rather strange way, to give us enough context to post a
  844. // hot fix on error. It's ok, because it is our stack location!
  845. //
  846. IrpSp->Parameters.Read.ByteOffset.QuadPart = ThisLbo;
  847. IrpSp->Parameters.Read.Key = ((ULONG)StartingVbo);
  848. //
  849. // Set up the completion routine address in our stack frame.
  850. // This is only invoked on error or cancel, and just copies
  851. // the error Status into master irp's iosb.
  852. //
  853. IoSetCompletionRoutine( Irp,
  854. &NtfsPagingFileCompletionRoutine,
  855. ContextIrp,
  856. (BOOLEAN)!FlagOn(Vcb->VcbState, VCB_STATE_NO_SECONDARY_AVAILABLE),
  857. TRUE,
  858. TRUE );
  859. //
  860. // Setup the next IRP stack location for the disk driver beneath us.
  861. //
  862. IrpSp = IoGetNextIrpStackLocation( Irp );
  863. //
  864. // Setup the Stack location to do a read from the disk driver.
  865. //
  866. IrpSp->MajorFunction = IrpContext->MajorFunction;
  867. IrpSp->Parameters.Read.Length = ByteCount;
  868. IrpSp->Parameters.Read.ByteOffset.QuadPart = ThisLbo;
  869. //
  870. // Issue the read/write request
  871. //
  872. // If IoCallDriver returns an error, it has completed the Irp
  873. // and the error will be dealt with as a normal IO error.
  874. //
  875. (VOID)IoCallDriver( DeviceObject, Irp );
  876. DebugTrace( -1, Dbg, ("NtfsPagingFileIo -> VOID\n") );
  877. return;
  878. }
  879. //
  880. // Loop while there are still byte writes to satisfy. Always keep the
  881. // associated irp count one up, so that the master irp won't get
  882. // completed prematurly.
  883. //
  884. try {
  885. //
  886. // We will allocate and initialize all of the Irps and then send
  887. // them down to the driver. We will queue them off of our
  888. // AssociatedIrp queue.
  889. //
  890. InitializeListHead( &AssociatedIrps );
  891. AssociatedIrpCount = 0;
  892. while (TRUE) {
  893. //
  894. // Reset this for unwinding purposes
  895. //
  896. AssocIrp = NULL;
  897. //
  898. // If next run is larger than we need, "ya get what you need".
  899. //
  900. ThisByteCount = BytesFromClusters( Vcb, (ULONG) ThisClusterCount ) - ClusterOffset;
  901. if (ThisVcn + ThisClusterCount >= BeyondLastCluster) {
  902. ThisByteCount = ByteCount;
  903. }
  904. //
  905. // Now that we have properly bounded this piece of the
  906. // transfer, it is time to read/write it.
  907. //
  908. AssocIrp = IoMakeAssociatedIrp( Irp, (CCHAR)(DeviceObject->StackSize + 1) );
  909. if (AssocIrp == NULL) {
  910. break;
  911. }
  912. //
  913. // Now add the Irp to our queue of Irps.
  914. //
  915. InsertTailList( &AssociatedIrps, &AssocIrp->Tail.Overlay.ListEntry );
  916. //
  917. // Allocate and build a partial Mdl for the request.
  918. //
  919. {
  920. PMDL Mdl;
  921. Mdl = IoAllocateMdl( (PCHAR)Irp->UserBuffer + BufferOffset,
  922. ThisByteCount,
  923. FALSE,
  924. FALSE,
  925. AssocIrp );
  926. if (Mdl == NULL) {
  927. break;
  928. }
  929. IoBuildPartialMdl( Irp->MdlAddress,
  930. Mdl,
  931. Add2Ptr( Irp->UserBuffer, BufferOffset ),
  932. ThisByteCount );
  933. }
  934. AssociatedIrpCount += 1;
  935. //
  936. // Get the first IRP stack location in the associated Irp
  937. //
  938. IoSetNextIrpStackLocation( AssocIrp );
  939. IrpSp = IoGetCurrentIrpStackLocation( AssocIrp );
  940. //
  941. // We use our stack location to store request information in a
  942. // rather strange way, to give us enough context to post a
  943. // hot fix on error. It's ok, because it is our stack location!
  944. //
  945. IrpSp->MajorFunction = IrpContext->MajorFunction;
  946. IrpSp->Parameters.Read.Length = ThisByteCount;
  947. IrpSp->Parameters.Read.ByteOffset.QuadPart = ThisLbo;
  948. IrpSp->Parameters.Read.Key = ((ULONG)StartingVbo);
  949. IrpSp->FileObject = FileObject;
  950. IrpSp->DeviceObject = OurDeviceObject;
  951. //
  952. // Set up the completion routine address in our stack frame.
  953. // This is only invoked on error or cancel, and just copies
  954. // the error Status into master irp's iosb.
  955. //
  956. IoSetCompletionRoutine( AssocIrp,
  957. &NtfsPagingFileCompletionRoutine,
  958. ContextIrp,
  959. (BOOLEAN)!FlagOn(Vcb->VcbState, VCB_STATE_NO_SECONDARY_AVAILABLE),
  960. TRUE,
  961. TRUE );
  962. //
  963. // Setup the next IRP stack location in the associated Irp for the disk
  964. // driver beneath us.
  965. //
  966. IrpSp = IoGetNextIrpStackLocation( AssocIrp );
  967. //
  968. // Setup the Stack location to do a read from the disk driver.
  969. //
  970. IrpSp->MajorFunction = IrpContext->MajorFunction;
  971. IrpSp->Parameters.Read.Length = ThisByteCount;
  972. IrpSp->Parameters.Read.ByteOffset.QuadPart = ThisLbo;
  973. //
  974. // Now adjust everything for the next pass through the loop but
  975. // break out now if all the irps have been created for the io.
  976. //
  977. StartingVbo += ThisByteCount;
  978. BufferOffset += ThisByteCount;
  979. ByteCount -= ThisByteCount;
  980. ClusterOffset = 0;
  981. ThisVcn += ThisClusterCount;
  982. if (ByteCount == 0) {
  983. break;
  984. }
  985. //
  986. // Try to lookup the next run (if we are not done).
  987. // Paging files reads/ writes should always be correct. If
  988. // we didn't find the allocation, something bad has happened.
  989. //
  990. if (!NtfsLookupNtfsMcbEntry( &Scb->Mcb,
  991. ThisVcn,
  992. &ThisLcn,
  993. &ThisClusterCount,
  994. NULL,
  995. NULL,
  996. NULL,
  997. NULL )) {;
  998. NtfsBugCheck( 0, 0, 0 );
  999. }
  1000. ThisLbo = LlBytesFromClusters( Vcb, ThisLcn );
  1001. } // while (ByteCount != 0)
  1002. if (ByteCount == 0) {
  1003. //
  1004. // We have now created all of the Irps that we need. We will set the
  1005. // Irp count in the master Irp and then fire off the associated irps.
  1006. //
  1007. Irp->AssociatedIrp.IrpCount = AssociatedIrpCount;
  1008. while (!IsListEmpty( &AssociatedIrps )) {
  1009. AssocIrp = CONTAINING_RECORD( AssociatedIrps.Flink,
  1010. IRP,
  1011. Tail.Overlay.ListEntry );
  1012. RemoveHeadList( &AssociatedIrps );
  1013. (VOID) IoCallDriver( DeviceObject, AssocIrp );
  1014. }
  1015. } else {
  1016. NtfsPagingFileIoWithNoAllocation( IrpContext, Irp, Scb, OriginalStartingVbo, OriginalByteCount );
  1017. }
  1018. } finally {
  1019. DebugUnwind( NtfsPagingFileIo );
  1020. //
  1021. // In the case of an error we must clean up any of the associated Irps
  1022. // we have created.
  1023. //
  1024. while (!IsListEmpty( &AssociatedIrps )) {
  1025. AssocIrp = CONTAINING_RECORD( AssociatedIrps.Flink,
  1026. IRP,
  1027. Tail.Overlay.ListEntry );
  1028. RemoveHeadList( &AssociatedIrps );
  1029. if (AssocIrp->MdlAddress != NULL) {
  1030. IoFreeMdl( AssocIrp->MdlAddress );
  1031. AssocIrp->MdlAddress = NULL;
  1032. }
  1033. IoFreeIrp( AssocIrp );
  1034. }
  1035. }
  1036. DebugTrace( -1, Dbg, ("NtfsPagingFileIo -> VOID\n") );
  1037. return;
  1038. }
  1039. BOOLEAN
  1040. NtfsIsReadAheadThread (
  1041. )
  1042. /*++
  1043. Routine Description:
  1044. This routine returns whether the current thread is doing read ahead.
  1045. Arguments:
  1046. None
  1047. Return Value:
  1048. FALSE - if the thread is not doing read ahead
  1049. TRUE - if the thread is doing read ahead
  1050. --*/
  1051. {
  1052. PREAD_AHEAD_THREAD ReadAheadThread;
  1053. PVOID CurrentThread;
  1054. KIRQL OldIrql;
  1055. OldIrql = KeAcquireQueuedSpinLock( LockQueueNtfsStructLock );
  1056. CurrentThread = (PVOID)PsGetCurrentThread();
  1057. ReadAheadThread = (PREAD_AHEAD_THREAD)NtfsData.ReadAheadThreads.Flink;
  1058. //
  1059. // Scan for our thread, stopping at the end of the list or on the first
  1060. // NULL. We can stop on the first NULL, since when we free an entry
  1061. // we move it to the end of the list.
  1062. //
  1063. while ((ReadAheadThread != (PREAD_AHEAD_THREAD)&NtfsData.ReadAheadThreads) &&
  1064. (ReadAheadThread->Thread != NULL)) {
  1065. //
  1066. // Get out if we see our thread.
  1067. //
  1068. if (ReadAheadThread->Thread == CurrentThread) {
  1069. KeReleaseQueuedSpinLock( LockQueueNtfsStructLock, OldIrql );
  1070. return TRUE;
  1071. }
  1072. ReadAheadThread = (PREAD_AHEAD_THREAD)ReadAheadThread->Links.Flink;
  1073. }
  1074. KeReleaseQueuedSpinLock( LockQueueNtfsStructLock, OldIrql );
  1075. return FALSE;
  1076. }
  1077. //
  1078. // Internal support routine
  1079. //
  1080. VOID
  1081. NtfsAllocateCompressionBuffer (
  1082. IN PIRP_CONTEXT IrpContext,
  1083. IN PSCB ThisScb,
  1084. IN PIRP Irp,
  1085. IN PCOMPRESSION_CONTEXT CompressionContext,
  1086. IN OUT PULONG CompressionBufferLength
  1087. )
  1088. /*++
  1089. Routine Description:
  1090. This routine allocates a compression buffer of the desired length, and
  1091. describes it with an Mdl. It updates the Irp to describe the new buffer.
  1092. Note that whoever allocates the CompressionContext must initially zero it.
  1093. Arguments:
  1094. ThisScb - The stream where the IO is taking place.
  1095. Irp - Irp for the current request
  1096. CompressionContext - Pointer to the compression context for the request.
  1097. CompressionBufferLength - Supplies length required for the compression buffer.
  1098. Returns length available.
  1099. Return Value:
  1100. None.
  1101. --*/
  1102. {
  1103. PMDL Mdl;
  1104. //
  1105. // If no compression buffer is allocated, or it is too small, then we must
  1106. // take action here.
  1107. //
  1108. if (*CompressionBufferLength > CompressionContext->CompressionBufferLength) {
  1109. //
  1110. // If there already is an Mdl, then there must also be a compression
  1111. // buffer (since we are part of main-line processing), and we must
  1112. // free these first.
  1113. //
  1114. if (CompressionContext->SavedMdl != NULL) {
  1115. //
  1116. // Restore the byte count for which the Mdl was created, and free it.
  1117. //
  1118. Irp->MdlAddress->ByteCount = CompressionContext->CompressionBufferLength;
  1119. NtfsDeleteMdlAndBuffer( Irp->MdlAddress,
  1120. CompressionContext->CompressionBuffer );
  1121. //
  1122. // Restore the Mdl and UserBuffer fields in the Irp.
  1123. //
  1124. Irp->MdlAddress = CompressionContext->SavedMdl;
  1125. Irp->UserBuffer = CompressionContext->SavedUserBuffer;
  1126. CompressionContext->SavedMdl = NULL;
  1127. CompressionContext->CompressionBuffer = NULL;
  1128. }
  1129. CompressionContext->CompressionBufferLength = *CompressionBufferLength;
  1130. //
  1131. // Allocate the compression buffer or raise
  1132. //
  1133. NtfsCreateMdlAndBuffer( IrpContext,
  1134. ThisScb,
  1135. (UCHAR) ((IrpContext->MajorFunction == IRP_MJ_WRITE) ?
  1136. RESERVED_BUFFER_TWO_NEEDED :
  1137. RESERVED_BUFFER_ONE_NEEDED),
  1138. &CompressionContext->CompressionBufferLength,
  1139. &Mdl,
  1140. &CompressionContext->CompressionBuffer );
  1141. //
  1142. // Finally save the Mdl and Buffer fields from the Irp, and replace
  1143. // with the ones we just allocated.
  1144. //
  1145. CompressionContext->SavedMdl = Irp->MdlAddress;
  1146. CompressionContext->SavedUserBuffer = Irp->UserBuffer;
  1147. Irp->MdlAddress = Mdl;
  1148. Irp->UserBuffer = CompressionContext->CompressionBuffer;
  1149. }
  1150. //
  1151. // Update the caller's length field in all cases.
  1152. //
  1153. *CompressionBufferLength = CompressionContext->CompressionBufferLength;
  1154. }
  1155. //
  1156. // Internal support routine
  1157. //
  1158. VOID
  1159. NtfsDeallocateCompressionBuffer (
  1160. IN PIRP Irp,
  1161. IN PCOMPRESSION_CONTEXT CompressionContext,
  1162. IN BOOLEAN Reinitialize
  1163. )
  1164. /*++
  1165. Routine Description:
  1166. This routine peforms all necessary cleanup for a compressed I/O, as described
  1167. by the compression context.
  1168. Arguments:
  1169. Irp - Irp for the current request
  1170. CompressionContext - Pointer to the compression context for the request.
  1171. Reinitialize - TRUE if we plan to continue using this context.
  1172. Return Value:
  1173. None.
  1174. --*/
  1175. {
  1176. //
  1177. // If there is a saved mdl, then we have to restore the original
  1178. // byte count it was allocated with and free it. Then restore the
  1179. // Irp fields we modified.
  1180. //
  1181. if (CompressionContext->SavedMdl != NULL) {
  1182. Irp->MdlAddress->ByteCount = CompressionContext->CompressionBufferLength;
  1183. NtfsDeleteMdlAndBuffer( Irp->MdlAddress,
  1184. CompressionContext->CompressionBuffer );
  1185. } else {
  1186. NtfsDeleteMdlAndBuffer( NULL,
  1187. CompressionContext->CompressionBuffer );
  1188. }
  1189. //
  1190. // If there is a saved mdl, then we have to restore the original
  1191. // byte count it was allocated with and free it. Then restore the
  1192. // Irp fields we modified.
  1193. //
  1194. if (CompressionContext->SavedMdl != NULL) {
  1195. Irp->MdlAddress = CompressionContext->SavedMdl;
  1196. Irp->UserBuffer = CompressionContext->SavedUserBuffer;
  1197. }
  1198. //
  1199. // If there is a work space structure allocated, free it.
  1200. //
  1201. if (CompressionContext->WorkSpace != NULL) {
  1202. NtfsDeleteMdlAndBuffer( NULL, CompressionContext->WorkSpace );
  1203. }
  1204. //
  1205. // If are reinitializing the structure then clear the fields which
  1206. // we have already cleaned up.
  1207. //
  1208. if (Reinitialize) {
  1209. CompressionContext->SavedMdl = NULL;
  1210. CompressionContext->SavedUserBuffer = NULL;
  1211. CompressionContext->CompressionBuffer = NULL;
  1212. CompressionContext->WorkSpace = NULL;
  1213. CompressionContext->CompressionBufferLength = 0;
  1214. //
  1215. // Delete any allocate IoRuns array if we are done.
  1216. //
  1217. } else if (CompressionContext->AllocatedRuns != NTFS_MAX_PARALLEL_IOS) {
  1218. NtfsFreePool( CompressionContext->IoRuns );
  1219. }
  1220. }
  1221. //
  1222. // Internal support routine
  1223. //
  1224. LONG
  1225. NtfsCompressionFilter (
  1226. IN PIRP_CONTEXT IrpContext,
  1227. IN PEXCEPTION_POINTERS ExceptionPointer
  1228. )
  1229. {
  1230. UNREFERENCED_PARAMETER( IrpContext );
  1231. UNREFERENCED_PARAMETER( ExceptionPointer );
  1232. ASSERT( FsRtlIsNtstatusExpected( ExceptionPointer->ExceptionRecord->ExceptionCode ) );
  1233. return EXCEPTION_EXECUTE_HANDLER;
  1234. }
  1235. //
  1236. // Internal support routine
  1237. //
  1238. ULONG
  1239. NtfsPrepareBuffers (
  1240. IN PIRP_CONTEXT IrpContext,
  1241. IN PIRP Irp,
  1242. IN PSCB Scb,
  1243. IN PVBO StartingVbo,
  1244. IN ULONG ByteCount,
  1245. IN ULONG StreamFlags,
  1246. IN OUT PBOOLEAN Wait,
  1247. OUT PULONG NumberRuns,
  1248. OUT PCOMPRESSION_CONTEXT CompressionContext
  1249. )
  1250. /*++
  1251. Routine Description:
  1252. This routine prepares the buffers for a noncached transfer, and fills
  1253. in the IoRuns array to describe all of the separate transfers which must
  1254. take place.
  1255. For compressed reads, the exact size of the compressed data is
  1256. calculated by scanning the run information, and a buffer is allocated
  1257. to receive the compressed data.
  1258. For compressed writes, an estimate is made on how large of a compressed
  1259. buffer will be required. Then the compression is performed, as much as
  1260. possible, into the compressed buffer which was allocated.
  1261. Arguments:
  1262. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  1263. Irp - Supplies the requesting Irp.
  1264. Scb - Supplies the stream file to act on.
  1265. StartingVbo - The starting point for the operation.
  1266. ByteCount - The lengh of the operation.
  1267. NumberRuns - Returns the number of runs filled in to the IoRuns array.
  1268. CompressionContext - Returns information related to the compression
  1269. to be cleaned up after the transfer.
  1270. StreamFlags - Supplies either 0 or some combination of COMPRESSED_STREAM
  1271. and ENCRYPTED_STREAM
  1272. Return Value:
  1273. Returns uncompressed bytes remaining to be processed, or 0 if all buffers
  1274. are prepared in the IoRuns and CompressionContext.
  1275. --*/
  1276. {
  1277. PVOID RangePtr;
  1278. ULONG Index;
  1279. LBO NextLbo;
  1280. LCN NextLcn;
  1281. VBO TempVbo;
  1282. ULONG NextLcnOffset;
  1283. VCN StartingVcn;
  1284. ULONG NextByteCount;
  1285. ULONG ReturnByteCount;
  1286. ULONG TrimmedByteCount;
  1287. LONGLONG NextClusterCount;
  1288. BOOLEAN NextIsAllocated;
  1289. BOOLEAN SparseWrite = FALSE;
  1290. BOOLEAN OriginalSparseWrite = FALSE;
  1291. ULONG BufferOffset;
  1292. ULONG StructureSize;
  1293. ULONG UsaOffset;
  1294. ULONG BytesInIoRuns;
  1295. BOOLEAN StopForUsa;
  1296. PVOID SystemBuffer;
  1297. ULONG CompressionUnit, CompressionUnitInClusters;
  1298. ULONG CompressionUnitOffset;
  1299. ULONG CompressedSize, FinalCompressedSize;
  1300. LONGLONG FinalCompressedClusters;
  1301. ULONG LastStartUsaIoRun;
  1302. LOGICAL ReadRequest;
  1303. PIO_STACK_LOCATION IrpSp;
  1304. PIO_RUN IoRuns;
  1305. NTSTATUS Status;
  1306. VBO StartVbo = *StartingVbo;
  1307. PVCB Vcb = Scb->Vcb;
  1308. PAGED_CODE();
  1309. //
  1310. // Initialize some locals.
  1311. //
  1312. IoRuns = CompressionContext->IoRuns;
  1313. *NumberRuns = 0;
  1314. IrpSp = IoGetCurrentIrpStackLocation(Irp);
  1315. ReadRequest = (LOGICAL)((IrpContext->MajorFunction == IRP_MJ_READ) ||
  1316. ((IrpContext->MajorFunction == IRP_MJ_FILE_SYSTEM_CONTROL) &&
  1317. (IrpContext->MinorFunction == IRP_MN_USER_FS_REQUEST) &&
  1318. (IrpSp->Parameters.FileSystemControl.FsControlCode == FSCTL_READ_FROM_PLEX)));
  1319. //
  1320. // For nonbuffered I/O, we need the buffer locked in all
  1321. // cases.
  1322. //
  1323. // This call may raise. If this call succeeds and a subsequent
  1324. // condition is raised, the buffers are unlocked automatically
  1325. // by the I/O system when the request is completed, via the
  1326. // Irp->MdlAddress field.
  1327. //
  1328. ASSERT( FIELD_OFFSET(IO_STACK_LOCATION, Parameters.Read.Length) ==
  1329. FIELD_OFFSET(IO_STACK_LOCATION, Parameters.Write.Length) );
  1330. NtfsLockUserBuffer( IrpContext,
  1331. Irp,
  1332. ReadRequest ?
  1333. IoWriteAccess : IoReadAccess,
  1334. IrpSp->Parameters.Read.Length );
  1335. //
  1336. // Normally the Mdl BufferOffset picks up from where we last left off.
  1337. // However, for those cases where we have called NtfsAllocateCompressionBuffer,
  1338. // for a scratch buffer, we always reset to offset 0.
  1339. //
  1340. BufferOffset = CompressionContext->SystemBufferOffset;
  1341. if (CompressionContext->SavedMdl != NULL) {
  1342. BufferOffset = 0;
  1343. }
  1344. //
  1345. // Check if this request wants to drive the IO directly from the Mcb. This is
  1346. // the case for all Scb's without a compression unit or for reads of uncompressed
  1347. // files or compressed reads. Also proceed with sparse writes optimistically
  1348. // assuming the compression unit is allocated.
  1349. //
  1350. if ((ReadRequest) ?
  1351. //
  1352. // Trust Mcb on reads of uncompressed files or reading compressed data.
  1353. //
  1354. ((Scb->CompressionUnit == 0) ||
  1355. !FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK ) ||
  1356. FlagOn( StreamFlags, COMPRESSED_STREAM )) :
  1357. //
  1358. // Trust Mcb (optimistically) for writes of uncompressed sparse files.
  1359. //
  1360. ((Scb->CompressionUnit == 0) ||
  1361. (OriginalSparseWrite =
  1362. SparseWrite = FlagOn( Scb->AttributeFlags,
  1363. ATTRIBUTE_FLAG_COMPRESSION_MASK | ATTRIBUTE_FLAG_SPARSE ) == ATTRIBUTE_FLAG_SPARSE))) {
  1364. ASSERT( (ReadRequest) ||
  1365. (IrpContext->MajorFunction == IRP_MJ_WRITE) ||
  1366. FlagOn( StreamFlags, COMPRESSED_STREAM ) );
  1367. ASSERT( (Scb->CompressionUnit == 0) ||
  1368. NtfsIsTypeCodeCompressible( Scb->AttributeTypeCode ) );
  1369. //
  1370. // If this is a Usa-protected structure and we are reading, figure out
  1371. // what units we want to access it in.
  1372. //
  1373. TrimmedByteCount = 0;
  1374. if ((Scb->EncryptionContext != NULL) &&
  1375. (IrpContext->MajorFunction == IRP_MJ_WRITE)) {
  1376. //
  1377. // For an encrypted file, we will be allocating a new buffer in the irp
  1378. // so the entries in the ioruns array should have offsets relative to
  1379. // this new buffer.
  1380. //
  1381. if (ByteCount > LARGE_BUFFER_SIZE) {
  1382. //
  1383. // Trim to LARGE_BUFFER_SIZE and remember the amount trimmed
  1384. // to add back to byte count later.
  1385. //
  1386. TrimmedByteCount = ByteCount - LARGE_BUFFER_SIZE;
  1387. ByteCount = LARGE_BUFFER_SIZE;
  1388. DebugTrace( 0, Dbg, ("\nTrimming ByteCount by %x", TrimmedByteCount) );
  1389. }
  1390. }
  1391. StructureSize = ByteCount;
  1392. if (FlagOn(Scb->ScbState, SCB_STATE_USA_PRESENT) &&
  1393. (ReadRequest)) {
  1394. //
  1395. // Get the the number of blocks, based on what type of stream it is.
  1396. // First check for Mft or Log file.
  1397. //
  1398. if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_MFT) {
  1399. ASSERT((Scb == Vcb->MftScb) || (Scb == Vcb->Mft2Scb));
  1400. StructureSize = Vcb->BytesPerFileRecordSegment;
  1401. //
  1402. // Otherwise it is an index, so we can get the count out of the Scb.
  1403. //
  1404. } else if (Scb->Header.NodeTypeCode != NTFS_NTC_SCB_DATA) {
  1405. StructureSize = Scb->ScbType.Index.BytesPerIndexBuffer;
  1406. }
  1407. //
  1408. // Remember the last index in the IO runs array which will allow us to
  1409. // read in a full USA structure in the worst case.
  1410. //
  1411. LastStartUsaIoRun = ClustersFromBytes( Vcb, StructureSize );
  1412. if (LastStartUsaIoRun > NTFS_MAX_PARALLEL_IOS) {
  1413. LastStartUsaIoRun = 0;
  1414. } else {
  1415. LastStartUsaIoRun = NTFS_MAX_PARALLEL_IOS - LastStartUsaIoRun;
  1416. }
  1417. }
  1418. BytesInIoRuns = 0;
  1419. UsaOffset = 0;
  1420. StopForUsa = FALSE;
  1421. while ((ByteCount != 0) && (*NumberRuns != NTFS_MAX_PARALLEL_IOS) && !StopForUsa) {
  1422. //
  1423. // Lookup next run
  1424. //
  1425. StartingVcn = LlClustersFromBytesTruncate( Vcb, StartVbo );
  1426. //
  1427. // If another writer is modifying the Mcb of a sparse file then we need
  1428. // to serialize our lookup.
  1429. //
  1430. if (FlagOn( Scb->ScbState, SCB_STATE_PROTECT_SPARSE_MCB )) {
  1431. NtfsPurgeFileRecordCache( IrpContext );
  1432. NtfsAcquireSharedScb( IrpContext, Scb );
  1433. try {
  1434. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  1435. Scb,
  1436. StartingVcn,
  1437. &NextLcn,
  1438. &NextClusterCount,
  1439. &RangePtr,
  1440. &Index );
  1441. } finally {
  1442. NtfsReleaseScb( IrpContext, Scb );
  1443. }
  1444. } else {
  1445. //
  1446. // Purge because lookupallocation may acquire the scb main if it needs to load
  1447. // which will be first main acquire and can be blocked behind an acquireallfiles
  1448. //
  1449. NtfsPurgeFileRecordCache( IrpContext );
  1450. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  1451. Scb,
  1452. StartingVcn,
  1453. &NextLcn,
  1454. &NextClusterCount,
  1455. &RangePtr,
  1456. &Index );
  1457. }
  1458. ASSERT( NextIsAllocated ||
  1459. FlagOn( Vcb->VcbState, VCB_STATE_RESTART_IN_PROGRESS ) ||
  1460. FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_SPARSE ) ||
  1461. (Scb == Vcb->MftScb) ||
  1462. FlagOn( StreamFlags, COMPRESSED_STREAM | ENCRYPTED_STREAM ) );
  1463. //
  1464. // If this is a sparse write we need to deal with cases where
  1465. // the run is not allocated OR the last run in this transfer
  1466. // was unallocated but this run is allocated.
  1467. //
  1468. if (SparseWrite) {
  1469. //
  1470. // If the current run is not allocated then break out of the loop.
  1471. //
  1472. if (!NextIsAllocated) {
  1473. //
  1474. // Convert to synchronous since we need to allocate space
  1475. //
  1476. if (*Wait == FALSE) {
  1477. *Wait = TRUE;
  1478. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_WAIT );
  1479. RtlZeroMemory( IrpContext->Union.NtfsIoContext, sizeof( NTFS_IO_CONTEXT ) );
  1480. //
  1481. // Store whether we allocated this context structure in the structure
  1482. // itself.
  1483. //
  1484. IrpContext->Union.NtfsIoContext->AllocatedContext =
  1485. BooleanFlagOn( IrpContext->State, IRP_CONTEXT_STATE_ALLOC_IO_CONTEXT );
  1486. KeInitializeEvent( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  1487. NotificationEvent,
  1488. FALSE );
  1489. }
  1490. break;
  1491. }
  1492. //
  1493. // Deal with the case where the last run in this transfer was not allocated.
  1494. // In that case we would have allocated a compression buffer and stored
  1495. // the original Mdl into the compression context. Since this is an allocated
  1496. // range we can use the original user buffer and Mdl. Restore these
  1497. // back into the original irp now.
  1498. //
  1499. // If this file is encrypted, we do NOT want to change the buffer offset,
  1500. // because this offset will be stored as the first IoRun's buffer offset, and
  1501. // encrypt buffers will add the system buffer offset to that, and end up
  1502. // passing a bad buffer to the encryption driver. Besides, it's inefficient
  1503. // to deallocate the buffer, since encrypt buffers will have to reallocate it.
  1504. //
  1505. if ((CompressionContext->SavedMdl != NULL) &&
  1506. (Scb->EncryptionContext == NULL)) {
  1507. NtfsDeallocateCompressionBuffer( Irp, CompressionContext, TRUE );
  1508. BufferOffset = CompressionContext->SystemBufferOffset;
  1509. }
  1510. }
  1511. //
  1512. // Adjust from NextLcn to Lbo. NextByteCount may overflow out of 32 bits
  1513. // but we will catch that below when we compare clusters.
  1514. //
  1515. NextLcnOffset = ((ULONG)StartVbo) & Vcb->ClusterMask;
  1516. NextByteCount = BytesFromClusters( Vcb, (ULONG)NextClusterCount ) - NextLcnOffset;
  1517. //
  1518. // If next run is larger than we need, "ya get what you need".
  1519. // Note that after this we are guaranteed that the HighPart of
  1520. // NextByteCount is 0.
  1521. //
  1522. if ((ULONG)NextClusterCount >= ClustersFromBytes( Vcb, ByteCount + NextLcnOffset )) {
  1523. NextByteCount = ByteCount;
  1524. }
  1525. //
  1526. // If the byte count is zero then we will spin indefinitely. Raise
  1527. // corrupt here so the system doesn't hang.
  1528. //
  1529. if (NextByteCount == 0) {
  1530. NtfsRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR, NULL, Scb->Fcb );
  1531. }
  1532. //
  1533. // If this is a USA-protected structure, broken up in
  1534. // multiple runs, then we want to guarantee that we do
  1535. // not end up in the middle of a Usa-protected structure in the read path.
  1536. // Therefore, on the first run we will calculate the
  1537. // initial UsaOffset. Then in the worst case it can
  1538. // take the remaining four runs to finish the Usa structure.
  1539. //
  1540. // On the first subsequent run to complete a Usa structure,
  1541. // we set the count to end exactly on a Usa boundary.
  1542. //
  1543. if (FlagOn( Scb->ScbState, SCB_STATE_USA_PRESENT ) &&
  1544. (ReadRequest)) {
  1545. //
  1546. // So long as we know there are more IO runs left than the maximum
  1547. // number needed for the USA structure just maintain the current
  1548. // Usa offset.
  1549. //
  1550. if (*NumberRuns < LastStartUsaIoRun) {
  1551. UsaOffset = (UsaOffset + NextByteCount) & (StructureSize - 1);
  1552. //
  1553. // Now we will stop on the next Usa boundary, but we may not
  1554. // have it yet.
  1555. //
  1556. } else {
  1557. if ((NextByteCount + UsaOffset) >= StructureSize) {
  1558. NextByteCount = ((NextByteCount + UsaOffset) & ~(StructureSize - 1)) -
  1559. (UsaOffset & (StructureSize - 1));
  1560. StopForUsa = TRUE;
  1561. }
  1562. UsaOffset += NextByteCount;
  1563. }
  1564. }
  1565. //
  1566. // Only fill in the run array if the run is allocated.
  1567. //
  1568. if (NextIsAllocated) {
  1569. //
  1570. // Adjust if the Lcn offset (if we have one) and isn't zero.
  1571. //
  1572. NextLbo = LlBytesFromClusters( Vcb, NextLcn );
  1573. NextLbo = NextLbo + NextLcnOffset;
  1574. //
  1575. // Now that we have properly bounded this piece of the
  1576. // transfer, it is time to write it.
  1577. //
  1578. // We remember each piece of a parallel run by saving the
  1579. // essential information in the IoRuns array. The tranfers
  1580. // are started up in parallel below.
  1581. //
  1582. IoRuns[*NumberRuns].StartingVbo = StartVbo;
  1583. IoRuns[*NumberRuns].StartingLbo = NextLbo;
  1584. IoRuns[*NumberRuns].BufferOffset = BufferOffset;
  1585. IoRuns[*NumberRuns].ByteCount = NextByteCount;
  1586. BytesInIoRuns += NextByteCount;
  1587. *NumberRuns += 1;
  1588. } else if (ReadRequest) {
  1589. SystemBuffer = Add2Ptr( NtfsMapUserBuffer( Irp ), BufferOffset );
  1590. //
  1591. // If this is not a compressed stream then fill this range with zeroes.
  1592. // Also if this is a sparse, non-compressed stream then check if we need to
  1593. // reserve clusters.
  1594. //
  1595. if (!FlagOn( StreamFlags, COMPRESSED_STREAM )) {
  1596. RtlZeroMemory( SystemBuffer, NextByteCount );
  1597. if (FlagOn( Irp->Flags, IRP_PAGING_IO ) &&
  1598. FlagOn( Scb->Header.Flags, FSRTL_FLAG_USER_MAPPED_FILE ) &&
  1599. (FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK | ATTRIBUTE_FLAG_SPARSE ) == ATTRIBUTE_FLAG_SPARSE)) {
  1600. if (!NtfsReserveClusters( IrpContext,
  1601. Scb,
  1602. StartVbo,
  1603. NextByteCount )) {
  1604. NtfsRaiseStatus( IrpContext, STATUS_DISK_FULL, NULL, NULL );
  1605. }
  1606. }
  1607. //
  1608. // If it is compressed then make sure the range begins with a zero in
  1609. // case MM passed a non-zeroed buffer. Then the compressed read/write
  1610. // routines will know the chunk begins with a zero.
  1611. //
  1612. } else {
  1613. *((PULONG) SystemBuffer) = 0;
  1614. }
  1615. }
  1616. //
  1617. // Now adjust everything for the next pass through the loop.
  1618. //
  1619. StartVbo = StartVbo + NextByteCount;
  1620. BufferOffset += NextByteCount;
  1621. ByteCount -= NextByteCount;
  1622. }
  1623. //
  1624. // Let's remember about those bytes we trimmed off above. We have more
  1625. // bytes remaining than we think, and we didn't transfer as much, so we
  1626. // need to back up where we start the next transfer.
  1627. //
  1628. if (TrimmedByteCount != 0) {
  1629. DebugTrace( 0,
  1630. Dbg,
  1631. ("\nByteCount + TrimmedByteCount = %x + %x = %x",
  1632. ByteCount,
  1633. TrimmedByteCount,
  1634. ByteCount + TrimmedByteCount) );
  1635. DebugTrace( 0,
  1636. Dbg,
  1637. ("\nStartVbo - TrimmedByteCount = %I64x - %x = %I64x",
  1638. StartVbo,
  1639. TrimmedByteCount,
  1640. StartVbo - TrimmedByteCount) );
  1641. ByteCount += TrimmedByteCount;
  1642. }
  1643. //
  1644. // If this is a sparse write and the start of the write is unallocated then drop
  1645. // down to the compressed path below. Otherwise do the IO we found.
  1646. //
  1647. if (!SparseWrite || (BytesInIoRuns != 0)) {
  1648. return ByteCount;
  1649. }
  1650. }
  1651. ASSERT( Scb->Header.NodeTypeCode == NTFS_NTC_SCB_DATA );
  1652. //
  1653. // Initialize the compression parameters.
  1654. //
  1655. CompressionUnit = Scb->CompressionUnit;
  1656. CompressionUnitInClusters = ClustersFromBytes(Vcb, CompressionUnit);
  1657. CompressionUnitOffset = 0;
  1658. if (CompressionUnit != 0) {
  1659. CompressionUnitOffset = ((ULONG)StartVbo) & (CompressionUnit - 1);
  1660. }
  1661. //
  1662. // We want to make sure and wait to get byte count and things correctly.
  1663. //
  1664. if (!FlagOn(IrpContext->State, IRP_CONTEXT_STATE_WAIT)) {
  1665. NtfsRaiseStatus( IrpContext, STATUS_CANT_WAIT, NULL, NULL );
  1666. }
  1667. //
  1668. // Handle the compressed read case.
  1669. //
  1670. if (IrpContext->MajorFunction == IRP_MJ_READ) {
  1671. //
  1672. // If we have not already mapped the user buffer, then do it.
  1673. //
  1674. if (CompressionContext->SystemBuffer == NULL) {
  1675. CompressionContext->SystemBuffer = NtfsMapUserBuffer( Irp );
  1676. }
  1677. BytesInIoRuns = 0;
  1678. //
  1679. // Adjust StartVbo and ByteCount by the offset.
  1680. //
  1681. ((ULONG)StartVbo) -= CompressionUnitOffset;
  1682. ByteCount += CompressionUnitOffset;
  1683. //
  1684. // Capture this value for maintaining the byte count to
  1685. // return.
  1686. //
  1687. ReturnByteCount = ByteCount;
  1688. //
  1689. // Now, the ByteCount we actually have to process has to
  1690. // be rounded up to the next compression unit.
  1691. //
  1692. ByteCount += CompressionUnit - 1;
  1693. ByteCount &= ~(CompressionUnit - 1);
  1694. //
  1695. // Make sure we never try to handle more than a LARGE_BUFFER_SIZE
  1696. // at once, forcing our caller to call back.
  1697. //
  1698. if (ByteCount > LARGE_BUFFER_SIZE) {
  1699. ByteCount = LARGE_BUFFER_SIZE;
  1700. }
  1701. //
  1702. // In case we find no allocation....
  1703. //
  1704. IoRuns[0].ByteCount = 0;
  1705. while (ByteCount != 0) {
  1706. //
  1707. // Try to lookup the first run. If there is just a single run,
  1708. // we may just be able to pass it on.
  1709. //
  1710. ASSERT( !FlagOn( ((ULONG) StartVbo), Vcb->ClusterMask ));
  1711. StartingVcn = LlClustersFromBytesTruncate( Vcb, StartVbo );
  1712. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  1713. Scb,
  1714. StartingVcn,
  1715. &NextLcn,
  1716. &NextClusterCount,
  1717. &RangePtr,
  1718. &Index );
  1719. #if (defined(NTFS_RWCMP_TRACE) || defined(SYSCACHE))
  1720. ASSERT(!IsSyscache(Scb) || (NextClusterCount < 16) || !NextIsAllocated);
  1721. #endif
  1722. //
  1723. // Adjust from NextLcn to Lbo.
  1724. //
  1725. // If next run is larger than we need, "ya get what you need".
  1726. // Note that after this we are guaranteed that the HighPart of
  1727. // NextByteCount is 0.
  1728. //
  1729. if ((ULONG)NextClusterCount >= ClustersFromBytes( Vcb, ByteCount )) {
  1730. NextByteCount = ByteCount;
  1731. } else {
  1732. NextByteCount = BytesFromClusters( Vcb, (ULONG)NextClusterCount );
  1733. }
  1734. //
  1735. // Adjust if the Lcn offset isn't zero.
  1736. //
  1737. NextLbo = LlBytesFromClusters( Vcb, NextLcn );
  1738. //
  1739. // Only fill in the run array if the run is allocated.
  1740. //
  1741. if (NextIsAllocated) {
  1742. //
  1743. // If the Lbos are contiguous, then we can do a contiguous
  1744. // transfer, so we just increase the current byte count.
  1745. //
  1746. if ((*NumberRuns != 0) && (NextLbo ==
  1747. (IoRuns[*NumberRuns - 1].StartingLbo +
  1748. (IoRuns[*NumberRuns - 1].ByteCount)))) {
  1749. //
  1750. // Stop on the first compression unit boundary after the
  1751. // the penultimate run in the default io array.
  1752. //
  1753. if (*NumberRuns >= NTFS_MAX_PARALLEL_IOS - 1) {
  1754. //
  1755. // First, if we are beyond the penultimate run and we are starting
  1756. // a run in a different compression unit than the previous
  1757. // run, then we can just break out and not use the current
  1758. // run. (*NumberRuns has not yet been incremented.)
  1759. // In order for it to be in the same run it can't begin at
  1760. // offset 0 in the compression unit and it must be contiguous
  1761. // with the virtual end of the previous run.
  1762. // The only case where this can happen in the running system is
  1763. // if there is a file record boundary in the middle of the
  1764. // compression unit.
  1765. //
  1766. if ((*NumberRuns > NTFS_MAX_PARALLEL_IOS - 1) &&
  1767. (!FlagOn( (ULONG) StartVbo, CompressionUnit - 1 ) ||
  1768. (StartVbo != (IoRuns[*NumberRuns - 1].StartingVbo +
  1769. IoRuns[*NumberRuns - 1].ByteCount)))) {
  1770. break;
  1771. //
  1772. // Else detect the case where this run ends on or
  1773. // crosses a compression unit boundary. In this case,
  1774. // just make sure the run stops on a compression unit
  1775. // boundary, and break out to return it.
  1776. //
  1777. } else if ((((ULONG) StartVbo & (CompressionUnit - 1)) + NextByteCount) >=
  1778. CompressionUnit) {
  1779. NextByteCount -= (((ULONG)StartVbo) + NextByteCount) & (CompressionUnit - 1);
  1780. BytesInIoRuns += NextByteCount;
  1781. if (ReturnByteCount > NextByteCount) {
  1782. ReturnByteCount -= NextByteCount;
  1783. } else {
  1784. ReturnByteCount = 0;
  1785. }
  1786. IoRuns[*NumberRuns - 1].ByteCount += NextByteCount;
  1787. break;
  1788. }
  1789. }
  1790. IoRuns[*NumberRuns - 1].ByteCount += NextByteCount;
  1791. //
  1792. // Otherwise it is time to start a new run, if there is space for one.
  1793. //
  1794. } else {
  1795. //
  1796. // If we have filled up the current I/O runs array, then we
  1797. // will grow it once to a size which would allow the worst
  1798. // case compression unit (all noncontiguous clusters) to
  1799. // start at index NTFS_MAX_PARALLEL_IOS - 1.
  1800. // The following if statement enforces
  1801. // this case as the worst case. With 16 clusters per compression
  1802. // unit, the theoretical maximum number of parallel I/Os
  1803. // would be 16 + NTFS_MAX_PARALLEL_IOS - 1, since we stop on the
  1804. // first compression unit boundary after the penultimate run.
  1805. // Normally, of course we will do much fewer.
  1806. //
  1807. if ((*NumberRuns == NTFS_MAX_PARALLEL_IOS) &&
  1808. (CompressionContext->AllocatedRuns == NTFS_MAX_PARALLEL_IOS)) {
  1809. PIO_RUN NewIoRuns;
  1810. NewIoRuns = NtfsAllocatePool( NonPagedPool,
  1811. (CompressionUnitInClusters + NTFS_MAX_PARALLEL_IOS - 1) * sizeof(IO_RUN) );
  1812. RtlCopyMemory( NewIoRuns,
  1813. CompressionContext->IoRuns,
  1814. NTFS_MAX_PARALLEL_IOS * sizeof(IO_RUN) );
  1815. IoRuns = CompressionContext->IoRuns = NewIoRuns;
  1816. CompressionContext->AllocatedRuns = CompressionUnitInClusters + NTFS_MAX_PARALLEL_IOS - 1;
  1817. }
  1818. //
  1819. // We remember each piece of a parallel run by saving the
  1820. // essential information in the IoRuns array. The tranfers
  1821. // will be started up in parallel below.
  1822. //
  1823. ASSERT(*NumberRuns < CompressionContext->AllocatedRuns);
  1824. IoRuns[*NumberRuns].StartingVbo = StartVbo;
  1825. IoRuns[*NumberRuns].StartingLbo = NextLbo;
  1826. IoRuns[*NumberRuns].BufferOffset = BufferOffset;
  1827. IoRuns[*NumberRuns].ByteCount = NextByteCount;
  1828. if ((*NumberRuns + 1) < CompressionContext->AllocatedRuns) {
  1829. IoRuns[*NumberRuns + 1].ByteCount = 0;
  1830. }
  1831. //
  1832. // Stop on the first compression unit boundary after the
  1833. // penultimate run in the default array.
  1834. //
  1835. if (*NumberRuns >= NTFS_MAX_PARALLEL_IOS - 1) {
  1836. //
  1837. // First, if we are beyond penultimate run and we are starting
  1838. // a run in a different compression unit than the previous
  1839. // run, then we can just break out and not use the current
  1840. // run. (*NumberRuns has not yet been incremented.)
  1841. //
  1842. if ((*NumberRuns > NTFS_MAX_PARALLEL_IOS - 1) &&
  1843. ((((ULONG)StartVbo) & ~(CompressionUnit - 1)) !=
  1844. ((((ULONG)IoRuns[*NumberRuns - 1].StartingVbo) +
  1845. IoRuns[*NumberRuns - 1].ByteCount - 1) &
  1846. ~(CompressionUnit - 1)))) {
  1847. break;
  1848. //
  1849. // Else detect the case where this run ends on or
  1850. // crosses a compression unit boundary. In this case,
  1851. // just make sure the run stops on a compression unit
  1852. // boundary, and break out to return it.
  1853. //
  1854. } else if ((((ULONG)StartVbo) & ~(CompressionUnit - 1)) !=
  1855. ((((ULONG)StartVbo) + NextByteCount) & ~(CompressionUnit - 1))) {
  1856. NextByteCount -= (((ULONG)StartVbo) + NextByteCount) & (CompressionUnit - 1);
  1857. IoRuns[*NumberRuns].ByteCount = NextByteCount;
  1858. BytesInIoRuns += NextByteCount;
  1859. if (ReturnByteCount > NextByteCount) {
  1860. ReturnByteCount -= NextByteCount;
  1861. } else {
  1862. ReturnByteCount = 0;
  1863. }
  1864. *NumberRuns += 1;
  1865. break;
  1866. }
  1867. }
  1868. *NumberRuns += 1;
  1869. }
  1870. BytesInIoRuns += NextByteCount;
  1871. BufferOffset += NextByteCount;
  1872. }
  1873. //
  1874. // Now adjust everything for the next pass through the loop.
  1875. //
  1876. StartVbo += NextByteCount;
  1877. ByteCount -= NextByteCount;
  1878. if (ReturnByteCount > NextByteCount) {
  1879. ReturnByteCount -= NextByteCount;
  1880. } else {
  1881. ReturnByteCount = 0;
  1882. }
  1883. }
  1884. //
  1885. // Allocate the compressed buffer if it is not already allocated.
  1886. //
  1887. if (BytesInIoRuns < CompressionUnit) {
  1888. BytesInIoRuns = CompressionUnit;
  1889. }
  1890. NtfsAllocateCompressionBuffer( IrpContext, Scb, Irp, CompressionContext, &BytesInIoRuns );
  1891. return ReturnByteCount;
  1892. //
  1893. // Otherwise handle the compressed write case
  1894. //
  1895. } else {
  1896. LONGLONG SavedValidDataToDisk;
  1897. PUCHAR UncompressedBuffer;
  1898. ULONG UncompressedOffset;
  1899. ULONG ClusterOffset;
  1900. BOOLEAN NoopRange;
  1901. ULONG CompressedOffset;
  1902. PBCB Bcb;
  1903. ASSERT(IrpContext->MajorFunction == IRP_MJ_WRITE);
  1904. //
  1905. // Adjust StartVbo and ByteCount by the offset.
  1906. //
  1907. ((ULONG)StartVbo) -= CompressionUnitOffset;
  1908. ByteCount += CompressionUnitOffset;
  1909. //
  1910. // Maintain additional bytes to be returned in ReturnByteCount,
  1911. // and adjust this if we are larger than a LARGE_BUFFER_SIZE.
  1912. //
  1913. ReturnByteCount = 0;
  1914. if (ByteCount > LARGE_BUFFER_SIZE) {
  1915. ReturnByteCount = ByteCount - LARGE_BUFFER_SIZE;
  1916. ByteCount = LARGE_BUFFER_SIZE;
  1917. }
  1918. CompressedSize = ByteCount;
  1919. if (!FlagOn( StreamFlags, COMPRESSED_STREAM ) && (CompressionUnit != 0)) {
  1920. //
  1921. // To reduce pool consumption, make an educated/optimistic guess on
  1922. // how much pool we need to store the compressed data. If we are wrong
  1923. // we will just have to do some more I/O.
  1924. //
  1925. CompressedSize = (CompressedSize + CompressionUnit - 1) & ~(CompressionUnit - 1);
  1926. CompressedSize += Vcb->BytesPerCluster;
  1927. if (CompressedSize > LARGE_BUFFER_SIZE) {
  1928. CompressedSize = LARGE_BUFFER_SIZE;
  1929. }
  1930. //
  1931. // Allocate the compressed buffer if it is not already allocated, and this
  1932. // isn't the compressed stream.
  1933. //
  1934. if (SparseWrite &&
  1935. (CompressionContext->SystemBuffer == NULL)) {
  1936. CompressionContext->SystemBuffer = NtfsMapUserBuffer( Irp );
  1937. }
  1938. //
  1939. // At this point BufferOffset should always be 0.
  1940. //
  1941. BufferOffset = 0;
  1942. NtfsAllocateCompressionBuffer( IrpContext, Scb, Irp, CompressionContext, &CompressedSize );
  1943. CompressionContext->DataTransformed = TRUE;
  1944. }
  1945. //
  1946. // Loop to compress the user's buffer.
  1947. //
  1948. CompressedOffset = 0;
  1949. UncompressedOffset = 0;
  1950. Bcb = NULL;
  1951. try {
  1952. BOOLEAN ChangeAllocation;
  1953. ULONG SparseFileBias;
  1954. //
  1955. // Loop as long as we will not overflow our compressed buffer, and we
  1956. // are also guanteed that we will not overflow the extended IoRuns array
  1957. // in the worst case (and as long as we have more write to satisfy!).
  1958. //
  1959. while ((ByteCount != 0) && (*NumberRuns <= NTFS_MAX_PARALLEL_IOS - 1) &&
  1960. (((CompressedOffset + CompressionUnit) <= CompressedSize) ||
  1961. FlagOn( StreamFlags, COMPRESSED_STREAM ))) {
  1962. LONGLONG SizeToCompress;
  1963. //
  1964. // State variables to determine a reallocate range.
  1965. //
  1966. VCN DeleteVcn;
  1967. LONGLONG DeleteCount;
  1968. LONGLONG AllocateCount;
  1969. DeleteCount = 0;
  1970. AllocateCount = 0;
  1971. NoopRange = FALSE;
  1972. SparseFileBias = 0;
  1973. ClusterOffset = 0;
  1974. //
  1975. // Assume we are only compressing to FileSize, or else
  1976. // reduce to one compression unit. The maximum compression size
  1977. // we can accept is saving at least one cluster.
  1978. //
  1979. NtfsAcquireFsrtlHeader( Scb );
  1980. //
  1981. // If this is a compressed stream then we may need to go past file size.
  1982. //
  1983. if (FlagOn( StreamFlags, COMPRESSED_STREAM)) {
  1984. SizeToCompress = Scb->Header.FileSize.QuadPart + CompressionUnit - 1;
  1985. ((PLARGE_INTEGER) &SizeToCompress)->LowPart &= ~(CompressionUnit - 1);
  1986. SizeToCompress -= StartVbo;
  1987. } else {
  1988. SizeToCompress = Scb->Header.FileSize.QuadPart - StartVbo;
  1989. }
  1990. NtfsReleaseFsrtlHeader( Scb );
  1991. //
  1992. // It is possible that if this is the lazy writer that the file
  1993. // size was rolled back from a cached write which is aborting.
  1994. // In that case we either truncate the write or can exit this
  1995. // loop if there is nothing left to write.
  1996. //
  1997. if (SizeToCompress <= 0) {
  1998. ByteCount = 0;
  1999. break;
  2000. }
  2001. //
  2002. // Note if CompressionUnit is 0, then we do not need SizeToCompress.
  2003. //
  2004. if (SizeToCompress > CompressionUnit) {
  2005. SizeToCompress = (LONGLONG)CompressionUnit;
  2006. }
  2007. #ifdef COMPRESS_ON_WIRE
  2008. //
  2009. // For the normal uncompressed stream, map the data and compress it
  2010. // into the allocated buffer.
  2011. //
  2012. if (!FlagOn( StreamFlags, COMPRESSED_STREAM )) {
  2013. #endif
  2014. //
  2015. // If this is a sparse write then we zero the beginning and
  2016. // end of the compression unit as needed and copy in the user
  2017. // data.
  2018. //
  2019. if (SparseWrite) {
  2020. //
  2021. // Use local variables to position ourselves in the
  2022. // compression context buffer and user system buffer.
  2023. // We'll reuse StructureSize to show the number of
  2024. // user bytes copied to the buffer.
  2025. //
  2026. SystemBuffer = Add2Ptr( CompressionContext->SystemBuffer,
  2027. CompressionContext->SystemBufferOffset + UncompressedOffset );
  2028. UncompressedBuffer = Add2Ptr( CompressionContext->CompressionBuffer,
  2029. BufferOffset );
  2030. //
  2031. // Zero the beginning of the compression buffer if necessary.
  2032. //
  2033. if (CompressionUnitOffset != 0) {
  2034. RtlZeroMemory( UncompressedBuffer, CompressionUnitOffset );
  2035. UncompressedBuffer += CompressionUnitOffset;
  2036. }
  2037. //
  2038. // Now copy the user data into the buffer.
  2039. //
  2040. if ((ULONG) SizeToCompress < ByteCount) {
  2041. StructureSize = (ULONG) BlockAlign( SizeToCompress, (LONG)Vcb->BytesPerSector ) - CompressionUnitOffset;
  2042. } else {
  2043. StructureSize = ByteCount - CompressionUnitOffset;
  2044. }
  2045. RtlCopyMemory( UncompressedBuffer,
  2046. SystemBuffer,
  2047. StructureSize );
  2048. //
  2049. // It may be necessary to zero the end of the buffer.
  2050. //
  2051. if ((ULONG) SizeToCompress > ByteCount) {
  2052. RtlZeroMemory( Add2Ptr( UncompressedBuffer, StructureSize ),
  2053. (ULONG) SizeToCompress - ByteCount );
  2054. }
  2055. FinalCompressedSize = CompressionUnit;
  2056. Status = STATUS_SUCCESS;
  2057. } else {
  2058. UncompressedBuffer = NULL;
  2059. if (CompressionUnit != 0) {
  2060. //
  2061. // Map the aligned range, set it dirty, and flush. We have to
  2062. // loop, because the Cache Manager limits how much and over what
  2063. // boundaries we can map. Only do this if there a file
  2064. // object. Otherwise we will assume we are writing the
  2065. // clusters directly to disk (via NtfsWriteClusters).
  2066. //
  2067. if (Scb->FileObject != NULL) {
  2068. CcMapData( Scb->FileObject,
  2069. (PLARGE_INTEGER)&StartVbo,
  2070. (ULONG)SizeToCompress,
  2071. TRUE,
  2072. &Bcb,
  2073. &UncompressedBuffer );
  2074. #ifdef MAPCOUNT_DBG
  2075. IrpContext->MapCount++;
  2076. #endif
  2077. } else {
  2078. UncompressedBuffer = MmGetSystemAddressForMdlSafe( CompressionContext->SavedMdl, NormalPagePriority );
  2079. if (UncompressedBuffer == NULL) {
  2080. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  2081. }
  2082. }
  2083. //
  2084. // If we have not already allocated the workspace, then do it. We don't
  2085. // need the workspace if the file is not compressed (i.e. sparse).
  2086. //
  2087. if ((CompressionContext->WorkSpace == NULL) &&
  2088. FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK )) {
  2089. ULONG CompressWorkSpaceSize;
  2090. ULONG FragmentWorkSpaceSize;
  2091. (VOID) RtlGetCompressionWorkSpaceSize( (USHORT)((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) + 1),
  2092. &CompressWorkSpaceSize,
  2093. &FragmentWorkSpaceSize );
  2094. //
  2095. // It is critical to ask for the work space buffer. It is the only
  2096. // one large enough to hold the bigger ia64 pointers.
  2097. //
  2098. NtfsCreateMdlAndBuffer( IrpContext,
  2099. Scb,
  2100. RESERVED_BUFFER_WORKSPACE_NEEDED,
  2101. &CompressWorkSpaceSize,
  2102. NULL,
  2103. &CompressionContext->WorkSpace );
  2104. }
  2105. }
  2106. try {
  2107. //
  2108. // If we are moving an uncompressed file, then do not compress
  2109. //
  2110. if (CompressionUnit == 0) {
  2111. FinalCompressedSize = ByteCount;
  2112. Status = STATUS_SUCCESS;
  2113. //
  2114. // If we are writing compressed, compress it now.
  2115. //
  2116. } else if (!FlagOn(Scb->ScbState, SCB_STATE_WRITE_COMPRESSED) ||
  2117. ((Status =
  2118. RtlCompressBuffer( (USHORT)((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) + 1),
  2119. UncompressedBuffer,
  2120. (ULONG)SizeToCompress,
  2121. CompressionContext->CompressionBuffer + CompressedOffset,
  2122. (CompressionUnit - Vcb->BytesPerCluster),
  2123. NTFS_CHUNK_SIZE,
  2124. &FinalCompressedSize,
  2125. CompressionContext->WorkSpace )) ==
  2126. STATUS_BUFFER_TOO_SMALL)) {
  2127. //
  2128. // If it did not compress, just copy it over, sigh. This looks bad,
  2129. // but it should virtually never occur assuming compression is working
  2130. // ok. In the case where FileSize is in this unit, make sure we
  2131. // at least copy to a sector boundary.
  2132. //
  2133. FinalCompressedSize = CompressionUnit;
  2134. if (!SparseWrite) {
  2135. RtlCopyMemory( CompressionContext->CompressionBuffer + CompressedOffset,
  2136. UncompressedBuffer,
  2137. ((ULONG)SizeToCompress + Vcb->BytesPerSector - 1) &
  2138. ~(Vcb->BytesPerSector - 1));
  2139. }
  2140. ASSERT(FinalCompressedSize <= (CompressedSize - CompressedOffset));
  2141. Status = STATUS_SUCCESS;
  2142. }
  2143. //
  2144. // Probably Gary's compression routine faulted, but blame it on
  2145. // the user buffer!
  2146. //
  2147. } except(NtfsCompressionFilter(IrpContext, GetExceptionInformation())) {
  2148. NtfsRaiseStatus( IrpContext, STATUS_INVALID_USER_BUFFER, NULL, NULL );
  2149. }
  2150. }
  2151. //
  2152. // For the compressed stream, we need to scan the compressed data
  2153. // to see how much we actually have to write.
  2154. //
  2155. #ifdef COMPRESS_ON_WIRE
  2156. } else {
  2157. //
  2158. // Don't walk off the end of the data being written, because that
  2159. // would cause bogus faults in the compressed stream.
  2160. //
  2161. if (SizeToCompress > ByteCount) {
  2162. SizeToCompress = ByteCount;
  2163. }
  2164. //
  2165. // Map the compressed data.
  2166. //
  2167. CcMapData( Scb->Header.FileObjectC,
  2168. (PLARGE_INTEGER)&StartVbo,
  2169. (ULONG)SizeToCompress,
  2170. TRUE,
  2171. &Bcb,
  2172. &UncompressedBuffer );
  2173. #ifdef MAPCOUNT_DBG
  2174. IrpContext->MapCount++;
  2175. #endif
  2176. FinalCompressedSize = 0;
  2177. //
  2178. // Loop until we get an error or stop advancing.
  2179. //
  2180. RangePtr = UncompressedBuffer + CompressionUnit;
  2181. do {
  2182. Status = RtlDescribeChunk( (USHORT)((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) + 1),
  2183. &UncompressedBuffer,
  2184. (PUCHAR)RangePtr,
  2185. (PUCHAR *)&SystemBuffer,
  2186. &CompressedSize );
  2187. //
  2188. // Remember if we see any nonzero chunks
  2189. //
  2190. FinalCompressedSize |= CompressedSize;
  2191. } while (NT_SUCCESS(Status));
  2192. //
  2193. // If we terminated on anything but STATUS_NO_MORE_ENTRIES, we
  2194. // somehow picked up some bad data.
  2195. //
  2196. if (Status != STATUS_NO_MORE_ENTRIES) {
  2197. ASSERT(Status == STATUS_NO_MORE_ENTRIES);
  2198. NtfsRaiseStatus( IrpContext, Status, NULL, NULL );
  2199. }
  2200. Status = STATUS_SUCCESS;
  2201. //
  2202. // If we got any nonzero chunks, then calculate size of buffer to write.
  2203. // (Size does not include terminating Ushort of 0.)
  2204. //
  2205. if (FinalCompressedSize != 0) {
  2206. FinalCompressedSize =
  2207. (ULONG)((ULONG_PTR)UncompressedBuffer & (CompressionUnit - 1));
  2208. //
  2209. // If the Lazy Writer is writing beyond the end of the compression
  2210. // unit (there are dirty pages at the end of the compression unit)
  2211. // then we can throw this data away.
  2212. //
  2213. if (FinalCompressedSize < CompressionUnitOffset) {
  2214. //
  2215. // Set up to move to the next compression unit.
  2216. //
  2217. NoopRange = TRUE;
  2218. ChangeAllocation = FALSE;
  2219. //
  2220. // Set TempVbo to the compression unit offset. The
  2221. // number of bytes to skip over is the remaining
  2222. // bytes in a compression unit.
  2223. //
  2224. TempVbo = CompressionUnitOffset;
  2225. //
  2226. // If the Lazy Writer does not have the beginning of the compression
  2227. // unit then raise out of here and wait for the write which includes
  2228. // the beginning.
  2229. //
  2230. } else if (CompressionUnitOffset != 0) {
  2231. #ifdef NTFS_RWC_DEBUG
  2232. ASSERT( !NtfsBreakOnConflict ||
  2233. (Scb->LazyWriteThread[1] == PsGetCurrentThread()) );
  2234. #endif
  2235. NtfsRaiseStatus( IrpContext, STATUS_FILE_LOCK_CONFLICT, NULL, NULL );
  2236. //
  2237. // If we saw more chunks than our writer is trying to write (it
  2238. // more or less has to be the Lazy Writer), then we need to reject
  2239. // this request and assume he will come back later for the entire
  2240. // amount. This could be a problem for WRITE_THROUGH.
  2241. //
  2242. } else if (FinalCompressedSize > ByteCount) {
  2243. #ifdef NTFS_RWC_DEBUG
  2244. ASSERT( !NtfsBreakOnConflict ||
  2245. (Scb->LazyWriteThread[1] == PsGetCurrentThread()) );
  2246. #endif
  2247. ASSERT( Scb->LazyWriteThread[1] == PsGetCurrentThread() );
  2248. NtfsRaiseStatus( IrpContext, STATUS_FILE_LOCK_CONFLICT, NULL, NULL );
  2249. }
  2250. }
  2251. }
  2252. #endif
  2253. NtfsUnpinBcb( IrpContext, &Bcb );
  2254. //
  2255. // Round the FinalCompressedSize up to a cluster boundary now.
  2256. //
  2257. FinalCompressedSize = (FinalCompressedSize + Vcb->BytesPerCluster - 1) &
  2258. ~(Vcb->BytesPerCluster - 1);
  2259. //
  2260. // If the Status was not success, then we have to do something.
  2261. //
  2262. if (Status != STATUS_SUCCESS) {
  2263. //
  2264. // If it was actually an error, then we will raise out of
  2265. // here.
  2266. //
  2267. if (!NT_SUCCESS(Status)) {
  2268. NtfsRaiseStatus( IrpContext, Status, NULL, NULL );
  2269. //
  2270. // If the buffer compressed to all zeros, then we will
  2271. // not allocate anything.
  2272. //
  2273. } else if (Status == STATUS_BUFFER_ALL_ZEROS) {
  2274. FinalCompressedSize = 0;
  2275. }
  2276. }
  2277. if (!NoopRange) {
  2278. StartingVcn = LlClustersFromBytesTruncate( Vcb, StartVbo );
  2279. //
  2280. // Time to get the Scb if we do not have it already. We
  2281. // need to serialize our changes of the Mcb.
  2282. // N.B. -- We may _not_ always be the top level request.
  2283. // Converting a compressed stream to nonresident can
  2284. // send us down this path with Irp != OriginatingIrp.
  2285. //
  2286. if (!CompressionContext->ScbAcquired) {
  2287. NtfsPurgeFileRecordCache( IrpContext );
  2288. NtfsAcquireExclusiveScb( IrpContext, Scb );
  2289. CompressionContext->ScbAcquired = TRUE;
  2290. }
  2291. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  2292. Scb,
  2293. StartingVcn,
  2294. &NextLcn,
  2295. &NextClusterCount,
  2296. &RangePtr,
  2297. &Index );
  2298. //
  2299. // If this originally was a sparse write but we were defragging
  2300. // then we need to be careful if the range is unallocated. In
  2301. // that case we really need to do the full sparse support. Break
  2302. // out of the loop at this point and perform the IO with
  2303. // the ranges we already have.
  2304. //
  2305. if (!NextIsAllocated && OriginalSparseWrite && !SparseWrite) {
  2306. break;
  2307. }
  2308. //
  2309. // If the StartingVcn is allocated, we always have to check
  2310. // if we need to delete something, or if in the unusual case
  2311. // there is a hole there smaller than a compression unit.
  2312. //
  2313. // If this is a sparse write then we never have anything to
  2314. // deallocate.
  2315. //
  2316. FinalCompressedClusters = ClustersFromBytes( Vcb, FinalCompressedSize );
  2317. ChangeAllocation = FALSE;
  2318. if (SparseWrite) {
  2319. //
  2320. // It is possible that the compression unit has been allocated since we
  2321. // tested allocation when we entered this routine. If so we can
  2322. // write directly to disk in the allocated range. We need to
  2323. // modify the range being written however.
  2324. //
  2325. if (NextIsAllocated) {
  2326. //
  2327. // Move forward to the beginning of this write.
  2328. //
  2329. SparseFileBias = CompressionUnitOffset;
  2330. ((ULONG) StartVbo) += CompressionUnitOffset;
  2331. CompressedOffset += CompressionUnitOffset;
  2332. BufferOffset += CompressionUnitOffset;
  2333. FinalCompressedSize -= CompressionUnitOffset;
  2334. if (FinalCompressedSize > (ByteCount - CompressionUnitOffset)) {
  2335. FinalCompressedSize = (ByteCount - CompressionUnitOffset);
  2336. }
  2337. StartingVcn = LlClustersFromBytesTruncate( Vcb, StartVbo );
  2338. //
  2339. // Remember that we might not be on a cluster boundary at this point.
  2340. //
  2341. ClusterOffset = (ULONG) StartVbo & Vcb->ClusterMask;
  2342. //
  2343. // Look up the correct range on the disk.
  2344. //
  2345. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  2346. Scb,
  2347. StartingVcn,
  2348. &NextLcn,
  2349. &NextClusterCount,
  2350. &RangePtr,
  2351. &Index );
  2352. ASSERT( NextIsAllocated );
  2353. } else {
  2354. //
  2355. // Set the Scb flag to indicate we need to serialize non-cached IO
  2356. // with the Mcb.
  2357. //
  2358. SetFlag( Scb->ScbState, SCB_STATE_PROTECT_SPARSE_MCB );
  2359. }
  2360. } else if (NextIsAllocated || (NextClusterCount < CompressionUnitInClusters)) {
  2361. VCN TempClusterCount;
  2362. //
  2363. // If we need fewer clusters than allocated, then just allocate them.
  2364. // But if we need more clusters, then deallocate all the ones we have
  2365. // now, otherwise we could corrupt file data if we back out a write
  2366. // after actually having written the sectors. (For example, we could
  2367. // extend from 5 to 6 clusters and write 6 clusters of compressed data.
  2368. // If we have to back that out we will have a 6-cluster pattern of
  2369. // compressed data with one sector deallocated!).
  2370. //
  2371. NextIsAllocated = NextIsAllocated &&
  2372. (NextClusterCount >= FinalCompressedClusters);
  2373. //
  2374. // If we are cleaning up a hole, or the next run is unuseable,
  2375. // then make sure we just delete it rather than sliding the
  2376. // tiny run up with SplitMcb. Note that we have the Scb exclusive,
  2377. // and that since all compressed files go through the cache, we
  2378. // know that the dirty pages can't go away even if we spin out
  2379. // of here with ValidDataToDisk bumped up too high.
  2380. //
  2381. SavedValidDataToDisk = Scb->ValidDataToDisk;
  2382. if (!NextIsAllocated && ((StartVbo + CompressionUnit) > Scb->ValidDataToDisk)) {
  2383. Scb->ValidDataToDisk = StartVbo + CompressionUnit;
  2384. }
  2385. //
  2386. // Also, we need to handle the case where a range within
  2387. // ValidDataToDisk is fully allocated. If we are going to compress
  2388. // now, then we have the same problem with failing after writing
  2389. // the compressed data out, i.e., because we are fully allocated
  2390. // we would see the data as uncompressed after an abort, yet we
  2391. // have written compressed data. We do not implement the entire
  2392. // loop necessary to really see if the compression unit is fully
  2393. // allocated - we just verify that NextClusterCount is less than
  2394. // a compression unit and that the next run is not allocated. Just
  2395. // because the next contiguous run is also allocated does not guarantee
  2396. // that the compression unit is fully allocated, but maybe we will
  2397. // get some small defrag gain by reallocating what we need in a
  2398. // single run.
  2399. //
  2400. NextIsAllocated = NextIsAllocated &&
  2401. ((StartVbo >= Scb->ValidDataToDisk) ||
  2402. (FinalCompressedClusters == CompressionUnitInClusters) ||
  2403. ((NextClusterCount < CompressionUnitInClusters) &&
  2404. (!NtfsLookupAllocation( IrpContext,
  2405. Scb,
  2406. StartingVcn + NextClusterCount,
  2407. &NextLbo,
  2408. &TempClusterCount,
  2409. &RangePtr,
  2410. &Index ) ||
  2411. (NextLbo != UNUSED_LCN))));
  2412. //
  2413. // If we are not keeping any allocation, or we need less
  2414. // than a compression unit, then call NtfsDeleteAllocation.
  2415. //
  2416. if (!NextIsAllocated ||
  2417. (FinalCompressedClusters < CompressionUnitInClusters)) {
  2418. //
  2419. // Skip this explicit delete if we are rewriting within
  2420. // ValidDataToDisk. We know we won't be doing a SplitMcb.
  2421. //
  2422. DeleteVcn = StartingVcn;
  2423. if (NextIsAllocated) {
  2424. DeleteVcn += FinalCompressedClusters;
  2425. }
  2426. DeleteCount = CompressionUnit;
  2427. if (CompressionUnit == 0) {
  2428. DeleteCount = ByteCount;
  2429. }
  2430. DeleteCount = LlClustersFromBytes( Vcb, DeleteCount );
  2431. //
  2432. // Take the explicit DeleteAllocation path if there is a chance
  2433. // we might do a SplitMcb. This is true for a compressed write
  2434. // which extends into a new compression unit.
  2435. //
  2436. if ((CompressionUnit != 0) &&
  2437. ((StartingVcn + DeleteCount) >
  2438. LlClustersFromBytesTruncate( Vcb,
  2439. ((Scb->ValidDataToDisk + CompressionUnit - 1) &
  2440. ~((LONGLONG) (CompressionUnit - 1))) ))) {
  2441. NtfsDeleteAllocation( IrpContext,
  2442. IrpSp->FileObject,
  2443. Scb,
  2444. DeleteVcn,
  2445. StartingVcn + DeleteCount - 1,
  2446. TRUE,
  2447. FALSE );
  2448. //
  2449. // Set the DeleteCount to 0 so we know there is no other deallocate
  2450. // to do.
  2451. //
  2452. DeleteCount = 0;
  2453. //
  2454. // Bias the DeleteCount by the number of clusters into the compression
  2455. // unit we are beginning.
  2456. //
  2457. } else {
  2458. DeleteCount -= (DeleteVcn - StartingVcn);
  2459. ASSERT( DeleteCount >= 0 );
  2460. }
  2461. ChangeAllocation = TRUE;
  2462. }
  2463. Scb->ValidDataToDisk = SavedValidDataToDisk;
  2464. }
  2465. //
  2466. // Now deal with the case where we do need to allocate space.
  2467. //
  2468. TempVbo = StartVbo;
  2469. if (FinalCompressedSize != 0) {
  2470. //
  2471. // If this compression unit is not (sufficiently) allocated, then
  2472. // do it now.
  2473. //
  2474. if (!NextIsAllocated ||
  2475. ((NextClusterCount < FinalCompressedClusters) && !SparseWrite)) {
  2476. AllocateCount = FinalCompressedClusters;
  2477. } else {
  2478. AllocateCount = 0;
  2479. }
  2480. //
  2481. // Now call our reallocate routine to do the work.
  2482. //
  2483. if ((DeleteCount != 0) || (AllocateCount != 0)) {
  2484. NtfsReallocateRange( IrpContext,
  2485. Scb,
  2486. DeleteVcn,
  2487. DeleteCount,
  2488. StartingVcn,
  2489. AllocateCount,
  2490. NULL );
  2491. ChangeAllocation = TRUE;
  2492. }
  2493. //
  2494. // If we added space, something may have moved, so we must
  2495. // look up our position and get a new index.
  2496. //
  2497. if (ChangeAllocation) {
  2498. NtfsLookupAllocation( IrpContext,
  2499. Scb,
  2500. StartingVcn,
  2501. &NextLcn,
  2502. &NextClusterCount,
  2503. &RangePtr,
  2504. &Index );
  2505. }
  2506. //
  2507. // Now loop to update the IoRuns array.
  2508. //
  2509. CompressedOffset += FinalCompressedSize;
  2510. while (FinalCompressedSize != 0) {
  2511. LONGLONG RunOffset;
  2512. //
  2513. // Get the actual number of clusters being written.
  2514. //
  2515. FinalCompressedClusters = ClustersFromBytes( Vcb, FinalCompressedSize );
  2516. //
  2517. // Try to lookup the first run. If there is just a single run,
  2518. // we may just be able to pass it on. Index into the Mcb directly
  2519. // for greater speed.
  2520. //
  2521. NextIsAllocated = NtfsGetSequentialMcbEntry( &Scb->Mcb,
  2522. &RangePtr,
  2523. Index,
  2524. &StartingVcn,
  2525. &NextLcn,
  2526. &NextClusterCount );
  2527. //
  2528. // It is possible that we could walk across an Mcb boundary and the
  2529. // following entry isn't loaded. In that case we want to look the
  2530. // up the allocation specifically to force the Mcb load.
  2531. //
  2532. if (Index == MAXULONG) {
  2533. //
  2534. // A failure on NtfsGetSequentialMcbEntry above will modify StartingVcn.
  2535. // Recalculate here based on TempVbo.
  2536. //
  2537. StartingVcn = LlClustersFromBytesTruncate( Vcb, TempVbo );
  2538. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  2539. Scb,
  2540. StartingVcn,
  2541. &NextLcn,
  2542. &NextClusterCount,
  2543. &RangePtr,
  2544. &Index );
  2545. ASSERT( NextIsAllocated );
  2546. NextIsAllocated = NtfsGetSequentialMcbEntry( &Scb->Mcb,
  2547. &RangePtr,
  2548. Index,
  2549. &StartingVcn,
  2550. &NextLcn,
  2551. &NextClusterCount );
  2552. }
  2553. Index += 1;
  2554. ASSERT(NextIsAllocated);
  2555. ASSERT(NextLcn != UNUSED_LCN);
  2556. //
  2557. // Our desired Vcn could be in the middle of this run, so do
  2558. // some adjustments.
  2559. //
  2560. RunOffset = Int64ShraMod32(TempVbo, Vcb->ClusterShift) - StartingVcn;
  2561. ASSERT( ((PLARGE_INTEGER)&RunOffset)->HighPart >= 0 );
  2562. ASSERT( NextClusterCount > RunOffset );
  2563. NextLcn = NextLcn + RunOffset;
  2564. NextClusterCount = NextClusterCount - RunOffset;
  2565. //
  2566. // Adjust from NextLcn to Lbo. NextByteCount may overflow out of 32 bits
  2567. // but we will catch that below when we compare clusters.
  2568. //
  2569. NextLbo = LlBytesFromClusters( Vcb, NextLcn ) + ClusterOffset;
  2570. NextByteCount = BytesFromClusters( Vcb, (ULONG)NextClusterCount );
  2571. //
  2572. // If next run is larger than we need, "ya get what you need".
  2573. // Note that after this we are guaranteed that the HighPart of
  2574. // NextByteCount is 0.
  2575. //
  2576. if (NextClusterCount >= FinalCompressedClusters) {
  2577. NextByteCount = FinalCompressedSize;
  2578. }
  2579. //
  2580. // If the Lbos are contiguous, then we can do a contiguous
  2581. // transfer, so we just increase the current byte count.
  2582. // For compressed streams, note however that the BufferOffset
  2583. // may not be contiguous!
  2584. //
  2585. if ((*NumberRuns != 0) &&
  2586. (NextLbo == (IoRuns[*NumberRuns - 1].StartingLbo +
  2587. IoRuns[*NumberRuns - 1].ByteCount)) &&
  2588. (BufferOffset == (IoRuns[*NumberRuns - 1].BufferOffset +
  2589. IoRuns[*NumberRuns - 1].ByteCount))) {
  2590. IoRuns[*NumberRuns - 1].ByteCount += NextByteCount;
  2591. //
  2592. // Otherwise it is time to start a new run, if there is space for one.
  2593. //
  2594. } else {
  2595. //
  2596. // If we have filled up the current I/O runs array, then we
  2597. // will grow it once to a size which would allow the worst
  2598. // case compression unit (all noncontiguous clusters) to
  2599. // start at the penultimate index. The following if
  2600. // statement enforces this case as the worst case. With 16
  2601. // clusters per compression unit, the theoretical maximum
  2602. // number of parallel I/Os would be 16 + NTFS_MAX_PARALLEL_IOS - 1,
  2603. // since we stop on the first compression unit
  2604. // boundary after the penultimate run. Normally, of course we
  2605. // will do much fewer.
  2606. //
  2607. if ((*NumberRuns == NTFS_MAX_PARALLEL_IOS) &&
  2608. (CompressionContext->AllocatedRuns == NTFS_MAX_PARALLEL_IOS)) {
  2609. PIO_RUN NewIoRuns;
  2610. NewIoRuns = NtfsAllocatePool( NonPagedPool,
  2611. (CompressionUnitInClusters + NTFS_MAX_PARALLEL_IOS - 1) * sizeof(IO_RUN) );
  2612. RtlCopyMemory( NewIoRuns,
  2613. CompressionContext->IoRuns,
  2614. NTFS_MAX_PARALLEL_IOS * sizeof(IO_RUN) );
  2615. IoRuns = CompressionContext->IoRuns = NewIoRuns;
  2616. CompressionContext->AllocatedRuns = CompressionUnitInClusters + NTFS_MAX_PARALLEL_IOS - 1;
  2617. }
  2618. //
  2619. // We remember each piece of a parallel run by saving the
  2620. // essential information in the IoRuns array. The tranfers
  2621. // will be started up in parallel below.
  2622. //
  2623. IoRuns[*NumberRuns].StartingVbo = TempVbo;
  2624. IoRuns[*NumberRuns].StartingLbo = NextLbo;
  2625. IoRuns[*NumberRuns].BufferOffset = BufferOffset;
  2626. IoRuns[*NumberRuns].ByteCount = NextByteCount;
  2627. *NumberRuns += 1;
  2628. }
  2629. //
  2630. // Now adjust everything for the next pass through the loop.
  2631. //
  2632. BufferOffset += NextByteCount;
  2633. TempVbo = TempVbo + NextByteCount;
  2634. FinalCompressedSize -= NextByteCount;
  2635. ClusterOffset = 0;
  2636. }
  2637. } else if (DeleteCount != 0) {
  2638. //
  2639. // Call our reallocate routine.
  2640. //
  2641. NtfsReallocateRange( IrpContext,
  2642. Scb,
  2643. DeleteVcn,
  2644. DeleteCount,
  2645. 0,
  2646. 0,
  2647. NULL );
  2648. ChangeAllocation = TRUE;
  2649. }
  2650. }
  2651. //
  2652. // For the compressed stream, we need to advance the buffer offset to the
  2653. // end of a compression unit, so that if adjacent compression units are
  2654. // being written, we correctly advance over the unused clusters in the
  2655. // compressed stream.
  2656. //
  2657. if (FlagOn(StreamFlags, COMPRESSED_STREAM)) {
  2658. BufferOffset += CompressionUnit - (ULONG)(TempVbo & (CompressionUnit - 1));
  2659. }
  2660. //
  2661. // If this is the unnamed data stream then we need to update
  2662. // the total allocated size.
  2663. //
  2664. if (ChangeAllocation &&
  2665. FlagOn( Scb->ScbState, SCB_STATE_UNNAMED_DATA ) &&
  2666. (Scb->Fcb->Info.AllocatedLength != Scb->TotalAllocated)) {
  2667. Scb->Fcb->Info.AllocatedLength = Scb->TotalAllocated;
  2668. SetFlag( Scb->Fcb->InfoFlags, FCB_INFO_CHANGED_ALLOC_SIZE );
  2669. }
  2670. UncompressedOffset += CompressionUnit - CompressionUnitOffset;
  2671. //
  2672. // Now reduce the byte counts by the compression unit we just
  2673. // transferred.
  2674. //
  2675. if ((CompressionUnit != 0) && (ByteCount > CompressionUnit)) {
  2676. StartVbo += (CompressionUnit - SparseFileBias);
  2677. ByteCount -= CompressionUnit;
  2678. } else {
  2679. StartVbo += (ByteCount - SparseFileBias);
  2680. ByteCount = 0;
  2681. leave;
  2682. }
  2683. CompressionUnitOffset = 0;
  2684. }
  2685. } finally {
  2686. NtfsUnpinBcb( IrpContext, &Bcb );
  2687. }
  2688. //
  2689. // See if we need to advance ValidDataToDisk.
  2690. //
  2691. if (FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK ) &&
  2692. (StartVbo > Scb->ValidDataToDisk)) {
  2693. ASSERT( (Scb->ScbSnapshot != NULL) && (Scb->ScbSnapshot->ValidDataToDisk == Scb->ValidDataToDisk) );
  2694. Scb->ValidDataToDisk = StartVbo;
  2695. }
  2696. return ByteCount + ReturnByteCount;
  2697. }
  2698. }
  2699. //
  2700. // Internal support routine
  2701. //
  2702. NTSTATUS
  2703. NtfsFinishBuffers (
  2704. IN PIRP_CONTEXT IrpContext,
  2705. IN PIRP Irp,
  2706. IN PSCB Scb,
  2707. IN PVBO StartingVbo,
  2708. IN ULONG ByteCount,
  2709. IN ULONG NumberRuns,
  2710. IN PCOMPRESSION_CONTEXT CompressionContext,
  2711. IN ULONG StreamFlags
  2712. )
  2713. /*++
  2714. Routine Description:
  2715. This routine performs post processing for noncached transfers of
  2716. compressed or encrypted data. For reads, the decompression actually takes
  2717. place here. For reads and writes, all necessary cleanup operations are
  2718. performed.
  2719. Arguments:
  2720. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  2721. Irp - Supplies the requesting Irp.
  2722. Scb - Supplies the stream file to act on.
  2723. StartingVbo - The starting point for the operation.
  2724. ByteCount - The lengh of the operation.
  2725. CompressionContext - Supplies information related to the compression
  2726. filled in by NtfsPrepareBuffers.
  2727. StreamFlags - Supplies either 0 or some combination of COMPRESSED_STREAM
  2728. and ENCRYPTED_STREAM
  2729. Return Value:
  2730. Status from the operation
  2731. --*/
  2732. {
  2733. VCN CurrentVcn, NextVcn, BeyondLastVcn;
  2734. LCN NextLcn;
  2735. ULONG Run;
  2736. ULONG NextByteCount;
  2737. LONGLONG NextClusterCount;
  2738. LARGE_INTEGER OffsetWithinFile;
  2739. BOOLEAN NextIsAllocated;
  2740. BOOLEAN AlreadyFilled;
  2741. PVOID SystemBuffer = NULL;
  2742. ULONG CompressionUnit, CompressionUnitInClusters;
  2743. ULONG StartingOffset, UncompressedOffset, CompressedOffset;
  2744. ULONG CompressedSize;
  2745. LONGLONG UncompressedSize;
  2746. LONGLONG CurrentAllocatedClusterCount;
  2747. NTSTATUS Status = STATUS_SUCCESS;
  2748. PVCB Vcb = Scb->Vcb;
  2749. PAGED_CODE();
  2750. //
  2751. // If this is a normal termination of a read, then let's give him the
  2752. // data...
  2753. //
  2754. ASSERT( (Scb->CompressionUnit != 0) ||
  2755. (Scb->EncryptionContext != NULL) ||
  2756. FlagOn( StreamFlags, COMPRESSED_STREAM ) );
  2757. //
  2758. // We never want to be here if this is the read raw encrypted data case.
  2759. //
  2760. ASSERT( !FlagOn( StreamFlags, ENCRYPTED_STREAM ) );
  2761. if (IrpContext->MajorFunction == IRP_MJ_READ) {
  2762. //
  2763. // If there is an encryption context then transform the data.
  2764. //
  2765. if ((Scb->EncryptionContext != NULL) &&
  2766. (NtfsData.EncryptionCallBackTable.AfterReadProcess != NULL)) {
  2767. ASSERT ( NtfsIsTypeCodeEncryptible( Scb->AttributeTypeCode ) );
  2768. //
  2769. // If the compression context has a buffer then we will use that.
  2770. //
  2771. if (CompressionContext->CompressionBuffer != NULL) {
  2772. SystemBuffer = CompressionContext->CompressionBuffer;
  2773. } else {
  2774. SystemBuffer = NtfsMapUserBuffer( Irp );
  2775. }
  2776. //
  2777. // Now look at each run of real data heading coming from the disk and
  2778. // let the encryption driver decrypt it.
  2779. //
  2780. for ( Run = 0; Run < NumberRuns; Run++ ) {
  2781. OffsetWithinFile.QuadPart = CompressionContext->IoRuns[Run].StartingVbo;
  2782. Status = NtfsData.EncryptionCallBackTable.AfterReadProcess(
  2783. Add2Ptr(SystemBuffer, CompressionContext->IoRuns[Run].BufferOffset),
  2784. &OffsetWithinFile,
  2785. CompressionContext->IoRuns[Run].ByteCount,
  2786. Scb->EncryptionContext);
  2787. if (!NT_SUCCESS( Status )) {
  2788. return Status;
  2789. }
  2790. }
  2791. if (!NT_SUCCESS( Status )) {
  2792. return Status;
  2793. }
  2794. }
  2795. //
  2796. // There may be a compression unit but there is no completion to do
  2797. // i.e this is an uncompressed sparse file.
  2798. // We might be operating on an encrypted file as well.
  2799. // In either case just exit if the file is not compressed.
  2800. //
  2801. if (!FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK )) {
  2802. if (SystemBuffer != NULL) {
  2803. KeFlushIoBuffers( Irp->MdlAddress, TRUE, FALSE );
  2804. }
  2805. return STATUS_SUCCESS;
  2806. }
  2807. ASSERT( Scb->CompressionUnit != 0 );
  2808. if (!FlagOn( StreamFlags, COMPRESSED_STREAM )) {
  2809. //
  2810. // Initialize remaining context for the loop.
  2811. //
  2812. CompressionUnit = Scb->CompressionUnit;
  2813. CompressionUnitInClusters = ClustersFromBytes(Vcb, CompressionUnit);
  2814. CompressedOffset = 0;
  2815. UncompressedOffset = 0;
  2816. Status = STATUS_SUCCESS;
  2817. //
  2818. // Map the user buffer.
  2819. //
  2820. SystemBuffer = (PVOID)((PCHAR)CompressionContext->SystemBuffer +
  2821. CompressionContext->SystemBufferOffset);
  2822. //
  2823. // Calculate the first Vcn and offset within the compression
  2824. // unit of the start of the transfer, and lookup the first
  2825. // run.
  2826. //
  2827. StartingOffset = *((PULONG)StartingVbo) & (CompressionUnit - 1);
  2828. CurrentVcn = LlClustersFromBytes(Vcb, *StartingVbo - StartingOffset);
  2829. NextIsAllocated =
  2830. NtfsLookupAllocation( IrpContext,
  2831. Scb,
  2832. CurrentVcn,
  2833. &NextLcn,
  2834. &CurrentAllocatedClusterCount,
  2835. NULL,
  2836. NULL );
  2837. //
  2838. // Set NextIsAllocated and NextLcn as the Mcb package would, to show if
  2839. // we are off the end.
  2840. //
  2841. if (!NextIsAllocated) {
  2842. NextLcn = UNUSED_LCN;
  2843. }
  2844. NextIsAllocated = (BOOLEAN)(CurrentAllocatedClusterCount < (MAXLONGLONG - CurrentVcn));
  2845. //
  2846. // If this is actually a hole or there was no entry in the Mcb, then
  2847. // set CurrentAllocatedClusterCount to zero so we will always make the first
  2848. // pass in the embedded while loop below.
  2849. //
  2850. if (!NextIsAllocated || (NextLcn == UNUSED_LCN)) {
  2851. CurrentAllocatedClusterCount = 0;
  2852. }
  2853. //
  2854. // Prepare for the initial Mcb scan below by pretending that the
  2855. // next run has been looked up, and is a contiguous run of 0 clusters!
  2856. //
  2857. NextVcn = CurrentVcn + CurrentAllocatedClusterCount;
  2858. NextClusterCount = 0;
  2859. //
  2860. // Remember the last Vcn we should look up.
  2861. //
  2862. BeyondLastVcn = *StartingVbo + ByteCount + CompressionUnit - 1;
  2863. ((PLARGE_INTEGER) &BeyondLastVcn)->LowPart &= ~(CompressionUnit - 1);
  2864. BeyondLastVcn = LlClustersFromBytesTruncate( Vcb, BeyondLastVcn );
  2865. //
  2866. // Loop to return the data.
  2867. //
  2868. while (ByteCount != 0) {
  2869. //
  2870. // Loop to determine the compressed size of the next compression
  2871. // unit. I.e., loop until we either find the end of the current
  2872. // range of contiguous Vcns, or until we find that the current
  2873. // compression unit is fully allocated.
  2874. //
  2875. while (NextIsAllocated &&
  2876. (CurrentAllocatedClusterCount < CompressionUnitInClusters) &&
  2877. ((CurrentVcn + CurrentAllocatedClusterCount) == NextVcn)) {
  2878. if ((CurrentVcn + CurrentAllocatedClusterCount) > NextVcn) {
  2879. NtfsRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR, NULL, Scb->Fcb );
  2880. }
  2881. CurrentAllocatedClusterCount = CurrentAllocatedClusterCount + NextClusterCount;
  2882. //
  2883. // Loop to find the next allocated Vcn, or the end of the Mcb.
  2884. // None of the interfaces using RangePtr and Index as inputs
  2885. // can be used here, such as NtfsGetSequentialMcbEntry, because
  2886. // we do not have the Scb main resource acquired, and writers can
  2887. // be moving stuff around in parallel.
  2888. //
  2889. while (TRUE) {
  2890. //
  2891. // Set up NextVcn for next call
  2892. //
  2893. NextVcn += NextClusterCount;
  2894. //
  2895. // Exit if we are past the end of the range being decompressed.
  2896. //
  2897. if (NextVcn >= BeyondLastVcn) {
  2898. NextIsAllocated = TRUE;
  2899. break;
  2900. }
  2901. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  2902. Scb,
  2903. NextVcn,
  2904. &NextLcn,
  2905. &NextClusterCount,
  2906. NULL,
  2907. NULL );
  2908. //
  2909. // Set NextIsAllocated and NextLcn as the Mcb package would, to show if
  2910. // we are off the end.
  2911. //
  2912. if (!NextIsAllocated) {
  2913. NextLcn = UNUSED_LCN;
  2914. }
  2915. NextIsAllocated = (BOOLEAN)(NextClusterCount < (MAXLONGLONG - NextVcn));
  2916. //
  2917. // Get out if we hit the end or see something allocated.
  2918. //
  2919. if (!NextIsAllocated || (NextLcn != UNUSED_LCN)) {
  2920. break;
  2921. }
  2922. }
  2923. }
  2924. //
  2925. // The compression unit is fully allocated.
  2926. //
  2927. if (CurrentAllocatedClusterCount >= CompressionUnitInClusters) {
  2928. CompressedSize = CompressionUnit;
  2929. CurrentAllocatedClusterCount = CurrentAllocatedClusterCount - CompressionUnitInClusters;
  2930. //
  2931. // Otherwise calculate how much is allocated at the current Vcn
  2932. // (if any).
  2933. //
  2934. } else {
  2935. CompressedSize = BytesFromClusters(Vcb, (ULONG)CurrentAllocatedClusterCount);
  2936. CurrentAllocatedClusterCount = 0;
  2937. }
  2938. //
  2939. // The next time through this loop, we will be working on the next
  2940. // compression unit.
  2941. //
  2942. CurrentVcn = CurrentVcn + CompressionUnitInClusters;
  2943. //
  2944. // Calculate uncompressed size of the desired fragment, or
  2945. // entire compression unit.
  2946. //
  2947. NtfsAcquireFsrtlHeader( Scb );
  2948. UncompressedSize = Scb->Header.FileSize.QuadPart -
  2949. (*StartingVbo + UncompressedOffset);
  2950. NtfsReleaseFsrtlHeader( Scb );
  2951. if (UncompressedSize > CompressionUnit) {
  2952. (ULONG)UncompressedSize = CompressionUnit;
  2953. }
  2954. //
  2955. // Calculate how much we want now, based on StartingOffset and
  2956. // ByteCount.
  2957. //
  2958. NextByteCount = CompressionUnit - StartingOffset;
  2959. if (NextByteCount > ByteCount) {
  2960. NextByteCount = ByteCount;
  2961. }
  2962. //
  2963. // Practice safe access
  2964. //
  2965. try {
  2966. //
  2967. // There were no clusters allocated, return 0's.
  2968. //
  2969. AlreadyFilled = FALSE;
  2970. if (CompressedSize == 0) {
  2971. RtlZeroMemory( (PUCHAR)SystemBuffer + UncompressedOffset,
  2972. NextByteCount );
  2973. //
  2974. // The compression unit was fully allocated, just copy.
  2975. //
  2976. } else if (CompressedSize == CompressionUnit) {
  2977. RtlCopyMemory( (PUCHAR)SystemBuffer + UncompressedOffset,
  2978. CompressionContext->CompressionBuffer +
  2979. CompressedOffset + StartingOffset,
  2980. NextByteCount );
  2981. #ifdef SYSCACHE
  2982. if (FlagOn(Scb->ScbState, SCB_STATE_SYSCACHE_FILE)) {
  2983. FsRtlVerifySyscacheData( IoGetCurrentIrpStackLocation( IrpContext->OriginatingIrp )->FileObject,
  2984. Add2Ptr( SystemBuffer, UncompressedOffset ),
  2985. NextByteCount,
  2986. (ULONG)*StartingVbo + UncompressedOffset );
  2987. }
  2988. #endif
  2989. //
  2990. // Caller does not want the entire compression unit, decompress
  2991. // a fragment.
  2992. //
  2993. } else if (NextByteCount < CompressionUnit) {
  2994. //
  2995. // If we have not already allocated the workspace, then do it.
  2996. //
  2997. if (CompressionContext->WorkSpace == NULL) {
  2998. ULONG CompressWorkSpaceSize;
  2999. ULONG FragmentWorkSpaceSize;
  3000. ASSERT((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) != 0);
  3001. (VOID) RtlGetCompressionWorkSpaceSize( (USHORT)((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) + 1),
  3002. &CompressWorkSpaceSize,
  3003. &FragmentWorkSpaceSize );
  3004. //
  3005. // Allocate first from non-paged, then paged. The typical
  3006. // size of this workspace is just over a single page so
  3007. // if both allocations fail then the system is running
  3008. // a reduced capacity. Return an error to the user
  3009. // and let him retry.
  3010. //
  3011. CompressionContext->WorkSpace = NtfsAllocatePoolWithTagNoRaise( NonPagedPool, FragmentWorkSpaceSize, 'wftN' );
  3012. if (CompressionContext->WorkSpace == NULL) {
  3013. CompressionContext->WorkSpace =
  3014. NtfsAllocatePool( PagedPool, FragmentWorkSpaceSize );
  3015. }
  3016. }
  3017. while (TRUE) {
  3018. Status =
  3019. RtlDecompressFragment( (USHORT)((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) + 1),
  3020. (PUCHAR)SystemBuffer + UncompressedOffset,
  3021. NextByteCount,
  3022. CompressionContext->CompressionBuffer + CompressedOffset,
  3023. CompressedSize,
  3024. StartingOffset,
  3025. (PULONG)&UncompressedSize,
  3026. CompressionContext->WorkSpace );
  3027. ASSERT(NT_SUCCESS( Status ) || !NtfsStopOnDecompressError);
  3028. if (NT_SUCCESS(Status)) {
  3029. RtlZeroMemory( (PUCHAR)SystemBuffer + UncompressedOffset + (ULONG)UncompressedSize,
  3030. NextByteCount - (ULONG)UncompressedSize );
  3031. #ifdef SYSCACHE
  3032. if (FlagOn(Scb->ScbState, SCB_STATE_SYSCACHE_FILE)) {
  3033. FsRtlVerifySyscacheData( IoGetCurrentIrpStackLocation( IrpContext->OriginatingIrp )->FileObject,
  3034. Add2Ptr( SystemBuffer, UncompressedOffset ),
  3035. NextByteCount,
  3036. (ULONG)*StartingVbo + UncompressedOffset );
  3037. }
  3038. #endif
  3039. break;
  3040. } else {
  3041. //
  3042. // The compressed buffer could have been bad. We need to fill
  3043. // it with a pattern and get on with life. Someone could be
  3044. // faulting it in just to overwrite it, or it could be a rare
  3045. // case of corruption. We fill the data with a pattern, but
  3046. // we must return success so a pagefault will succeed. We
  3047. // do this once, then loop back to decompress what we can.
  3048. //
  3049. Status = STATUS_SUCCESS;
  3050. if (!AlreadyFilled) {
  3051. RtlFillMemory( (PUCHAR)SystemBuffer + UncompressedOffset,
  3052. NextByteCount,
  3053. 0xDF );
  3054. AlreadyFilled = TRUE;
  3055. } else {
  3056. break;
  3057. }
  3058. }
  3059. }
  3060. //
  3061. // Decompress the entire compression unit.
  3062. //
  3063. } else {
  3064. ASSERT(StartingOffset == 0);
  3065. while (TRUE) {
  3066. Status =
  3067. RtlDecompressBuffer( (USHORT)((Scb->AttributeFlags & ATTRIBUTE_FLAG_COMPRESSION_MASK) + 1),
  3068. (PUCHAR)SystemBuffer + UncompressedOffset,
  3069. NextByteCount,
  3070. CompressionContext->CompressionBuffer + CompressedOffset,
  3071. CompressedSize,
  3072. (PULONG)&UncompressedSize );
  3073. ASSERT(NT_SUCCESS( Status ) || !NtfsStopOnDecompressError);
  3074. if (NT_SUCCESS(Status)) {
  3075. RtlZeroMemory( (PUCHAR)SystemBuffer + UncompressedOffset + (ULONG)UncompressedSize,
  3076. NextByteCount - (ULONG)UncompressedSize );
  3077. #ifdef SYSCACHE
  3078. if (FlagOn(Scb->ScbState, SCB_STATE_SYSCACHE_FILE)) {
  3079. FsRtlVerifySyscacheData( IoGetCurrentIrpStackLocation( IrpContext->OriginatingIrp )->FileObject,
  3080. Add2Ptr( SystemBuffer, UncompressedOffset ),
  3081. NextByteCount,
  3082. (ULONG)*StartingVbo + UncompressedOffset );
  3083. }
  3084. #endif
  3085. break;
  3086. } else {
  3087. //
  3088. // The compressed buffer could have been bad. We need to fill
  3089. // it with a pattern and get on with life. Someone could be
  3090. // faulting it in just to overwrite it, or it could be a rare
  3091. // case of corruption. We fill the data with a pattern, but
  3092. // we must return success so a pagefault will succeed. We
  3093. // do this once, then loop back to decompress what we can.
  3094. //
  3095. Status = STATUS_SUCCESS;
  3096. if (!AlreadyFilled) {
  3097. RtlFillMemory( (PUCHAR)SystemBuffer + UncompressedOffset,
  3098. NextByteCount,
  3099. 0xDB );
  3100. AlreadyFilled = TRUE;
  3101. } else {
  3102. break;
  3103. }
  3104. }
  3105. }
  3106. }
  3107. //
  3108. // If its an unexpected error then
  3109. // Probably Gary's decompression routine faulted, but blame it on
  3110. // the user buffer!
  3111. //
  3112. } except(NtfsCompressionFilter(IrpContext, GetExceptionInformation())) {
  3113. Status = GetExceptionCode();
  3114. if (!FsRtlIsNtstatusExpected( Status )) {
  3115. Status = STATUS_INVALID_USER_BUFFER;
  3116. }
  3117. }
  3118. if (!NT_SUCCESS(Status)) {
  3119. break;
  3120. }
  3121. //
  3122. // Advance these fields for the next pass through.
  3123. //
  3124. StartingOffset = 0;
  3125. UncompressedOffset += NextByteCount;
  3126. CompressedOffset += CompressedSize;
  3127. ByteCount -= NextByteCount;
  3128. }
  3129. //
  3130. // We now flush the user's buffer to memory.
  3131. //
  3132. KeFlushIoBuffers( CompressionContext->SavedMdl, TRUE, FALSE );
  3133. }
  3134. //
  3135. // For compressed writes we just checkpoint the transaction and
  3136. // free all snapshots and resources, then get the Scb back. Only do this if the
  3137. // request is for the same Irp as the original Irp. We don't want to checkpoint
  3138. // if called from NtfsWriteClusters.
  3139. //
  3140. } else if (Irp == IrpContext->OriginatingIrp) {
  3141. if (CompressionContext->ScbAcquired) {
  3142. BOOLEAN Reinsert = FALSE;
  3143. NtfsCheckpointCurrentTransaction( IrpContext );
  3144. //
  3145. // We want to empty the exclusive Fcb list but still hold
  3146. // the current file. Go ahead and remove it from the exclusive
  3147. // list and reinsert it after freeing the other entries.
  3148. //
  3149. while (!IsListEmpty(&IrpContext->ExclusiveFcbList)) {
  3150. //
  3151. // If this is the Scb for this Fcb then remove it from the list.
  3152. // We have to preserve the number of times this Fcb may have been
  3153. // acquired outside of PrepareBuffers.
  3154. //
  3155. if ((PFCB)CONTAINING_RECORD( IrpContext->ExclusiveFcbList.Flink,
  3156. FCB,
  3157. ExclusiveFcbLinks ) == Scb->Fcb) {
  3158. RemoveEntryList( &Scb->Fcb->ExclusiveFcbLinks );
  3159. Reinsert = TRUE;
  3160. } else {
  3161. NtfsReleaseFcb( IrpContext,
  3162. (PFCB)CONTAINING_RECORD(IrpContext->ExclusiveFcbList.Flink,
  3163. FCB,
  3164. ExclusiveFcbLinks ));
  3165. }
  3166. }
  3167. ClearFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_RELEASE_USN_JRNL |
  3168. IRP_CONTEXT_FLAG_RELEASE_MFT );
  3169. if (Reinsert) {
  3170. InsertHeadList( &IrpContext->ExclusiveFcbList,
  3171. &Scb->Fcb->ExclusiveFcbLinks );
  3172. //
  3173. // Release the Scb if we acquired it in PrepareBuffers. It is
  3174. // important that we have released the Scb before going back
  3175. // and faulting into the data section. Otherwise we could
  3176. // hit a collided page fault deadlock.
  3177. //
  3178. NtfsReleaseScb( IrpContext, Scb );
  3179. CompressionContext->ScbAcquired = FALSE;
  3180. }
  3181. }
  3182. }
  3183. return Status;
  3184. }
  3185. PMDL
  3186. NtfsLockFileRange (
  3187. IN PIRP_CONTEXT IrpContext,
  3188. IN PSCB Scb,
  3189. IN LONGLONG Offset,
  3190. IN ULONG Length
  3191. )
  3192. /*++
  3193. Routine Description:
  3194. This function maps the given range of file into the cachemanager space and
  3195. then probes and locks it down
  3196. Arguments:
  3197. Scb - Supplies the stream file to act on.
  3198. Offset - The starting point to be probed and locked
  3199. Length - The lengh of the operation.
  3200. Return Value:
  3201. PMDL - a mdl representing the locked area - this mdl must be unlocked and freed by the caller
  3202. --*/
  3203. {
  3204. NTSTATUS Status;
  3205. PBCB Bcb;
  3206. PVOID Buffer;
  3207. PMDL Mdl = NULL;
  3208. //
  3209. // File must be cached
  3210. //
  3211. ASSERT( Scb->FileObject != NULL);
  3212. //
  3213. // Map the offset into the address space
  3214. //
  3215. CcMapData( Scb->FileObject, (PLARGE_INTEGER)&Offset, Length, TRUE, &Bcb, &Buffer );
  3216. #ifdef MAPCOUNT_DBG
  3217. IrpContext->MapCount++;
  3218. #endif
  3219. //
  3220. // Lock the data into memory Don't tell Mm here that we plan to write it, as he sets
  3221. // dirty now and at the unlock below if we do.
  3222. //
  3223. try {
  3224. //
  3225. // Now attempt to allocate an Mdl to describe the mapped data.
  3226. //
  3227. Mdl = IoAllocateMdl( Buffer, Length, FALSE, FALSE, NULL );
  3228. if (Mdl == NULL) {
  3229. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  3230. }
  3231. MmProbeAndLockPages( Mdl, KernelMode, IoReadAccess );
  3232. //
  3233. // Catch any raises here and clean up appropriately.
  3234. //
  3235. } except(EXCEPTION_EXECUTE_HANDLER) {
  3236. Status = GetExceptionCode();
  3237. CcUnpinData( Bcb );
  3238. #ifdef MAPCOUNT_DBG
  3239. IrpContext->MapCount--;
  3240. #endif
  3241. if (Mdl != NULL) {
  3242. IoFreeMdl( Mdl );
  3243. Mdl = NULL;
  3244. }
  3245. NtfsRaiseStatus( IrpContext,
  3246. FsRtlIsNtstatusExpected(Status) ? Status : STATUS_UNEXPECTED_IO_ERROR,
  3247. NULL,
  3248. NULL );
  3249. }
  3250. CcUnpinData( Bcb );
  3251. #ifdef MAPCOUNT_DBG
  3252. IrpContext->MapCount--;
  3253. #endif
  3254. return Mdl;
  3255. }
  3256. NTSTATUS
  3257. NtfsNonCachedIo (
  3258. IN PIRP_CONTEXT IrpContext,
  3259. IN PIRP Irp,
  3260. IN PSCB Scb,
  3261. IN VBO StartingVbo,
  3262. IN ULONG ByteCount,
  3263. IN ULONG StreamFlags
  3264. )
  3265. /*++
  3266. Routine Description:
  3267. This routine performs the non-cached disk io described in its parameters.
  3268. The choice of a single run is made if possible, otherwise multiple runs
  3269. are executed.
  3270. Sparse files are supported. If "holes" are encountered, then the user
  3271. buffer is zeroed over the specified range. This should only happen on
  3272. reads during normal operation, but it can also happen on writes during
  3273. restart, in which case it is also appropriate to zero the buffer.
  3274. Arguments:
  3275. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  3276. Irp - Supplies the requesting Irp.
  3277. Scb - Supplies the stream file to act on.
  3278. StartingVbo - The starting point for the operation.
  3279. ByteCount - The lengh of the operation.
  3280. StreamFlags - Supplies either 0 or some combination of COMPRESSED_STREAM
  3281. and ENCRYPTED_STREAM
  3282. Return Value:
  3283. None.
  3284. --*/
  3285. {
  3286. ULONG OriginalByteCount, RemainingByteCount;
  3287. ULONG NumberRuns;
  3288. IO_RUN IoRuns[NTFS_MAX_PARALLEL_IOS];
  3289. COMPRESSION_CONTEXT CompressionContext;
  3290. NTSTATUS Status = STATUS_SUCCESS;
  3291. PMDL Mdl = NULL;
  3292. LONGLONG LfsStartingVbo;
  3293. PVCB Vcb = Scb->Fcb->Vcb;
  3294. BOOLEAN Wait;
  3295. PAGED_CODE();
  3296. DebugTrace( +1, Dbg, ("NtfsNonCachedIo\n") );
  3297. DebugTrace( 0, Dbg, ("Irp = %08lx\n", Irp) );
  3298. DebugTrace( 0, Dbg, ("MajorFunction = %08lx\n", IrpContext->MajorFunction) );
  3299. DebugTrace( 0, Dbg, ("Scb = %08lx\n", Scb) );
  3300. DebugTrace( 0, Dbg, ("StartingVbo = %016I64x\n", StartingVbo) );
  3301. DebugTrace( 0, Dbg, ("ByteCount = %08lx\n", ByteCount) );
  3302. //
  3303. // Initialize some locals.
  3304. //
  3305. OriginalByteCount = ByteCount;
  3306. Wait = (BOOLEAN) FlagOn( IrpContext->State, IRP_CONTEXT_STATE_WAIT );
  3307. //
  3308. // Check if we need to do sequential writes.
  3309. //
  3310. if ((IrpContext->MajorFunction == IRP_MJ_WRITE) &&
  3311. FlagOn( Scb->ScbState, SCB_STATE_MODIFIED_NO_WRITE )) {
  3312. IrpContext->Union.NtfsIoContext->IrpSpFlags = SL_FT_SEQUENTIAL_WRITE | SL_WRITE_THROUGH;
  3313. }
  3314. //
  3315. // Prepare the (first set) of buffers for I/O.
  3316. //
  3317. RtlZeroMemory( &CompressionContext, sizeof(COMPRESSION_CONTEXT) );
  3318. CompressionContext.IoRuns = IoRuns;
  3319. CompressionContext.AllocatedRuns = NTFS_MAX_PARALLEL_IOS;
  3320. CompressionContext.FinishBuffersNeeded =
  3321. ((Scb->CompressionUnit != 0) || (Scb->EncryptionContext != NULL))
  3322. && !FlagOn( StreamFlags, ENCRYPTED_STREAM );
  3323. try {
  3324. //
  3325. // If this is a write to a compressed file, we want to make sure here
  3326. // that any fragments of compression units get locked in memory, so
  3327. // no one will be reading them into the cache while we are mucking with
  3328. // the Mcb, etc. We do this right here at the top so that we have
  3329. // more stack(!), and we get this over with before we have to acquire
  3330. // the Scb exclusive.
  3331. //
  3332. if ((IrpContext->MajorFunction == IRP_MJ_WRITE) &&
  3333. (Scb->CompressionUnit != 0) &&
  3334. FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK )) {
  3335. LONGLONG TempOffset;
  3336. LONGLONG TempRange;
  3337. ULONG CompressionUnit = Scb->CompressionUnit;
  3338. #ifdef COMPRESS_ON_WIRE
  3339. //
  3340. // For a compressed stream, just make sure the stream exists.
  3341. //
  3342. if (FlagOn( StreamFlags, COMPRESSED_STREAM )) {
  3343. if (Scb->Header.FileObjectC == NULL) {
  3344. NtfsCreateInternalCompressedStream( IrpContext, Scb, FALSE, NULL );
  3345. //
  3346. // If there is no one who will cause this stream to
  3347. // be dereferenced then add an entry on the delayed
  3348. // close queue for this. We can do this test without
  3349. // worrying about synchronization since it is OK to have
  3350. // an extra entry in the delayed queue.
  3351. //
  3352. if ((Scb->CleanupCount == 0) &&
  3353. (Scb->Fcb->DelayedCloseCount == 0)) {
  3354. NtfsAddScbToFspClose( IrpContext, Scb, TRUE );
  3355. }
  3356. }
  3357. //
  3358. // This better be paging I/O, because we ignore the caller's buffer
  3359. // and write the entire compression unit out of the section.
  3360. //
  3361. // We don't want to map in the data in the case where we are called
  3362. // from write clusters because MM is creating the section for the
  3363. // file. Otherwise we will deadlock when Cc tries to create the
  3364. // section.
  3365. //
  3366. }
  3367. #endif
  3368. if (
  3369. #ifdef COMPRESS_ON_WIRE
  3370. !FlagOn( StreamFlags, COMPRESSED_STREAM ) &&
  3371. #endif
  3372. ((Irp == IrpContext->OriginatingIrp) ||
  3373. (Scb->NonpagedScb->SegmentObject.SharedCacheMap != NULL))) {
  3374. PMDL *TempMdl;
  3375. if (Scb->FileObject == NULL) {
  3376. NtfsCreateInternalAttributeStream( IrpContext,
  3377. Scb,
  3378. FALSE,
  3379. &NtfsInternalUseFile[NONCACHEDIO_FILE_NUMBER] );
  3380. //
  3381. // If there is no one who will cause this stream to
  3382. // be dereferenced then add an entry on the delayed
  3383. // close queue for this. We can do this test without
  3384. // worrying about synchronization since it is OK to have
  3385. // an extra entry in the delayed queue.
  3386. //
  3387. if ((Scb->CleanupCount == 0) &&
  3388. (Scb->Fcb->DelayedCloseCount == 0)) {
  3389. NtfsAddScbToFspClose( IrpContext, Scb, TRUE );
  3390. }
  3391. }
  3392. //
  3393. // Lock the entire range rounded to its compression unit boundaries
  3394. // First round the start of the range down to a compression unit and then
  3395. // round the top of the range up to one
  3396. //
  3397. TempOffset = StartingVbo;
  3398. TempOffset &= ~((LONGLONG)CompressionUnit - 1);
  3399. TempRange = StartingVbo + ByteCount + (CompressionUnit - 1);
  3400. TempRange &= ~((LONGLONG)CompressionUnit - 1);
  3401. TempMdl = &Mdl;
  3402. do {
  3403. LONGLONG MapBoundary;
  3404. ULONG Range;
  3405. MapBoundary = TempOffset + VACB_MAPPING_GRANULARITY;
  3406. MapBoundary &= ~((LONGLONG)VACB_MAPPING_GRANULARITY - 1);
  3407. Range = (ULONG) min( TempRange - TempOffset, MapBoundary - TempOffset );
  3408. *TempMdl = NtfsLockFileRange( IrpContext,
  3409. Scb,
  3410. TempOffset,
  3411. Range );
  3412. TempOffset += Range;
  3413. TempMdl = &((*TempMdl)->Next );
  3414. } while ( TempOffset != TempRange );
  3415. } else {
  3416. //
  3417. // This had better be a convert to non-resident.
  3418. //
  3419. ASSERT( StartingVbo == 0 );
  3420. ASSERT( ByteCount <= Scb->CompressionUnit );
  3421. }
  3422. }
  3423. //
  3424. // Check if need to trim the write for the log file.
  3425. //
  3426. if ((PAGE_SIZE != LFS_DEFAULT_LOG_PAGE_SIZE) &&
  3427. (Scb == Vcb->LogFileScb) &&
  3428. (IrpContext->MajorFunction == IRP_MJ_WRITE)) {
  3429. LfsStartingVbo = StartingVbo;
  3430. LfsCheckWriteRange( &Vcb->LfsWriteData, &LfsStartingVbo, &ByteCount );
  3431. //
  3432. // If the byte count is now zero then exit this routine.
  3433. //
  3434. if (ByteCount == 0) {
  3435. Irp->IoStatus.Status = STATUS_SUCCESS;
  3436. Irp->IoStatus.Information = ByteCount;
  3437. DebugTrace( -1, Dbg, ("NtfsNonCachedIo -> %08lx\n", Irp->IoStatus.Status) );
  3438. try_return( Status = Irp->IoStatus.Status );
  3439. }
  3440. //
  3441. // Adjust the buffer offset in the compression context if necessary.
  3442. //
  3443. CompressionContext.SystemBufferOffset = (ULONG) (LfsStartingVbo - StartingVbo);
  3444. StartingVbo = LfsStartingVbo;
  3445. }
  3446. RemainingByteCount = NtfsPrepareBuffers( IrpContext,
  3447. Irp,
  3448. Scb,
  3449. &StartingVbo,
  3450. ByteCount,
  3451. StreamFlags,
  3452. &Wait,
  3453. &NumberRuns,
  3454. &CompressionContext );
  3455. //
  3456. // If we are writing to an encrypted stream, now is the
  3457. // time to do the encryption, before we pass the buffer
  3458. // down to the disk driver below us.
  3459. //
  3460. if ((Scb->EncryptionContext != NULL) &&
  3461. (IrpContext->MajorFunction == IRP_MJ_WRITE) &&
  3462. (NtfsData.EncryptionCallBackTable.BeforeWriteProcess != NULL) &&
  3463. (!FlagOn( StreamFlags, ENCRYPTED_STREAM ))) {
  3464. ASSERT ( NtfsIsTypeCodeEncryptible( Scb->AttributeTypeCode ) );
  3465. ASSERT( NumberRuns > 0 );
  3466. NtfsEncryptBuffers( IrpContext,
  3467. Irp,
  3468. Scb,
  3469. StartingVbo,
  3470. NumberRuns,
  3471. &CompressionContext );
  3472. }
  3473. ASSERT( RemainingByteCount < ByteCount );
  3474. if (FlagOn(Irp->Flags, IRP_PAGING_IO)) {
  3475. CollectDiskIoStats(Vcb, Scb, IrpContext->MajorFunction, NumberRuns);
  3476. }
  3477. //
  3478. // See if the write covers a single valid run, and if so pass
  3479. // it on. Notice that if there is a single run but it does not
  3480. // begin at the beginning of the buffer then we will still need to
  3481. // allocate an associated Irp for this.
  3482. //
  3483. if ((RemainingByteCount == 0) &&
  3484. (((NumberRuns == 1)
  3485. && (CompressionContext.IoRuns[0].BufferOffset == 0))
  3486. ||
  3487. (NumberRuns == 0))) {
  3488. DebugTrace( 0, Dbg, ("Passing Irp on to Disk Driver\n") );
  3489. //
  3490. // See if there is an allocated run
  3491. //
  3492. if (NumberRuns == 1) {
  3493. DebugTrace( 0, Dbg, ("One run\n") );
  3494. //
  3495. // Now set up the Irp->IoStatus. It will be modified by the
  3496. // completion routine in case of error or verify required.
  3497. //
  3498. Irp->IoStatus.Status = STATUS_SUCCESS;
  3499. //
  3500. // We will continously try the I/O if we get a verify required
  3501. // back and can verify the volume
  3502. //
  3503. while (TRUE) {
  3504. //
  3505. // Do the I/O and wait for it to finish
  3506. //
  3507. NtfsSingleAsync( IrpContext,
  3508. Vcb->TargetDeviceObject,
  3509. CompressionContext.IoRuns[0].StartingLbo,
  3510. CompressionContext.IoRuns[0].ByteCount,
  3511. Irp,
  3512. IrpContext->MajorFunction );
  3513. //
  3514. // If this is an asynch transfer we return STATUS_PENDING.
  3515. //
  3516. if (!Wait) {
  3517. DebugTrace( -1, Dbg, ("NtfsNonCachedIo -> STATUS_PENDING\n") );
  3518. try_return(Status = STATUS_PENDING);
  3519. } else {
  3520. NtfsWaitSync( IrpContext );
  3521. }
  3522. //
  3523. // If we didn't get a verify required back then break out of
  3524. // this loop
  3525. //
  3526. if (Irp->IoStatus.Status != STATUS_VERIFY_REQUIRED) { break; }
  3527. //
  3528. // Otherwise we need to verify the volume, and if it doesn't
  3529. // verify correctly the we dismount the volume and raise our
  3530. // error
  3531. //
  3532. if (!NtfsPerformVerifyOperation( IrpContext, Vcb )) {
  3533. //**** NtfsPerformDismountOnVcb( IrpContext, Vcb, TRUE, NULL );
  3534. ClearFlag( Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED );
  3535. NtfsRaiseStatus( IrpContext, STATUS_FILE_INVALID, NULL, NULL );
  3536. }
  3537. //
  3538. // The volume verified correctly so now clear the verify bit
  3539. // and try and I/O again
  3540. //
  3541. ClearFlag( Vcb->Vpb->RealDevice->Flags, DO_VERIFY_VOLUME );
  3542. //
  3543. // Reset the status before retrying.
  3544. //
  3545. Irp->IoStatus.Status = STATUS_SUCCESS;
  3546. }
  3547. //
  3548. // See if we need to do a hot fix. Hotfix if the request failed
  3549. // (except if called from WriteClusters) or we couldn't revert
  3550. // a USA block.
  3551. //
  3552. if ((!FT_SUCCESS( Irp->IoStatus.Status ) &&
  3553. ((IrpContext->MajorFunction != IRP_MJ_WRITE) ||
  3554. (Irp == IrpContext->OriginatingIrp))) ||
  3555. (FlagOn(Scb->ScbState, SCB_STATE_USA_PRESENT) &&
  3556. (IrpContext->MajorFunction == IRP_MJ_READ) &&
  3557. !NtfsVerifyAndRevertUsaBlock( IrpContext,
  3558. Scb,
  3559. NtfsMapUserBuffer( Irp ),
  3560. OriginalByteCount,
  3561. StartingVbo ))) {
  3562. //
  3563. // Try to fix the problem
  3564. //
  3565. NtfsFixDataError( IrpContext,
  3566. Scb,
  3567. Vcb->TargetDeviceObject,
  3568. Irp,
  3569. 1,
  3570. CompressionContext.IoRuns );
  3571. }
  3572. //
  3573. // Show that we successfully read zeros for the deallocated range.
  3574. //
  3575. } else {
  3576. Irp->IoStatus.Status = STATUS_SUCCESS;
  3577. Irp->IoStatus.Information = ByteCount;
  3578. }
  3579. DebugTrace( -1, Dbg, ("NtfsNonCachedIo -> %08lx\n", Irp->IoStatus.Status) );
  3580. try_return( Status = Irp->IoStatus.Status );
  3581. }
  3582. //
  3583. // If there are bytes remaining and we cannot wait, then we must
  3584. // post this request unless we are doing paging io.
  3585. //
  3586. if (!Wait && (RemainingByteCount != 0)) {
  3587. if (!FlagOn( Irp->Flags, IRP_PAGING_IO )) {
  3588. NtfsRaiseStatus( IrpContext, STATUS_CANT_WAIT, NULL, NULL );
  3589. }
  3590. Wait = TRUE;
  3591. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_WAIT );
  3592. RtlZeroMemory( IrpContext->Union.NtfsIoContext, sizeof( NTFS_IO_CONTEXT ));
  3593. //
  3594. // Store whether we allocated this context structure in the structure
  3595. // itself.
  3596. //
  3597. IrpContext->Union.NtfsIoContext->AllocatedContext =
  3598. BooleanFlagOn( IrpContext->State, IRP_CONTEXT_STATE_ALLOC_IO_CONTEXT );
  3599. KeInitializeEvent( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  3600. NotificationEvent,
  3601. FALSE );
  3602. }
  3603. //
  3604. // Now set up the Irp->IoStatus. It will be modified by the
  3605. // multi-completion routine in case of error or verify required.
  3606. //
  3607. Irp->IoStatus.Status = STATUS_SUCCESS;
  3608. //
  3609. // Loop while there are still byte writes to satisfy.
  3610. //
  3611. while (TRUE) {
  3612. //
  3613. // We will continously try the I/O if we get a verify required
  3614. // back and can verify the volume. Note that we could have ended
  3615. // on a hole, and have no runs left.
  3616. //
  3617. if (NumberRuns != 0) {
  3618. while (TRUE) {
  3619. //
  3620. // Do the I/O and wait for it to finish
  3621. //
  3622. NtfsMultipleAsync( IrpContext,
  3623. Vcb->TargetDeviceObject,
  3624. Irp,
  3625. NumberRuns,
  3626. CompressionContext.IoRuns );
  3627. //
  3628. // If this is an asynchronous transfer, then return STATUS_PENDING.
  3629. //
  3630. if (!Wait) {
  3631. DebugTrace( -1, Dbg, ("NtfsNonCachedIo -> STATUS_PENDING\n") );
  3632. try_return( Status = STATUS_PENDING );
  3633. }
  3634. NtfsWaitSync( IrpContext );
  3635. //
  3636. // If we didn't get a verify required back then break out of
  3637. // this loop
  3638. //
  3639. if (Irp->IoStatus.Status != STATUS_VERIFY_REQUIRED) { break; }
  3640. //
  3641. // Otherwise we need to verify the volume, and if it doesn't
  3642. // verify correctly the we dismount the volume and raise our
  3643. // error
  3644. //
  3645. if (!NtfsPerformVerifyOperation( IrpContext, Vcb )) {
  3646. //**** NtfsPerformDismountOnVcb( IrpContext, Vcb, TRUE, NULL );
  3647. ClearFlag( Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED );
  3648. NtfsRaiseStatus( IrpContext, STATUS_FILE_INVALID, NULL, NULL );
  3649. }
  3650. //
  3651. // The volume verified correctly so now clear the verify bit
  3652. // and try and I/O again
  3653. //
  3654. ClearFlag( Vcb->Vpb->RealDevice->Flags, DO_VERIFY_VOLUME );
  3655. //
  3656. // Reset the status before retrying.
  3657. //
  3658. Irp->IoStatus.Status = STATUS_SUCCESS;
  3659. }
  3660. //
  3661. // See if we need to do a hot fix. Hotfix if the request failed
  3662. // (except if called from WriteClusters) or we couldn't revert
  3663. // a USA block.
  3664. //
  3665. if ((!FT_SUCCESS( Irp->IoStatus.Status ) &&
  3666. ((IrpContext->MajorFunction != IRP_MJ_WRITE) ||
  3667. (Irp == IrpContext->OriginatingIrp))) ||
  3668. (FlagOn(Scb->ScbState, SCB_STATE_USA_PRESENT) &&
  3669. (IrpContext->MajorFunction == IRP_MJ_READ) &&
  3670. !NtfsVerifyAndRevertUsaBlock( IrpContext,
  3671. Scb,
  3672. (PCHAR)NtfsMapUserBuffer( Irp ) +
  3673. CompressionContext.IoRuns[0].BufferOffset,
  3674. OriginalByteCount -
  3675. CompressionContext.IoRuns[0].BufferOffset -
  3676. RemainingByteCount,
  3677. StartingVbo ))) {
  3678. //
  3679. // Try to fix the problem
  3680. //
  3681. NtfsFixDataError( IrpContext,
  3682. Scb,
  3683. Vcb->TargetDeviceObject,
  3684. Irp,
  3685. NumberRuns,
  3686. CompressionContext.IoRuns );
  3687. }
  3688. }
  3689. if (!NT_SUCCESS(Irp->IoStatus.Status) || (RemainingByteCount == 0)) { break; }
  3690. if (CompressionContext.FinishBuffersNeeded) {
  3691. Irp->IoStatus.Status =
  3692. NtfsFinishBuffers( IrpContext,
  3693. Irp,
  3694. Scb,
  3695. &StartingVbo,
  3696. ByteCount - RemainingByteCount,
  3697. NumberRuns,
  3698. &CompressionContext,
  3699. StreamFlags );
  3700. if (!NT_SUCCESS(Irp->IoStatus.Status)) { break; }
  3701. }
  3702. StartingVbo = StartingVbo + (ByteCount - RemainingByteCount);
  3703. CompressionContext.SystemBufferOffset += ByteCount - RemainingByteCount;
  3704. ByteCount = RemainingByteCount;
  3705. //
  3706. // Reset this boolean for each iteration.
  3707. //
  3708. CompressionContext.DataTransformed = FALSE;
  3709. RemainingByteCount = NtfsPrepareBuffers( IrpContext,
  3710. Irp,
  3711. Scb,
  3712. &StartingVbo,
  3713. ByteCount,
  3714. StreamFlags,
  3715. &Wait,
  3716. &NumberRuns,
  3717. &CompressionContext );
  3718. //
  3719. // If we are writing to an encrypted stream, now is the
  3720. // time to do the encryption, before we pass the buffer
  3721. // down to the disk driver below us.
  3722. //
  3723. if ((Scb->EncryptionContext != NULL) &&
  3724. (IrpContext->MajorFunction == IRP_MJ_WRITE) &&
  3725. (NtfsData.EncryptionCallBackTable.BeforeWriteProcess != NULL) &&
  3726. (!FlagOn( StreamFlags, ENCRYPTED_STREAM ))) {
  3727. ASSERT ( NtfsIsTypeCodeEncryptible( Scb->AttributeTypeCode ) );
  3728. ASSERT( NumberRuns > 0 );
  3729. NtfsEncryptBuffers( IrpContext,
  3730. Irp,
  3731. Scb,
  3732. StartingVbo,
  3733. NumberRuns,
  3734. &CompressionContext );
  3735. }
  3736. ASSERT( RemainingByteCount < ByteCount );
  3737. if (FlagOn(Irp->Flags, IRP_PAGING_IO)) {
  3738. CollectDiskIoStats(Vcb, Scb, IrpContext->MajorFunction, NumberRuns);
  3739. }
  3740. }
  3741. Status = Irp->IoStatus.Status;
  3742. try_exit: NOTHING;
  3743. } finally {
  3744. //
  3745. // If this is a compressed file and we got success, go do our normal
  3746. // post processing.
  3747. //
  3748. if (CompressionContext.FinishBuffersNeeded
  3749. && NT_SUCCESS(Status)
  3750. && (Status != STATUS_PENDING)
  3751. && !AbnormalTermination()
  3752. ) {
  3753. Irp->IoStatus.Status =
  3754. Status =
  3755. NtfsFinishBuffers( IrpContext,
  3756. Irp,
  3757. Scb,
  3758. &StartingVbo,
  3759. ByteCount - RemainingByteCount,
  3760. NumberRuns,
  3761. &CompressionContext,
  3762. StreamFlags );
  3763. }
  3764. //
  3765. // For writes, free any Mdls which may have been used.
  3766. //
  3767. if (Mdl != NULL) {
  3768. PMDL TempMdl;
  3769. do {
  3770. TempMdl = Mdl->Next;
  3771. MmUnlockPages( Mdl );
  3772. IoFreeMdl( Mdl );
  3773. Mdl = TempMdl;
  3774. } while (Mdl != NULL);
  3775. }
  3776. //
  3777. // Cleanup the compression context.
  3778. //
  3779. NtfsDeallocateCompressionBuffer( Irp, &CompressionContext, FALSE );
  3780. }
  3781. //
  3782. // Now set up the final byte count if we got success
  3783. //
  3784. if (Wait && NT_SUCCESS(Status)) {
  3785. Irp->IoStatus.Information = OriginalByteCount;
  3786. }
  3787. DebugTrace( -1, Dbg, ("NtfsNonCachedIo -> %08lx\n", Status) );
  3788. return Status;
  3789. }
  3790. VOID
  3791. NtfsNonCachedNonAlignedIo (
  3792. IN PIRP_CONTEXT IrpContext,
  3793. IN PIRP Irp,
  3794. IN PSCB Scb,
  3795. IN VBO StartingVbo,
  3796. IN ULONG ByteCount
  3797. )
  3798. /*++
  3799. Routine Description:
  3800. This routine performs the non-cached disk io described in its parameters.
  3801. This routine differs from the above in that the range does not have to be
  3802. sector aligned. This accomplished with the use of intermediate buffers.
  3803. Currently only read is supported.
  3804. Arguments:
  3805. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  3806. Irp - Supplies the requesting Irp.
  3807. Scb - Provides the stream to act on.
  3808. StartingVbo - The starting point for the operation.
  3809. ByteCount - The lengh of the operation.
  3810. Return Value:
  3811. None.
  3812. --*/
  3813. {
  3814. //
  3815. // Declare some local variables for enumeration through the
  3816. // runs of the file, and an array to store parameters for
  3817. // parallel I/Os
  3818. //
  3819. LBO NextLbo;
  3820. LCN NextLcn;
  3821. ULONG NextLcnOffset;
  3822. LONGLONG NextClusterCount;
  3823. BOOLEAN NextIsAllocated;
  3824. ULONG SectorOffset;
  3825. ULONG SectorSize;
  3826. ULONG BytesToCopy;
  3827. ULONG OriginalByteCount;
  3828. ULONG TailByteCount;
  3829. VBO OriginalStartingVbo;
  3830. PUCHAR UserBuffer;
  3831. PUCHAR DiskBuffer = NULL;
  3832. PMDL Mdl;
  3833. PMDL SavedMdl;
  3834. PVOID SavedUserBuffer;
  3835. PVCB Vcb = Scb->Vcb;
  3836. PAGED_CODE();
  3837. DebugTrace( +1, Dbg, ("NtfsNonCachedNonAlignedRead\n") );
  3838. DebugTrace( 0, Dbg, ("Irp = %08lx\n", Irp) );
  3839. DebugTrace( 0, Dbg, ("MajorFunction = %08lx\n", IrpContext->MajorFunction) );
  3840. DebugTrace( 0, Dbg, ("Scb = %08lx\n", Scb) );
  3841. DebugTrace( 0, Dbg, ("StartingVbo = %016I64x\n", StartingVbo) );
  3842. DebugTrace( 0, Dbg, ("ByteCount = %08lx\n", ByteCount) );
  3843. //
  3844. // Currently only read is supported.
  3845. //
  3846. ASSERT(IoGetCurrentIrpStackLocation(Irp)->MajorFunction != IRP_MJ_WRITE);
  3847. //
  3848. // This code assumes the file is uncompressed. Sparse files are supported.
  3849. // Before we assert that the file is uncompressed, assert that our test is
  3850. // going to be properly serialized. We'll also be testing for the sparse
  3851. // attribute in the main code path, so we really need to be serialized here.
  3852. //
  3853. ASSERT( NtfsIsSharedScb( Scb ) ||
  3854. ((Scb->Header.PagingIoResource != NULL) && NtfsIsSharedScbPagingIo( Scb )) );
  3855. ASSERT( !FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK ) );
  3856. //
  3857. // Initialize some locals.
  3858. //
  3859. OriginalByteCount = ByteCount;
  3860. OriginalStartingVbo = StartingVbo;
  3861. SectorSize = Vcb->BytesPerSector;
  3862. //
  3863. // For nonbuffered I/O, we need the buffer locked in all
  3864. // cases.
  3865. //
  3866. // This call may raise. If this call succeeds and a subsequent
  3867. // condition is raised, the buffers are unlocked automatically
  3868. // by the I/O system when the request is completed, via the
  3869. // Irp->MdlAddress field.
  3870. //
  3871. NtfsLockUserBuffer( IrpContext,
  3872. Irp,
  3873. IoWriteAccess,
  3874. IoGetCurrentIrpStackLocation(Irp)->Parameters.Read.Length );
  3875. UserBuffer = NtfsMapUserBuffer( Irp );
  3876. //
  3877. // Allocate the local buffer. Round to pages to avoid any device alignment
  3878. // problems.
  3879. //
  3880. DiskBuffer = NtfsAllocatePool( NonPagedPool,
  3881. (ULONG) ROUND_TO_PAGES( SectorSize ));
  3882. //
  3883. // We use a try block here to ensure the buffer is freed, and to
  3884. // fill in the correct byte count in the Iosb.Information field.
  3885. //
  3886. try {
  3887. //
  3888. // If the beginning of the request was not aligned correctly, read in
  3889. // the first part first.
  3890. //
  3891. SectorOffset = ((ULONG)StartingVbo) & (SectorSize - 1);
  3892. if (SectorOffset != 0) {
  3893. //
  3894. // Try to lookup the first run.
  3895. //
  3896. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  3897. Scb,
  3898. Int64ShraMod32( StartingVbo, Vcb->ClusterShift ),
  3899. &NextLcn,
  3900. &NextClusterCount,
  3901. NULL,
  3902. NULL );
  3903. //
  3904. // If this is a sparse file and we've been asked to read in a
  3905. // deallocated range, we need to fill in the buffer with some
  3906. // zeroes and there's nothing to really read from the disk.
  3907. // If this isn't a sparse file, and this range isn't allocated,
  3908. // the file and/or mcb is corrupt.
  3909. //
  3910. if (!NextIsAllocated) {
  3911. if (FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_SPARSE )) {
  3912. RtlZeroMemory( DiskBuffer + SectorOffset,
  3913. SectorSize - SectorOffset );
  3914. } else {
  3915. NtfsRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR, NULL, Scb->Fcb );
  3916. }
  3917. } else {
  3918. //
  3919. // Adjust for any Lcn offset to the start of the sector we want.
  3920. //
  3921. NextLcnOffset = ((ULONG)StartingVbo) & ~(SectorSize - 1);
  3922. NextLcnOffset &= Vcb->ClusterMask;
  3923. NextLbo = Int64ShllMod32(NextLcn, Vcb->ClusterShift);
  3924. NextLbo = NextLbo + NextLcnOffset;
  3925. NtfsSingleNonAlignedSync( IrpContext,
  3926. Vcb,
  3927. Scb,
  3928. DiskBuffer,
  3929. StartingVbo + NextLcnOffset,
  3930. NextLbo,
  3931. SectorSize,
  3932. Irp );
  3933. if (!NT_SUCCESS( Irp->IoStatus.Status )) {
  3934. try_return( NOTHING );
  3935. }
  3936. }
  3937. //
  3938. // Now copy the part of the first sector that we want to the user
  3939. // buffer.
  3940. //
  3941. BytesToCopy = (ByteCount >= SectorSize - SectorOffset
  3942. ? SectorSize - SectorOffset
  3943. : ByteCount);
  3944. RtlCopyMemory( UserBuffer,
  3945. DiskBuffer + SectorOffset,
  3946. BytesToCopy );
  3947. StartingVbo = StartingVbo + BytesToCopy;
  3948. ByteCount -= BytesToCopy;
  3949. if (ByteCount == 0) {
  3950. try_return( NOTHING );
  3951. }
  3952. }
  3953. ASSERT( (((ULONG)StartingVbo) & (SectorSize - 1)) == 0 );
  3954. //
  3955. // If there is a tail part that is not sector aligned, read it.
  3956. //
  3957. TailByteCount = (ByteCount & (SectorSize - 1));
  3958. if (TailByteCount != 0) {
  3959. VBO LastSectorVbo;
  3960. LastSectorVbo = StartingVbo + (ByteCount & ~((ULONG_PTR)SectorSize - 1));
  3961. //
  3962. // Try to lookup the last part of the requested range.
  3963. //
  3964. NextIsAllocated = NtfsLookupAllocation( IrpContext,
  3965. Scb,
  3966. Int64ShraMod32( LastSectorVbo, Vcb->ClusterShift ),
  3967. &NextLcn,
  3968. &NextClusterCount,
  3969. NULL,
  3970. NULL );
  3971. //
  3972. // If this is a sparse file and we've been asked to read in a
  3973. // deallocated range, we need to fill in the buffer with some
  3974. // zeroes and there's nothing to really read from the disk.
  3975. // If this isn't a sparse file, and this range isn't allocated,
  3976. // the file and/or mcb is corrupt.
  3977. //
  3978. if (!NextIsAllocated) {
  3979. if (FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_SPARSE )) {
  3980. RtlZeroMemory( DiskBuffer,
  3981. TailByteCount );
  3982. } else {
  3983. NtfsRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR, NULL, Scb->Fcb );
  3984. }
  3985. } else {
  3986. //
  3987. // Adjust for any Lcn offset.
  3988. //
  3989. NextLcnOffset = ((ULONG)LastSectorVbo) & Vcb->ClusterMask;
  3990. NextLbo = Int64ShllMod32(NextLcn, Vcb->ClusterShift);
  3991. NextLbo = NextLbo + NextLcnOffset;
  3992. NtfsSingleNonAlignedSync( IrpContext,
  3993. Vcb,
  3994. Scb,
  3995. DiskBuffer,
  3996. LastSectorVbo,
  3997. NextLbo,
  3998. SectorSize,
  3999. Irp );
  4000. if (!NT_SUCCESS( Irp->IoStatus.Status )) {
  4001. try_return( NOTHING );
  4002. }
  4003. }
  4004. //
  4005. // Now copy over the part of this last sector that we need.
  4006. //
  4007. BytesToCopy = TailByteCount;
  4008. UserBuffer += (ULONG)(LastSectorVbo - OriginalStartingVbo);
  4009. RtlCopyMemory( UserBuffer, DiskBuffer, BytesToCopy );
  4010. ByteCount -= BytesToCopy;
  4011. if (ByteCount == 0) {
  4012. try_return( NOTHING );
  4013. }
  4014. }
  4015. ASSERT( ((((ULONG)StartingVbo) | ByteCount) & (SectorSize - 1)) == 0 );
  4016. //
  4017. // Now build a Mdl describing the sector aligned balance of the transfer,
  4018. // and put it in the Irp, and read that part.
  4019. //
  4020. SavedMdl = Irp->MdlAddress;
  4021. Irp->MdlAddress = NULL;
  4022. SavedUserBuffer = Irp->UserBuffer;
  4023. Irp->UserBuffer = (PUCHAR)MmGetMdlVirtualAddress( SavedMdl ) +
  4024. (ULONG)(StartingVbo - OriginalStartingVbo);
  4025. Mdl = IoAllocateMdl(Irp->UserBuffer,
  4026. ByteCount,
  4027. FALSE,
  4028. FALSE,
  4029. Irp);
  4030. if (Mdl == NULL) {
  4031. Irp->MdlAddress = SavedMdl;
  4032. Irp->UserBuffer = SavedUserBuffer;
  4033. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  4034. }
  4035. IoBuildPartialMdl(SavedMdl,
  4036. Mdl,
  4037. Irp->UserBuffer,
  4038. ByteCount);
  4039. //
  4040. // Try to read in the pages.
  4041. //
  4042. try {
  4043. NtfsNonCachedIo( IrpContext,
  4044. Irp,
  4045. Scb,
  4046. StartingVbo,
  4047. ByteCount,
  4048. 0 );
  4049. } finally {
  4050. IoFreeMdl( Irp->MdlAddress );
  4051. Irp->MdlAddress = SavedMdl;
  4052. Irp->UserBuffer = SavedUserBuffer;
  4053. }
  4054. try_exit: NOTHING;
  4055. } finally {
  4056. NtfsFreePool( DiskBuffer );
  4057. if ( !AbnormalTermination() && NT_SUCCESS(Irp->IoStatus.Status) ) {
  4058. Irp->IoStatus.Information = OriginalByteCount;
  4059. //
  4060. // We now flush the user's buffer to memory.
  4061. //
  4062. KeFlushIoBuffers( Irp->MdlAddress, TRUE, FALSE );
  4063. }
  4064. }
  4065. DebugTrace( -1, Dbg, ("NtfsNonCachedNonAlignedRead -> VOID\n") );
  4066. return;
  4067. }
  4068. BOOLEAN
  4069. NtfsVerifyAndRevertUsaBlock (
  4070. IN PIRP_CONTEXT IrpContext,
  4071. IN PSCB Scb,
  4072. IN OUT PVOID Buffer,
  4073. IN ULONG Length,
  4074. IN LONGLONG FileOffset
  4075. )
  4076. /*++
  4077. Routine Description:
  4078. This routine will revert the bytes in all of the structures protected by
  4079. update sequence arrays. It copies the bytes from each Usa to the
  4080. separate blocks protected.
  4081. If a structure does not verify correctly, then it's signature is set
  4082. to BaadSignature.
  4083. Arguments:
  4084. Buffer - This is the pointer to the start of the buffer to recover.
  4085. Return Value:
  4086. FALSE - if at least one block did not verify correctly and received a BaadSignature
  4087. TRUE - if no blocks received a BaadSignature
  4088. --*/
  4089. {
  4090. PMULTI_SECTOR_HEADER MultiSectorHeader;
  4091. PUSHORT SequenceArray;
  4092. PUSHORT SequenceNumber;
  4093. ULONG StructureSize;
  4094. USHORT CountBlocks;
  4095. PUSHORT ProtectedUshort;
  4096. BOOLEAN Result = TRUE;
  4097. PVCB Vcb = Scb->Vcb;
  4098. ULONG BytesLeft = Length;
  4099. PAGED_CODE();
  4100. DebugTrace( +1, Dbg, ("NtfsVerifyAndRevertUsaBlock: Entered\n") );
  4101. //
  4102. // Cast the buffer pointer to a Multi-Sector-Header and verify that this
  4103. // block has been initialized.
  4104. //
  4105. MultiSectorHeader = (PMULTI_SECTOR_HEADER) Buffer;
  4106. //
  4107. // Get the the number of blocks, based on what type of stream it is.
  4108. // First check for Mft or Log file.
  4109. //
  4110. if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_MFT) {
  4111. ASSERT((Scb == Vcb->MftScb) || (Scb == Vcb->Mft2Scb));
  4112. StructureSize = Vcb->BytesPerFileRecordSegment;
  4113. } else if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_DATA) {
  4114. ASSERT( Scb == Vcb->LogFileScb );
  4115. //
  4116. // On the first pass through the log file, we see all -1,
  4117. // and we just want to let it go.
  4118. //
  4119. if (*(PULONG)&MultiSectorHeader->Signature == MAXULONG) {
  4120. //
  4121. // Use the structure size given us by Lfs if present.
  4122. //
  4123. if (Vcb->LfsWriteData.LfsStructureSize == 0) {
  4124. DebugTrace( -1, Dbg, ("NtfsVerifyAndRevertUsaBlock: (Virgin Log)\n") );
  4125. return TRUE;
  4126. }
  4127. StructureSize = Vcb->LfsWriteData.LfsStructureSize;
  4128. //
  4129. // Use the current size in the USA
  4130. //
  4131. } else {
  4132. CountBlocks = (USHORT)(MultiSectorHeader->UpdateSequenceArraySize - 1);
  4133. StructureSize = CountBlocks * SEQUENCE_NUMBER_STRIDE;
  4134. //
  4135. // Check for plausibility and otherwise use page size.
  4136. //
  4137. if ((StructureSize != 0x1000) && (StructureSize != 0x2000) && (StructureSize != PAGE_SIZE)) {
  4138. StructureSize = PAGE_SIZE;
  4139. }
  4140. }
  4141. //
  4142. // Otherwise it is an index, so we can get the count out of the Scb.
  4143. //
  4144. } else {
  4145. StructureSize = Scb->ScbType.Index.BytesPerIndexBuffer;
  4146. ASSERT((StructureSize == 0x800) || (StructureSize == 0x1000) || (StructureSize == 0x400));
  4147. ASSERT((Length & (StructureSize - 1)) == 0);
  4148. }
  4149. CountBlocks = (USHORT)(StructureSize / SEQUENCE_NUMBER_STRIDE);
  4150. //
  4151. // Loop through all of the multi-sector blocks in this transfer.
  4152. //
  4153. do {
  4154. //
  4155. // Uninitialized log file pages always must contain MAXULONG, which is
  4156. // not a valid signature. Do not do the check if we see MAXULONG. Also
  4157. // since we may have read random uninitialized data, we must check every
  4158. // possible field that could cause us to fault or go outside of the block,
  4159. // and also not check in this case.
  4160. //
  4161. //
  4162. // For 0 or MAXULONG we assume the value is "expected", and we do not
  4163. // want to replace with the BaadSignature, just move on.
  4164. //
  4165. if ((*(PULONG)&MultiSectorHeader->Signature == MAXULONG) ||
  4166. (*(PULONG)&MultiSectorHeader->Signature == 0)) {
  4167. NOTHING;
  4168. } else if ((CountBlocks == (USHORT)(MultiSectorHeader->UpdateSequenceArraySize - 1)) &&
  4169. !FlagOn(MultiSectorHeader->UpdateSequenceArrayOffset, 1) &&
  4170. ((ULONG)MultiSectorHeader->UpdateSequenceArrayOffset <
  4171. (StructureSize - (CountBlocks + 1) * sizeof(USHORT))) &&
  4172. (StructureSize <= BytesLeft)) {
  4173. ULONG CountToGo;
  4174. CountToGo = CountBlocks;
  4175. //
  4176. // Compute the array offset and recover the current sequence number.
  4177. //
  4178. SequenceNumber = (PUSHORT)Add2Ptr( MultiSectorHeader,
  4179. MultiSectorHeader->UpdateSequenceArrayOffset );
  4180. SequenceArray = SequenceNumber + 1;
  4181. //
  4182. // We now walk through each block, and insure that the last byte in each
  4183. // block matches the sequence number.
  4184. //
  4185. ProtectedUshort = (PUSHORT) (Add2Ptr( MultiSectorHeader,
  4186. SEQUENCE_NUMBER_STRIDE - sizeof( USHORT )));
  4187. //
  4188. // Loop to test for the correct sequence numbers and restore the
  4189. // sequence numbers.
  4190. //
  4191. do {
  4192. //
  4193. // If the sequence number does not check, then raise if the record
  4194. // is not allocated. If we do not raise, i.e. the routine returns,
  4195. // then smash the signature so we can easily tell the record is not
  4196. // allocated.
  4197. //
  4198. if (*ProtectedUshort != *SequenceNumber) {
  4199. //
  4200. // We do nothing except exit if this is the log file and
  4201. // the signature is the chkdsk signature.
  4202. //
  4203. if ((Scb != Vcb->LogFileScb) ||
  4204. (*(PULONG)MultiSectorHeader->Signature != *(PULONG)ChkdskSignature)) {
  4205. //
  4206. // If this is the Mft or an index buffer and all of the data for this file
  4207. // record is contained in the verified range of the
  4208. // record then don't mark it bad.
  4209. //
  4210. if ((Scb == Vcb->MftScb) || (Scb == Vcb->Mft2Scb)) {
  4211. PFILE_RECORD_SEGMENT_HEADER FileRecord;
  4212. FileRecord = (PFILE_RECORD_SEGMENT_HEADER) MultiSectorHeader;
  4213. if (FileRecord->FirstFreeByte < ((CountBlocks - CountToGo) * SEQUENCE_NUMBER_STRIDE)) {
  4214. continue;
  4215. }
  4216. } else if (*(PULONG)MultiSectorHeader->Signature == *(PULONG)IndexSignature ) {
  4217. PINDEX_ALLOCATION_BUFFER IndexBuffer;
  4218. IndexBuffer = (PINDEX_ALLOCATION_BUFFER) MultiSectorHeader;
  4219. if (IndexBuffer->IndexHeader.FirstFreeByte < ((CountBlocks - CountToGo) * SEQUENCE_NUMBER_STRIDE)) {
  4220. continue;
  4221. }
  4222. }
  4223. *(PULONG)MultiSectorHeader->Signature = *(PULONG)BaadSignature;
  4224. Result = FALSE;
  4225. }
  4226. break;
  4227. } else {
  4228. *ProtectedUshort = *SequenceArray++;
  4229. }
  4230. ProtectedUshort += (SEQUENCE_NUMBER_STRIDE / sizeof( USHORT ));
  4231. } while (--CountToGo != 0);
  4232. //
  4233. // If this is the log file, we report an error unless the current
  4234. // signature is the chkdsk signature.
  4235. //
  4236. } else if (Scb == Vcb->LogFileScb) {
  4237. if (*(PULONG)MultiSectorHeader->Signature != *(PULONG)ChkdskSignature) {
  4238. *(PULONG)MultiSectorHeader->Signature = *(PULONG)BaadSignature;
  4239. Result = FALSE;
  4240. }
  4241. break;
  4242. } else {
  4243. VCN Vcn;
  4244. LCN Lcn;
  4245. LONGLONG ClusterCount;
  4246. BOOLEAN IsAllocated;
  4247. Vcn = LlClustersFromBytesTruncate( Vcb, FileOffset );
  4248. IsAllocated = NtfsLookupAllocation( IrpContext,
  4249. Scb,
  4250. Vcn,
  4251. &Lcn,
  4252. &ClusterCount,
  4253. NULL,
  4254. NULL );
  4255. if (!IsAllocated &&
  4256. ( ClusterCount >= LlClustersFromBytes( Vcb, StructureSize))) {
  4257. *(PULONG)MultiSectorHeader->Signature = *(PULONG)HoleSignature;
  4258. } else {
  4259. *(PULONG)MultiSectorHeader->Signature = *(PULONG)BaadSignature;
  4260. Result = FALSE;
  4261. }
  4262. }
  4263. //
  4264. // Now adjust all pointers and counts before looping back.
  4265. //
  4266. MultiSectorHeader = (PMULTI_SECTOR_HEADER)Add2Ptr( MultiSectorHeader,
  4267. StructureSize );
  4268. if (BytesLeft > StructureSize) {
  4269. BytesLeft -= StructureSize;
  4270. } else {
  4271. BytesLeft = 0;
  4272. }
  4273. FileOffset = FileOffset + StructureSize;
  4274. } while (BytesLeft != 0);
  4275. DebugTrace( -1, Dbg, ("NtfsVerifyAndRevertUsaBlock: Exit\n") );
  4276. return Result;
  4277. }
  4278. VOID
  4279. NtfsTransformUsaBlock (
  4280. IN PSCB Scb,
  4281. IN OUT PVOID SystemBuffer,
  4282. IN OUT PVOID Buffer,
  4283. IN ULONG Length
  4284. )
  4285. /*++
  4286. Routine Description:
  4287. This routine will implement Usa protection for all structures of the
  4288. transfer passed described by the caller. It does so by copying the last
  4289. short in each block of each Usa-protected structure to the
  4290. Usa and storing the current sequence number into each of these bytes.
  4291. It also increments the sequence number in the Usa.
  4292. Arguments:
  4293. Buffer - This is the pointer to the start of the structure to transform.
  4294. Length - This is the maximum size for the structure.
  4295. Return Value:
  4296. ULONG - This is the length of the transformed structure.
  4297. --*/
  4298. {
  4299. PMULTI_SECTOR_HEADER MultiSectorHeader;
  4300. PUSHORT SequenceArray;
  4301. PUSHORT SequenceNumber;
  4302. ULONG StructureSize;
  4303. USHORT CountBlocks;
  4304. PUSHORT ProtectedUshort;
  4305. PVCB Vcb = Scb->Vcb;
  4306. ULONG BytesLeft = Length;
  4307. PAGED_CODE();
  4308. DebugTrace( +1, Dbg, ("NtfsTransformUsaBlock: Entered\n") );
  4309. //
  4310. // Cast the buffer pointer to a Multi-Sector-Header and verify that this
  4311. // block has been initialized.
  4312. //
  4313. MultiSectorHeader = (PMULTI_SECTOR_HEADER) Buffer;
  4314. //
  4315. // Get the the number of blocks, based on what type of stream it is.
  4316. // First check for Mft or Log file.
  4317. //
  4318. if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_MFT) {
  4319. ASSERT((Scb == Vcb->MftScb) || (Scb == Vcb->Mft2Scb));
  4320. StructureSize = Vcb->BytesPerFileRecordSegment;
  4321. } else if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_DATA) {
  4322. //
  4323. // For the log file, use the value that Lfs has stored in the
  4324. // Lfs WRITE_DATA structure.
  4325. //
  4326. ASSERT( Scb == Vcb->LogFileScb );
  4327. ASSERT( Vcb->LfsWriteData.LfsStructureSize != 0 );
  4328. StructureSize = Vcb->LfsWriteData.LfsStructureSize;
  4329. //
  4330. // Otherwise it is an index, so we can get the count out of the Scb.
  4331. //
  4332. } else {
  4333. StructureSize = Scb->ScbType.Index.BytesPerIndexBuffer;
  4334. ASSERT((StructureSize == 0x800) || (StructureSize == 0x1000) || (StructureSize == 0x400));
  4335. ASSERT((Length & (StructureSize - 1)) == 0);
  4336. }
  4337. CountBlocks = (USHORT)(StructureSize / SEQUENCE_NUMBER_STRIDE);
  4338. //
  4339. // Loop through all of the multi-sector blocks in this transfer.
  4340. //
  4341. do {
  4342. //
  4343. // Any uninitialized structures will begin with BaadSignature or
  4344. // MAXULONG, as guaranteed by the Revert routine above.
  4345. //
  4346. if ((*(PULONG)&MultiSectorHeader->Signature != *(PULONG)BaadSignature) &&
  4347. (*(PULONG)&MultiSectorHeader->Signature != *(PULONG)HoleSignature) &&
  4348. (*(PULONG)&MultiSectorHeader->Signature != MAXULONG) &&
  4349. ((MultiSectorHeader->UpdateSequenceArrayOffset & 1) == 0) &&
  4350. (MultiSectorHeader->UpdateSequenceArrayOffset < (StructureSize - CountBlocks - CountBlocks))) {
  4351. ULONG CountToGo = CountBlocks;
  4352. //
  4353. // Compute the array offset and recover the current sequence number.
  4354. //
  4355. SequenceNumber = (PUSHORT)Add2Ptr( MultiSectorHeader,
  4356. MultiSectorHeader->UpdateSequenceArrayOffset );
  4357. //
  4358. // Increment sequence number before the write, both in the buffer
  4359. // going out and in the original buffer pointed to by SystemBuffer.
  4360. // Skip numbers with all 0's and all 1's because 0's are produced by
  4361. // by common failure cases and -1 is used by hot fix.
  4362. //
  4363. do {
  4364. *SequenceNumber += 1;
  4365. *(PUSHORT)Add2Ptr( SystemBuffer,
  4366. MultiSectorHeader->UpdateSequenceArrayOffset ) += 1;
  4367. } while ((*SequenceNumber == 0) || (*SequenceNumber == 0xFFFF));
  4368. SequenceArray = SequenceNumber + 1;
  4369. //
  4370. // We now walk through each block to copy each protected short
  4371. // to the sequence array, and replacing it by the incremented
  4372. // sequence number.
  4373. //
  4374. ProtectedUshort = (PUSHORT) (Add2Ptr( MultiSectorHeader,
  4375. SEQUENCE_NUMBER_STRIDE - sizeof( USHORT )));
  4376. //
  4377. // Loop to test for the correct sequence numbers and restore the
  4378. // sequence numbers.
  4379. //
  4380. do {
  4381. *SequenceArray++ = *ProtectedUshort;
  4382. *ProtectedUshort = *SequenceNumber;
  4383. ProtectedUshort += (SEQUENCE_NUMBER_STRIDE / sizeof( USHORT ));
  4384. } while (--CountToGo != 0);
  4385. }
  4386. //
  4387. // Now adjust all pointers and counts before looping back.
  4388. //
  4389. MultiSectorHeader = (PMULTI_SECTOR_HEADER)Add2Ptr( MultiSectorHeader,
  4390. StructureSize );
  4391. SystemBuffer = Add2Ptr( SystemBuffer, StructureSize );
  4392. BytesLeft -= StructureSize;
  4393. } while (BytesLeft != 0);
  4394. DebugTrace( -1, Dbg, ("NtfsTransformUsaBlock: Exit -> %08lx\n", StructureSize) );
  4395. return;
  4396. }
  4397. VOID
  4398. NtfsCreateMdlAndBuffer (
  4399. IN PIRP_CONTEXT IrpContext,
  4400. IN PSCB ThisScb,
  4401. IN UCHAR NeedTwoBuffers,
  4402. IN OUT PULONG Length,
  4403. OUT PMDL *Mdl OPTIONAL,
  4404. OUT PVOID *Buffer
  4405. )
  4406. /*++
  4407. Routine Description:
  4408. This routine will allocate a buffer and create an Mdl which describes
  4409. it. This buffer and Mdl can then be used for an I/O operation, the
  4410. pages will be locked in memory.
  4411. This routine is intended to be used for cases where large I/Os are
  4412. required. It attempts to avoid allocations errors and bugchecks by
  4413. using a reserved buffer scheme. In order for this scheme to work without
  4414. deadlocks, the calling thread must have all resources acquired that it
  4415. will need prior to doing the I/O. I.e., this routine itself may acquire
  4416. a resource which must work as an end resource.
  4417. Examples of callers to this routine are noncached writes to USA streams,
  4418. and noncached reads and writes to compressed streams. One case to be
  4419. aware of is the case where a noncached compressed write needs to fault
  4420. in the rest of a compression unit, in order to write the entire unit.
  4421. In an extreme case the noncached writer will allocated one reserved buffer,
  4422. and the noncached read of the rest of the compression unit may need to
  4423. recursively acquire the resource in this routine and allocate the other
  4424. reserved buffer.
  4425. Arguments:
  4426. ThisScb - Scb for the file where the IO is occurring.
  4427. NeedTwoBuffers - Indicates that this is the request for the a buffer for
  4428. a transaction which may need two buffers. A value of RESERVED_BUFFER_ONE_NEEDED means only 1
  4429. buffer is needed. A value of RESERVED_BUFFER_TWO_NEEDED or RESERVED_BUFFER_WORKSPACE_NEEDED
  4430. indicates that we need two buffers and either ReservedBuffer1 or ReservedBuffer2 should be acquired.
  4431. Length - This is the length needed for this buffer, returns (possibly larger)
  4432. length allocated.
  4433. Mdl - This is the address to store the address of the Mdl created.
  4434. Buffer - This is the address to store the address of the buffer allocated.
  4435. Return Value:
  4436. None.
  4437. --*/
  4438. {
  4439. PVOID TempBuffer;
  4440. PMDL TempMdl;
  4441. PAGED_CODE();
  4442. DebugTrace( +1, Dbg, ("NtfsCreateMdlAndBuffer: Entered\n") );
  4443. ASSERT( (NeedTwoBuffers == RESERVED_BUFFER_WORKSPACE_NEEDED) ?
  4444. (*Length <= WORKSPACE_BUFFER_SIZE) :
  4445. (*Length <= LARGE_BUFFER_SIZE) );
  4446. TempBuffer = NULL;
  4447. TempMdl = NULL;
  4448. //
  4449. // If this thread already owns a buffer then call to get the second.
  4450. //
  4451. // If there have been no allocation failures recently, and
  4452. // we can use at least half of a big buffer, then go for
  4453. // one of our preallocated buffers first.
  4454. //
  4455. if ((NtfsReservedBufferThread == (PVOID) PsGetCurrentThread()) ||
  4456. ((*Length >= LARGE_BUFFER_SIZE / 2) && !NtfsBufferAllocationFailure)) {
  4457. //
  4458. // If we didn't get one then try from pool.
  4459. //
  4460. if (!NtfsGetReservedBuffer( ThisScb->Fcb, &TempBuffer, Length, NeedTwoBuffers )) {
  4461. TempBuffer = NtfsAllocatePoolWithTagNoRaise( NonPagedPoolCacheAligned, *Length, '9ftN' );
  4462. }
  4463. //
  4464. // Otherwise try to allocate from pool and then get a reserved buffer if
  4465. // there have been no allocation errors recently.
  4466. //
  4467. } else {
  4468. TempBuffer = NtfsAllocatePoolWithTagNoRaise( NonPagedPoolCacheAligned, *Length, '9ftN' );
  4469. if ((TempBuffer == NULL) && !NtfsBufferAllocationFailure) {
  4470. NtfsGetReservedBuffer( ThisScb->Fcb, &TempBuffer, Length, NeedTwoBuffers );
  4471. }
  4472. }
  4473. //
  4474. // If we could not allocate a buffer from pool, then
  4475. // we must stake our claim to a reserved buffer.
  4476. //
  4477. // We would like to queue the requests which need a single buffer because
  4478. // they won't be completely blocked by the owner of multiple buffers.
  4479. // But if this thread wants multiple buffers and there is already a
  4480. // thread with multiple buffers then fail this request with FILE_LOCK_CONFLICT
  4481. // in case the current thread is holding some resource needed by the
  4482. // existing owner.
  4483. //
  4484. if (TempBuffer == NULL) {
  4485. ExAcquireResourceExclusiveLite( &NtfsReservedBufferResource, TRUE );
  4486. //
  4487. // Show that we have gotten an allocation failure
  4488. //
  4489. NtfsBufferAllocationFailure = TRUE;
  4490. //
  4491. // Loop here until we get a buffer or abort the current request.
  4492. //
  4493. while (TRUE) {
  4494. KeDelayExecutionThread( KernelMode, FALSE, &NtfsShortDelay );
  4495. if (NtfsGetReservedBuffer( ThisScb->Fcb, &TempBuffer, Length, NeedTwoBuffers )) {
  4496. if (ExGetExclusiveWaiterCount( &NtfsReservedBufferResource ) == 0) {
  4497. NtfsBufferAllocationFailure = FALSE;
  4498. }
  4499. ExReleaseResourceLite( &NtfsReservedBufferResource );
  4500. break;
  4501. }
  4502. //
  4503. // We will perform some deadlock detection here and raise
  4504. // STATUS_FILE_LOCK conflict in order to retry this request if
  4505. // anyone is queued behind the resource. Deadlocks can occur
  4506. // under the following circumstances when another thread is
  4507. // blocked behind this resource:
  4508. //
  4509. // - Current thread needs two buffers. We can't block the
  4510. // Needs1 guy which may need to complete before the
  4511. // current Needs2 guy can proceed. Exception is case
  4512. // where current thread already has a buffer and we
  4513. // have a recursive 2 buffer case. In this case we
  4514. // are only waiting for the third buffer to become
  4515. // available.
  4516. //
  4517. // - Current thread is the lazy writer. Lazy writer will
  4518. // need buffer for USA transform. He also can own
  4519. // the BCB resource that might be needed by the current
  4520. // owner of a buffer.
  4521. //
  4522. // - Current thread is operating on the same Fcb as the owner
  4523. // of any of the buffers.
  4524. //
  4525. //
  4526. // If the current thread already owns one of the two buffers then
  4527. // always allow him to loop. Otherwise perform deadlock detection
  4528. // if we need 2 buffers or this this is the lazy writer or we
  4529. // are trying to get the same Fcb already owned by the 2 buffer guy.
  4530. //
  4531. if ((PsGetCurrentThread() != NtfsReservedBufferThread) &&
  4532. (NeedTwoBuffers ||
  4533. (ThisScb->LazyWriteThread[0] == PsGetCurrentThread()) ||
  4534. (ThisScb->LazyWriteThread[1] == PsGetCurrentThread()) ||
  4535. (ThisScb->Fcb == NtfsReserved12Fcb))) {
  4536. //
  4537. // If no one is waiting then see if we can continue waiting.
  4538. //
  4539. if (ExGetExclusiveWaiterCount( &NtfsReservedBufferResource ) == 0) {
  4540. //
  4541. // If there is no one waiting behind us and there is no current
  4542. // multi-buffer owner, then try again here.
  4543. //
  4544. if (NtfsReservedBufferThread == NULL) {
  4545. continue;
  4546. }
  4547. NtfsBufferAllocationFailure = FALSE;
  4548. }
  4549. ExReleaseResourceLite( &NtfsReservedBufferResource );
  4550. NtfsRaiseStatus( IrpContext, STATUS_FILE_LOCK_CONFLICT, NULL, NULL );
  4551. }
  4552. }
  4553. }
  4554. //
  4555. // Use a try-finally to facilitate cleanup.
  4556. //
  4557. try {
  4558. if (ARGUMENT_PRESENT(Mdl)) {
  4559. //
  4560. // Allocate an Mdl for this buffer.
  4561. //
  4562. TempMdl = IoAllocateMdl( TempBuffer,
  4563. *Length,
  4564. FALSE,
  4565. FALSE,
  4566. NULL );
  4567. if (TempMdl == NULL) {
  4568. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  4569. }
  4570. //
  4571. // Lock the new Mdl in memory.
  4572. //
  4573. MmBuildMdlForNonPagedPool( TempMdl );
  4574. *Mdl = TempMdl;
  4575. }
  4576. } finally {
  4577. DebugUnwind( NtfsCreateMdlAndBuffer );
  4578. //
  4579. // If abnormal termination, back out anything we've done.
  4580. //
  4581. if (AbnormalTermination()) {
  4582. NtfsDeleteMdlAndBuffer( TempMdl, TempBuffer );
  4583. //
  4584. // Otherwise, give the Mdl and buffer to the caller.
  4585. //
  4586. } else {
  4587. *Buffer = TempBuffer;
  4588. }
  4589. DebugTrace( -1, Dbg, ("NtfsCreateMdlAndBuffer: Exit\n") );
  4590. }
  4591. return;
  4592. }
  4593. VOID
  4594. NtfsDeleteMdlAndBuffer (
  4595. IN PMDL Mdl OPTIONAL,
  4596. IN PVOID Buffer OPTIONAL
  4597. )
  4598. /*++
  4599. Routine Description:
  4600. This routine will allocate a buffer and create an Mdl which describes
  4601. it. This buffer and Mdl can then be used for an I/O operation, the
  4602. pages will be locked in memory.
  4603. Arguments:
  4604. Mdl - Address of Mdl to free
  4605. Buffer - This is the address to store the address of the buffer allocated.
  4606. Return Value:
  4607. None.
  4608. --*/
  4609. {
  4610. //
  4611. // Free Mdl if there is one
  4612. //
  4613. if (Mdl != NULL) {
  4614. IoFreeMdl( Mdl );
  4615. }
  4616. //
  4617. // Free reserved buffer or pool
  4618. //
  4619. if (Buffer != NULL) {
  4620. if (!NtfsFreeReservedBuffer( Buffer )) {
  4621. NtfsFreePool( Buffer );
  4622. }
  4623. }
  4624. }
  4625. VOID
  4626. NtfsWriteClusters (
  4627. IN PIRP_CONTEXT IrpContext,
  4628. IN PVCB Vcb,
  4629. IN PSCB Scb,
  4630. IN VBO StartingVbo,
  4631. IN PVOID Buffer,
  4632. IN ULONG ClusterCount
  4633. )
  4634. /*++
  4635. Routine Description:
  4636. This routine is called to write clusters directly to a file. It is
  4637. needed when converting a resident attribute to non-resident when
  4638. we can't initialize through the cache manager. This happens when
  4639. we receive a SetEndOfFile from MM when creating a section for
  4640. a resident file.
  4641. Arguments:
  4642. Vcb - Vcb for this device.
  4643. StartingVbo - This is the starting offset to write to.
  4644. Buffer - Buffer containing the data to write.
  4645. ClusterCount - This is the number of clusters to write.
  4646. Return Value:
  4647. None. This routine will raise if the operation is unsuccessful.
  4648. --*/
  4649. {
  4650. PIRP NewIrp;
  4651. UCHAR MajorFunction;
  4652. BOOLEAN LockedUserBuffer;
  4653. PNTFS_IO_CONTEXT PreviousContext;
  4654. ULONG State;
  4655. NTFS_IO_CONTEXT LocalContext;
  4656. PAGED_CODE();
  4657. DebugTrace( +1, Dbg, ("NtfsWriteClusters: Entered\n") );
  4658. DebugTrace( 0, Dbg, ("StartingVbo -> %016I64x\n", StartingVbo) );
  4659. DebugTrace( 0, Dbg, ("Buffer -> %08lx\n", Buffer) );
  4660. DebugTrace( 0, Dbg, ("ClusterCount -> %08lx\n", ClusterCount) );
  4661. //
  4662. // Initialize the local variables.
  4663. //
  4664. NewIrp = NULL;
  4665. MajorFunction = IrpContext->MajorFunction;
  4666. LockedUserBuffer = FALSE;
  4667. //
  4668. // Force this operation to be synchronous.
  4669. //
  4670. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_WAIT );
  4671. //
  4672. // Get an Io context block.
  4673. //
  4674. PreviousContext = IrpContext->Union.NtfsIoContext;
  4675. IrpContext->Union.NtfsIoContext = &LocalContext;
  4676. State = IrpContext->State;
  4677. ClearFlag( IrpContext->State, IRP_CONTEXT_STATE_ALLOC_IO_CONTEXT );
  4678. //
  4679. // Use a try-finally so we can clean up properly.
  4680. //
  4681. try {
  4682. PIO_STACK_LOCATION IrpSp;
  4683. RtlZeroMemory( IrpContext->Union.NtfsIoContext, sizeof( NTFS_IO_CONTEXT ));
  4684. KeInitializeEvent( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  4685. NotificationEvent,
  4686. FALSE );
  4687. NewIrp = IoBuildAsynchronousFsdRequest( IRP_MJ_WRITE,
  4688. Vcb->Vpb->DeviceObject,
  4689. Buffer,
  4690. BytesFromClusters( Vcb, ClusterCount ),
  4691. (PLARGE_INTEGER)&StartingVbo,
  4692. NULL );
  4693. if (NewIrp == NULL) {
  4694. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  4695. }
  4696. //
  4697. // We now have an Irp, we want to make it look as though it is part of
  4698. // the current call. We need to adjust the Irp stack to update this.
  4699. //
  4700. NewIrp->CurrentLocation--;
  4701. IrpSp = IoGetNextIrpStackLocation( NewIrp );
  4702. NewIrp->Tail.Overlay.CurrentStackLocation = IrpSp;
  4703. IrpSp->DeviceObject = Vcb->Vpb->DeviceObject;
  4704. //
  4705. // Put our buffer in the Irp and lock it as well.
  4706. //
  4707. NewIrp->UserBuffer = Buffer;
  4708. NtfsLockUserBuffer( IrpContext,
  4709. NewIrp,
  4710. IoReadAccess,
  4711. BytesFromClusters( Vcb, ClusterCount ));
  4712. LockedUserBuffer = TRUE;
  4713. //
  4714. // Put the write code into the IrpContext.
  4715. //
  4716. IrpContext->MajorFunction = IRP_MJ_WRITE;
  4717. //
  4718. // Write the data to the disk.
  4719. //
  4720. NtfsNonCachedIo( IrpContext,
  4721. NewIrp,
  4722. Scb,
  4723. StartingVbo,
  4724. BytesFromClusters(Vcb, ClusterCount),
  4725. 0 );
  4726. //
  4727. // If we encountered an error or didn't write all the bytes, then
  4728. // raise the error code. We use the IoStatus in the Irp instead of
  4729. // our structure since this Irp will not be completed.
  4730. //
  4731. if (!NT_SUCCESS( NewIrp->IoStatus.Status )) {
  4732. DebugTrace( 0, Dbg, ("Couldn't write clusters to disk -> %08lx\n", NewIrp->IoStatus.Status) );
  4733. NtfsRaiseStatus( IrpContext, NewIrp->IoStatus.Status, NULL, NULL );
  4734. } else if (NewIrp->IoStatus.Information != BytesFromClusters( Vcb, ClusterCount )) {
  4735. DebugTrace( 0, Dbg, ("Couldn't write all byes to disk\n") );
  4736. NtfsRaiseStatus( IrpContext, STATUS_UNEXPECTED_IO_ERROR, NULL, NULL );
  4737. }
  4738. } finally {
  4739. DebugUnwind( NtfsWriteClusters );
  4740. //
  4741. // Recover the Io Context and remember if it is from pool.
  4742. //
  4743. IrpContext->Union.NtfsIoContext = PreviousContext;
  4744. SetFlag( IrpContext->State, FlagOn( State, IRP_CONTEXT_STATE_ALLOC_IO_CONTEXT ) );
  4745. IrpContext->MajorFunction = MajorFunction;
  4746. //
  4747. // If we allocated an Irp, we need to deallocate it. We also
  4748. // have to return the correct function code to the Irp Context.
  4749. //
  4750. if (NewIrp != NULL) {
  4751. //
  4752. // If there is an Mdl we free that first.
  4753. //
  4754. if (NewIrp->MdlAddress != NULL) {
  4755. if (LockedUserBuffer) {
  4756. MmUnlockPages( NewIrp->MdlAddress );
  4757. }
  4758. IoFreeMdl( NewIrp->MdlAddress );
  4759. }
  4760. IoFreeIrp( NewIrp );
  4761. }
  4762. DebugTrace( -1, Dbg, ("NtfsWriteClusters: Exit\n") );
  4763. }
  4764. return;
  4765. }
  4766. //
  4767. // Local support routine
  4768. //
  4769. VOID
  4770. NtfsMultipleAsync (
  4771. IN PIRP_CONTEXT IrpContext,
  4772. IN PDEVICE_OBJECT DeviceObject,
  4773. IN PIRP MasterIrp,
  4774. IN ULONG MultipleIrpCount,
  4775. IN PIO_RUN IoRuns
  4776. )
  4777. /*++
  4778. Routine Description:
  4779. This routine first does the initial setup required of a Master IRP that is
  4780. going to be completed using associated IRPs. This routine should not
  4781. be used if only one async request is needed, instead the single read/write
  4782. async routines should be called.
  4783. A context parameter is initialized, to serve as a communications area
  4784. between here and the common completion routine. This initialization
  4785. includes allocation of a spinlock. The spinlock is deallocated in the
  4786. NtfsWaitSync routine, so it is essential that the caller insure that
  4787. this routine is always called under all circumstances following a call
  4788. to this routine.
  4789. Next this routine reads or writes one or more contiguous sectors from
  4790. a device asynchronously, and is used if there are multiple reads for a
  4791. master IRP. A completion routine is used to synchronize with the
  4792. completion of all of the I/O requests started by calls to this routine.
  4793. Also, prior to calling this routine the caller must initialize the
  4794. IoStatus field in the Context, with the correct success status and byte
  4795. count which are expected if all of the parallel transfers complete
  4796. successfully. After return this status will be unchanged if all requests
  4797. were, in fact, successful. However, if one or more errors occur, the
  4798. IoStatus will be modified to reflect the error status and byte count
  4799. from the first run (by Vbo) which encountered an error. I/O status
  4800. from all subsequent runs will not be indicated.
  4801. Arguments:
  4802. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  4803. DeviceObject - Supplies the device to be read
  4804. MasterIrp - Supplies the master Irp.
  4805. MulitpleIrpCount - Supplies the number of multiple async requests
  4806. that will be issued against the master irp.
  4807. IoRuns - Supplies an array containing the Vbo, Lbo, BufferOffset, and
  4808. ByteCount for all the runs to executed in parallel.
  4809. Return Value:
  4810. None.
  4811. --*/
  4812. {
  4813. PIRP Irp;
  4814. PIO_STACK_LOCATION IrpSp;
  4815. PMDL Mdl;
  4816. BOOLEAN Wait;
  4817. PNTFS_IO_CONTEXT Context;
  4818. ULONG TotalByteCount = 0;
  4819. ULONG UnwindRunCount = 0;
  4820. PAGED_CODE();
  4821. DebugTrace( +1, Dbg, ("NtfsMultipleAsync\n") );
  4822. DebugTrace( 0, Dbg, ("MajorFunction = %08lx\n", IrpContext->MajorFunction) );
  4823. DebugTrace( 0, Dbg, ("DeviceObject = %08lx\n", DeviceObject) );
  4824. DebugTrace( 0, Dbg, ("MasterIrp = %08lx\n", MasterIrp) );
  4825. DebugTrace( 0, Dbg, ("MultipleIrpCount = %08lx\n", MultipleIrpCount) );
  4826. DebugTrace( 0, Dbg, ("IoRuns = %08lx\n", IoRuns) );
  4827. //
  4828. // Set up things according to whether this is truely async.
  4829. //
  4830. Wait = (BOOLEAN) FlagOn( IrpContext->State, IRP_CONTEXT_STATE_WAIT );
  4831. Context = IrpContext->Union.NtfsIoContext;
  4832. try {
  4833. //
  4834. // Initialize Context, for use in Read/Write Multiple Asynch.
  4835. //
  4836. Context->MasterIrp = MasterIrp;
  4837. //
  4838. // Iterate through the runs, doing everything that can fail
  4839. //
  4840. for ( UnwindRunCount = 0;
  4841. UnwindRunCount < MultipleIrpCount;
  4842. UnwindRunCount++ ) {
  4843. //
  4844. // Create an associated IRP, making sure there is one stack entry for
  4845. // us, as well.
  4846. //
  4847. IoRuns[UnwindRunCount].SavedIrp = NULL;
  4848. Irp = IoMakeAssociatedIrp( MasterIrp, (CCHAR)(DeviceObject->StackSize + 1) );
  4849. if (Irp == NULL) {
  4850. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  4851. }
  4852. IoRuns[UnwindRunCount].SavedIrp = Irp;
  4853. //
  4854. // Allocate and build a partial Mdl for the request.
  4855. //
  4856. Mdl = IoAllocateMdl( (PCHAR)MasterIrp->UserBuffer +
  4857. IoRuns[UnwindRunCount].BufferOffset,
  4858. IoRuns[UnwindRunCount].ByteCount,
  4859. FALSE,
  4860. FALSE,
  4861. Irp );
  4862. if (Mdl == NULL) {
  4863. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  4864. }
  4865. //
  4866. // Sanity Check
  4867. //
  4868. ASSERT( Mdl == Irp->MdlAddress );
  4869. IoBuildPartialMdl( MasterIrp->MdlAddress,
  4870. Mdl,
  4871. (PCHAR)MasterIrp->UserBuffer +
  4872. IoRuns[UnwindRunCount].BufferOffset,
  4873. IoRuns[UnwindRunCount].ByteCount );
  4874. //
  4875. // Get the first IRP stack location in the associated Irp
  4876. //
  4877. IoSetNextIrpStackLocation( Irp );
  4878. IrpSp = IoGetCurrentIrpStackLocation( Irp );
  4879. //
  4880. // Setup the Stack location to describe our read.
  4881. //
  4882. IrpSp->MajorFunction = IrpContext->MajorFunction;
  4883. IrpSp->Parameters.Read.Length = IoRuns[UnwindRunCount].ByteCount;
  4884. IrpSp->Parameters.Read.ByteOffset.QuadPart = IoRuns[UnwindRunCount].StartingVbo;
  4885. //
  4886. // If this Irp is the result of a WriteThough operation,
  4887. // tell the device to write it through.
  4888. //
  4889. if (FlagOn(IrpContext->State, IRP_CONTEXT_STATE_WRITE_THROUGH)) {
  4890. SetFlag( IrpSp->Flags, SL_WRITE_THROUGH );
  4891. }
  4892. //
  4893. // Set up the completion routine address in our stack frame.
  4894. //
  4895. IoSetCompletionRoutine( Irp,
  4896. (Wait
  4897. ? &NtfsMultiSyncCompletionRoutine
  4898. : &NtfsMultiAsyncCompletionRoutine),
  4899. Context,
  4900. TRUE,
  4901. TRUE,
  4902. TRUE );
  4903. //
  4904. // Setup the next IRP stack location in the associated Irp for the disk
  4905. // driver beneath us.
  4906. //
  4907. IrpSp = IoGetNextIrpStackLocation( Irp );
  4908. //
  4909. // Setup the Stack location to do a read from the disk driver.
  4910. //
  4911. IrpSp->MajorFunction = IrpContext->MajorFunction;
  4912. IrpSp->Flags = Context->IrpSpFlags;
  4913. IrpSp->Parameters.Read.Length = IoRuns[UnwindRunCount].ByteCount;
  4914. IrpSp->Parameters.Read.ByteOffset.QuadPart = IoRuns[UnwindRunCount].StartingLbo;
  4915. TotalByteCount += IoRuns[UnwindRunCount].ByteCount;
  4916. }
  4917. //
  4918. // We only need to set the associated IRP count in the master irp to
  4919. // make it a master IRP. But we set the count to one more than our
  4920. // caller requested, because we do not want the I/O system to complete
  4921. // the I/O. We also set our own count.
  4922. //
  4923. Context->IrpCount = MultipleIrpCount;
  4924. MasterIrp->AssociatedIrp.IrpCount = MultipleIrpCount;
  4925. IrpSp = IoGetCurrentIrpStackLocation( MasterIrp );
  4926. IrpSp->Parameters.Read.Length = TotalByteCount;
  4927. if (Wait) {
  4928. MasterIrp->AssociatedIrp.IrpCount += 1;
  4929. }
  4930. //
  4931. // Now that all the dangerous work is done, issue the Io requests
  4932. //
  4933. for (UnwindRunCount = 0;
  4934. UnwindRunCount < MultipleIrpCount;
  4935. UnwindRunCount++) {
  4936. Irp = IoRuns[UnwindRunCount].SavedIrp;
  4937. //
  4938. // If IoCallDriver returns an error, it has completed the Irp
  4939. // and the error will be caught by our completion routines
  4940. // and dealt with as a normal IO error.
  4941. //
  4942. (VOID)IoCallDriver( DeviceObject, Irp );
  4943. }
  4944. } finally {
  4945. ULONG i;
  4946. DebugUnwind( NtfsMultipleAsync );
  4947. //
  4948. // Only allocating the spinlock, making the associated Irps
  4949. // and allocating the Mdls can fail.
  4950. //
  4951. if (AbnormalTermination()) {
  4952. //
  4953. // Unwind
  4954. //
  4955. for (i = 0; i <= UnwindRunCount; i++) {
  4956. if ((Irp = IoRuns[i].SavedIrp) != NULL) {
  4957. if (Irp->MdlAddress != NULL) {
  4958. IoFreeMdl( Irp->MdlAddress );
  4959. }
  4960. IoFreeIrp( Irp );
  4961. }
  4962. }
  4963. }
  4964. //
  4965. // And return to our caller
  4966. //
  4967. DebugTrace( -1, Dbg, ("NtfsMultipleAsync -> VOID\n") );
  4968. }
  4969. return;
  4970. }
  4971. //
  4972. // Local support routine
  4973. //
  4974. VOID
  4975. NtfsSingleAsync (
  4976. IN PIRP_CONTEXT IrpContext,
  4977. IN PDEVICE_OBJECT DeviceObject,
  4978. IN LBO Lbo,
  4979. IN ULONG ByteCount,
  4980. IN PIRP Irp,
  4981. IN UCHAR MajorFunction
  4982. )
  4983. /*++
  4984. Routine Description:
  4985. This routine reads or writes one or more contiguous sectors from a device
  4986. asynchronously, and is used if there is only one read necessary to
  4987. complete the IRP. It implements the read by simply filling
  4988. in the next stack frame in the Irp, and passing it on. The transfer
  4989. occurs to the single buffer originally specified in the user request.
  4990. Arguments:
  4991. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  4992. DeviceObject - Supplies the device to read
  4993. Lbo - Supplies the starting Logical Byte Offset to begin reading from
  4994. ByteCount - Supplies the number of bytes to read from the device
  4995. Irp - Supplies the master Irp to associated with the async
  4996. request.
  4997. MajorFunction - IRP_MJ_READ || IRP_MJ_WRITE
  4998. Return Value:
  4999. None.
  5000. --*/
  5001. {
  5002. PIO_STACK_LOCATION IrpSp;
  5003. PAGED_CODE();
  5004. DebugTrace( +1, Dbg, ("NtfsSingleAsync\n") );
  5005. DebugTrace( 0, Dbg, ("MajorFunction = %08lx\n", IrpContext->MajorFunction) );
  5006. DebugTrace( 0, Dbg, ("DeviceObject = %08lx\n", DeviceObject) );
  5007. DebugTrace( 0, Dbg, ("Lbo = %016I64x\n", Lbo) );
  5008. DebugTrace( 0, Dbg, ("ByteCount = %08lx\n", ByteCount) );
  5009. DebugTrace( 0, Dbg, ("Irp = %08lx\n", Irp) );
  5010. //
  5011. // Set up the completion routine address in our stack frame.
  5012. //
  5013. IoSetCompletionRoutine( Irp,
  5014. (FlagOn( IrpContext->State, IRP_CONTEXT_STATE_WAIT )
  5015. ? &NtfsSingleSyncCompletionRoutine
  5016. : &NtfsSingleAsyncCompletionRoutine),
  5017. IrpContext->Union.NtfsIoContext,
  5018. TRUE,
  5019. TRUE,
  5020. TRUE );
  5021. //
  5022. // Setup the next IRP stack location in the associated Irp for the disk
  5023. // driver beneath us.
  5024. //
  5025. IrpSp = IoGetNextIrpStackLocation( Irp );
  5026. //
  5027. // Setup the Stack location to do a read from the disk driver.
  5028. //
  5029. IrpSp->MajorFunction = MajorFunction;
  5030. IrpSp->Parameters.Read.Length = ByteCount;
  5031. IrpSp->Parameters.Read.ByteOffset.QuadPart = Lbo;
  5032. IrpSp->Flags = IrpContext->Union.NtfsIoContext->IrpSpFlags;
  5033. //
  5034. // If this Irp is the result of a WriteThough operation,
  5035. // tell the device to write it through.
  5036. //
  5037. if (FlagOn(IrpContext->State, IRP_CONTEXT_STATE_WRITE_THROUGH)) {
  5038. SetFlag( IrpSp->Flags, SL_WRITE_THROUGH );
  5039. }
  5040. //
  5041. // Issue the Io request
  5042. //
  5043. //
  5044. // If IoCallDriver returns an error, it has completed the Irp
  5045. // and the error will be caught by our completion routines
  5046. // and dealt with as a normal IO error.
  5047. //
  5048. (VOID)IoCallDriver( DeviceObject, Irp );
  5049. //
  5050. // And return to our caller
  5051. //
  5052. DebugTrace( -1, Dbg, ("NtfsSingleAsync -> VOID\n") );
  5053. return;
  5054. }
  5055. //
  5056. // Local support routine
  5057. //
  5058. VOID
  5059. NtfsWaitSync (
  5060. IN PIRP_CONTEXT IrpContext
  5061. )
  5062. /*++
  5063. Routine Description:
  5064. This routine waits for one or more previously started I/O requests
  5065. from the above routines, by simply waiting on the event.
  5066. Arguments:
  5067. Context - Pointer to Context used in previous call(s) to be waited on.
  5068. Return Value:
  5069. None
  5070. --*/
  5071. {
  5072. PAGED_CODE();
  5073. DebugTrace( +1, Dbg, ("NtfsWaitSync: Entered\n") );
  5074. KeWaitForSingleObject( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  5075. Executive,
  5076. KernelMode,
  5077. FALSE,
  5078. NULL );
  5079. KeClearEvent( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent );
  5080. DebugTrace( -1, Dbg, ("NtfsWaitSync -> VOID\n") );
  5081. }
  5082. //
  5083. // Local support routine.
  5084. //
  5085. NTSTATUS
  5086. NtfsMultiAsyncCompletionRoutine (
  5087. IN PDEVICE_OBJECT DeviceObject,
  5088. IN PIRP Irp,
  5089. IN PVOID Contxt
  5090. )
  5091. /*++
  5092. Routine Description:
  5093. This is the completion routine for all asynchronous reads and writes
  5094. started via NtfsMultipleAsynch. It must synchronize its operation for
  5095. multiprocessor environments with itself on all other processors, via
  5096. a spin lock found via the Context parameter.
  5097. The completion routine has has the following responsibilities:
  5098. If the individual request was completed with an error, then
  5099. this completion routine must see if this is the first error
  5100. (essentially by Vbo), and if so it must correctly reduce the
  5101. byte count and remember the error status in the Context.
  5102. If the IrpCount goes to 1, then it sets the event in the Context
  5103. parameter to signal the caller that all of the asynch requests
  5104. are done.
  5105. Arguments:
  5106. DeviceObject - Pointer to the file system device object.
  5107. Irp - Pointer to the associated Irp which is being completed. (This
  5108. Irp will no longer be accessible after this routine returns.)
  5109. Contxt - The context parameter which was specified for all of
  5110. the multiple asynch I/O requests for this MasterIrp.
  5111. Return Value:
  5112. Currently always returns STATUS_SUCCESS.
  5113. --*/
  5114. {
  5115. PNTFS_IO_CONTEXT Context = Contxt;
  5116. PIRP MasterIrp = Context->MasterIrp;
  5117. PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp );
  5118. BOOLEAN CompleteRequest = TRUE;
  5119. UNREFERENCED_PARAMETER( DeviceObject );
  5120. DebugTrace( +1, Dbg, ("NtfsMultiAsyncCompletionRoutine, Context = %08lx\n", Context) );
  5121. //
  5122. // If we got an error (or verify required), remember it in the Irp
  5123. //
  5124. MasterIrp = Context->MasterIrp;
  5125. if (!NT_SUCCESS( Irp->IoStatus.Status )) {
  5126. MasterIrp->IoStatus = Irp->IoStatus;
  5127. }
  5128. //
  5129. // Decrement IrpCount and see if it goes to zero.
  5130. //
  5131. if (InterlockedDecrement( &Context->IrpCount ) == 0) {
  5132. PERESOURCE Resource;
  5133. ERESOURCE_THREAD ResourceThreadId;
  5134. //
  5135. // Capture the resource values out of the context to prevent
  5136. // colliding with the Fsp thread if we post this.
  5137. //
  5138. Resource = Context->Wait.Async.Resource;
  5139. ResourceThreadId = Context->Wait.Async.ResourceThreadId;
  5140. //
  5141. // Mark the master Irp pending
  5142. //
  5143. IoMarkIrpPending( MasterIrp );
  5144. //
  5145. // If this request was successful or we posted an async paging io
  5146. // request then complete this irp.
  5147. //
  5148. if (FT_SUCCESS( MasterIrp->IoStatus.Status )) {
  5149. //
  5150. // Do any necc. zeroing for read requests - if it fails then just complete
  5151. // the irp ZeroEndOfBuffer will put the error into the irp iostatus
  5152. //
  5153. if (NtfsZeroEndOfBuffer( MasterIrp, Context )) {
  5154. MasterIrp->IoStatus.Information =
  5155. Context->Wait.Async.RequestedByteCount;
  5156. //
  5157. // Go ahead an mark the File object to indicate that we performed
  5158. // either a read or write if this is not a paging io operation.
  5159. //
  5160. if (!Context->PagingIo &&
  5161. (IrpSp->FileObject != NULL)) {
  5162. if (IrpSp->MajorFunction == IRP_MJ_READ) {
  5163. SetFlag( IrpSp->FileObject->Flags, FO_FILE_FAST_IO_READ );
  5164. } else {
  5165. SetFlag( IrpSp->FileObject->Flags, FO_FILE_MODIFIED );
  5166. }
  5167. }
  5168. }
  5169. //
  5170. // If we had an error and will hot fix, we simply post the entire
  5171. // request.
  5172. //
  5173. } else if (!Context->PagingIo) {
  5174. PIRP_CONTEXT IrpContext = NULL;
  5175. //
  5176. // We need an IrpContext and then have to post the request.
  5177. // Use a try_except in case we fail the request for an IrpContext.
  5178. //
  5179. CompleteRequest = FALSE;
  5180. try {
  5181. NtfsInitializeIrpContext( MasterIrp, TRUE, &IrpContext );
  5182. IrpContext->Union.NtfsIoContext = Context;
  5183. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_ALLOC_IO_CONTEXT );
  5184. NtfsPostRequest( IrpContext, MasterIrp );
  5185. } except( EXCEPTION_EXECUTE_HANDLER ) {
  5186. //
  5187. // Just give up.
  5188. //
  5189. CompleteRequest = TRUE;
  5190. if (IrpContext) {
  5191. //
  5192. // We cleanup the context below.
  5193. //
  5194. IrpContext->Union.NtfsIoContext = NULL;
  5195. NtfsCleanupIrpContext( IrpContext, TRUE );
  5196. }
  5197. }
  5198. }
  5199. //
  5200. // Now release the resource
  5201. //
  5202. if (Resource != NULL) {
  5203. ExReleaseResourceForThreadLite( Resource,
  5204. ResourceThreadId );
  5205. }
  5206. if (CompleteRequest) {
  5207. //
  5208. // and finally, free the context record.
  5209. //
  5210. ExFreeToNPagedLookasideList( &NtfsIoContextLookasideList, Context );
  5211. }
  5212. }
  5213. DebugTrace( -1, Dbg, ("NtfsMultiAsyncCompletionRoutine\n") );
  5214. //
  5215. // Return more processing required if we don't want the Irp to go away.
  5216. //
  5217. if (CompleteRequest) {
  5218. return STATUS_SUCCESS;
  5219. } else {
  5220. //
  5221. // We need to cleanup the associated Irp and its Mdl.
  5222. //
  5223. IoFreeMdl( Irp->MdlAddress );
  5224. IoFreeIrp( Irp );
  5225. return STATUS_MORE_PROCESSING_REQUIRED;
  5226. }
  5227. }
  5228. //
  5229. // Local support routine.
  5230. //
  5231. NTSTATUS
  5232. NtfsMultiSyncCompletionRoutine (
  5233. IN PDEVICE_OBJECT DeviceObject,
  5234. IN PIRP Irp,
  5235. IN PVOID Contxt
  5236. )
  5237. /*++
  5238. Routine Description:
  5239. This is the completion routine for all synchronous reads and writes
  5240. started via NtfsMultipleAsynch. It must synchronize its operation for
  5241. multiprocessor environments with itself on all other processors, via
  5242. a spin lock found via the Context parameter.
  5243. The completion routine has has the following responsibilities:
  5244. If the individual request was completed with an error, then
  5245. this completion routine must see if this is the first error
  5246. (essentially by Vbo), and if so it must correctly reduce the
  5247. byte count and remember the error status in the Context.
  5248. If the IrpCount goes to 1, then it sets the event in the Context
  5249. parameter to signal the caller that all of the asynch requests
  5250. are done.
  5251. Arguments:
  5252. DeviceObject - Pointer to the file system device object.
  5253. Irp - Pointer to the associated Irp which is being completed. (This
  5254. Irp will no longer be accessible after this routine returns.)
  5255. Contxt - The context parameter which was specified for all of
  5256. the multiple asynch I/O requests for this MasterIrp.
  5257. Return Value:
  5258. The routine returns STATUS_MORE_PROCESSING_REQUIRED so that we can
  5259. immediately complete the Master Irp without being in a race condition
  5260. with the IoCompleteRequest thread trying to decrement the IrpCount in
  5261. the Master Irp.
  5262. --*/
  5263. {
  5264. PNTFS_IO_CONTEXT Context = Contxt;
  5265. PIRP MasterIrp = Context->MasterIrp;
  5266. DebugTrace( +1, Dbg, ("NtfsMultiSyncCompletionRoutine, Context = %08lx\n", Context) );
  5267. //
  5268. // If we got an error (or verify required), remember it in the Irp
  5269. //
  5270. MasterIrp = Context->MasterIrp;
  5271. if (!NT_SUCCESS( Irp->IoStatus.Status )) {
  5272. MasterIrp->IoStatus = Irp->IoStatus;
  5273. }
  5274. //
  5275. // We must do this here since IoCompleteRequest won't get a chance
  5276. // on this associated Irp.
  5277. //
  5278. IoFreeMdl( Irp->MdlAddress );
  5279. IoFreeIrp( Irp );
  5280. if (InterlockedDecrement(&Context->IrpCount) == 0) {
  5281. KeSetEvent( &Context->Wait.SyncEvent, 0, FALSE );
  5282. }
  5283. DebugTrace( -1, Dbg, ("NtfsMultiSyncCompletionRoutine -> STATUS_MORE_PROCESSING_REQUIRED\n") );
  5284. return STATUS_MORE_PROCESSING_REQUIRED;
  5285. UNREFERENCED_PARAMETER( DeviceObject );
  5286. }
  5287. //
  5288. // Local support routine.
  5289. //
  5290. NTSTATUS
  5291. NtfsSingleAsyncCompletionRoutine (
  5292. IN PDEVICE_OBJECT DeviceObject,
  5293. IN PIRP Irp,
  5294. IN PVOID Contxt
  5295. )
  5296. /*++
  5297. Routine Description:
  5298. This is the completion routine for all asynchronous reads and writes
  5299. started via NtfsSingleAsynch.
  5300. The completion routine has has the following responsibilities:
  5301. Copy the I/O status from the Irp to the Context, since the Irp
  5302. will no longer be accessible.
  5303. It sets the event in the Context parameter to signal the caller
  5304. that all of the asynch requests are done.
  5305. Arguments:
  5306. DeviceObject - Pointer to the file system device object.
  5307. Irp - Pointer to the Irp for this request. (This Irp will no longer
  5308. be accessible after this routine returns.)
  5309. Contxt - The context parameter which was specified in the call to
  5310. NtfsSingleAsynch.
  5311. Return Value:
  5312. Currently always returns STATUS_SUCCESS.
  5313. --*/
  5314. {
  5315. PNTFS_IO_CONTEXT Context = Contxt;
  5316. PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp );
  5317. BOOLEAN CompleteRequest = TRUE;
  5318. PERESOURCE Resource;
  5319. ERESOURCE_THREAD ResourceThreadId;
  5320. UNREFERENCED_PARAMETER( DeviceObject );
  5321. DebugTrace( +1, Dbg, ("NtfsSingleAsyncCompletionRoutine, Context = %08lx\n", Context) );
  5322. //
  5323. // Capture the resource values out of the context to prevent
  5324. // colliding with the Fsp thread if we post this.
  5325. //
  5326. Resource = Context->Wait.Async.Resource;
  5327. ResourceThreadId = Context->Wait.Async.ResourceThreadId;
  5328. //
  5329. // Mark the Irp pending
  5330. //
  5331. IoMarkIrpPending( Irp );
  5332. //
  5333. // Fill in the information field correctedly if this worked.
  5334. //
  5335. if (FT_SUCCESS( Irp->IoStatus.Status )) {
  5336. //
  5337. // Zero the difference between filesize and data read if necc. on reads
  5338. // if it fails just complete the irp - ZeroEndOfBuffer will put the error into the
  5339. // irp
  5340. //
  5341. if (NtfsZeroEndOfBuffer( Irp, Context )) {
  5342. Irp->IoStatus.Information = Context->Wait.Async.RequestedByteCount;
  5343. //
  5344. // Go ahead an mark the File object to indicate that we performed
  5345. // either a read or write.
  5346. //
  5347. if (!Context->PagingIo &&
  5348. (IrpSp->FileObject != NULL)) {
  5349. if (IrpSp->MajorFunction == IRP_MJ_READ) {
  5350. SetFlag( IrpSp->FileObject->Flags, FO_FILE_FAST_IO_READ );
  5351. } else {
  5352. SetFlag( IrpSp->FileObject->Flags, FO_FILE_MODIFIED );
  5353. }
  5354. }
  5355. }
  5356. //
  5357. // If we had an error and will hot fix, we simply post the entire
  5358. // request.
  5359. //
  5360. } else if (!Context->PagingIo) {
  5361. PIRP_CONTEXT IrpContext = NULL;
  5362. //
  5363. // We need an IrpContext and then have to post the request.
  5364. // Use a try_except in case we fail the request for an IrpContext.
  5365. //
  5366. CompleteRequest = FALSE;
  5367. try {
  5368. NtfsInitializeIrpContext( Irp, TRUE, &IrpContext );
  5369. IrpContext->Union.NtfsIoContext = Context;
  5370. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_ALLOC_IO_CONTEXT );
  5371. NtfsPostRequest( IrpContext, Irp );
  5372. } except( EXCEPTION_EXECUTE_HANDLER ) {
  5373. //
  5374. // Just give up.
  5375. //
  5376. CompleteRequest = TRUE;
  5377. if (IrpContext) {
  5378. //
  5379. // We cleanup the context below.
  5380. //
  5381. IrpContext->Union.NtfsIoContext = NULL;
  5382. NtfsCleanupIrpContext( IrpContext, TRUE );
  5383. }
  5384. }
  5385. }
  5386. //
  5387. // Now release the resource
  5388. //
  5389. if (Resource != NULL) {
  5390. ExReleaseResourceForThreadLite( Resource,
  5391. ResourceThreadId );
  5392. }
  5393. //
  5394. // and finally, free the context record.
  5395. //
  5396. DebugTrace( -1, Dbg, ("NtfsSingleAsyncCompletionRoutine -> STATUS_SUCCESS\n") );
  5397. if (CompleteRequest) {
  5398. ExFreeToNPagedLookasideList( &NtfsIoContextLookasideList, Context );
  5399. return STATUS_SUCCESS;
  5400. } else {
  5401. return STATUS_MORE_PROCESSING_REQUIRED;
  5402. }
  5403. }
  5404. //
  5405. // Local support routine.
  5406. //
  5407. NTSTATUS
  5408. NtfsSingleSyncCompletionRoutine (
  5409. IN PDEVICE_OBJECT DeviceObject,
  5410. IN PIRP Irp,
  5411. IN PVOID Contxt
  5412. )
  5413. /*++
  5414. Routine Description:
  5415. This is the completion routine for all reads and writes started via
  5416. NtfsSingleAsynch.
  5417. The completion routine has has the following responsibilities:
  5418. Copy the I/O status from the Irp to the Context, since the Irp
  5419. will no longer be accessible.
  5420. It sets the event in the Context parameter to signal the caller
  5421. that all of the asynch requests are done.
  5422. Arguments:
  5423. DeviceObject - Pointer to the file system device object.
  5424. Irp - Pointer to the Irp for this request. (This Irp will no longer
  5425. be accessible after this routine returns.)
  5426. Contxt - The context parameter which was specified in the call to
  5427. NtfsSingleAsynch.
  5428. Return Value:
  5429. The routine returns STATUS_MORE_PROCESSING_REQUIRED so that we can
  5430. immediately complete the Master Irp without being in a race condition
  5431. with the IoCompleteRequest thread trying to decrement the IrpCount in
  5432. the Master Irp.
  5433. --*/
  5434. {
  5435. PNTFS_IO_CONTEXT Context = Contxt;
  5436. PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp );
  5437. UNREFERENCED_PARAMETER( DeviceObject );
  5438. DebugTrace( +1, Dbg, ("NtfsSingleCompletionRoutine, Context = %08lx\n", Context) );
  5439. KeSetEvent( &Context->Wait.SyncEvent, 0, FALSE );
  5440. DebugTrace( -1, Dbg, ("NtfsSingleCompletionRoutine -> STATUS_MORE_PROCESSING_REQUIRED\n") );
  5441. return STATUS_MORE_PROCESSING_REQUIRED;
  5442. }
  5443. //
  5444. // Local support routine.
  5445. //
  5446. NTSTATUS
  5447. NtfsPagingFileCompletionRoutine (
  5448. IN PDEVICE_OBJECT DeviceObject,
  5449. IN PIRP Irp,
  5450. IN PVOID MasterIrp
  5451. )
  5452. /*++
  5453. Routine Description:
  5454. This is the completion routine for all reads and writes started via
  5455. NtfsPagingFileIo.
  5456. The completion routine has has the following responsibility:
  5457. Since the individual request was completed with an error,
  5458. this completion routine must stuff it into the master irp.
  5459. Arguments:
  5460. DeviceObject - Pointer to the file system device object.
  5461. Irp - Pointer to the associated Irp which is being completed. (This
  5462. Irp will no longer be accessible after this routine returns.)
  5463. MasterIrp - Pointer to the master Irp. The low order bit in this value will
  5464. be set if a higher level call is performing a hot-fix.
  5465. Return Value:
  5466. Always returns STATUS_SUCCESS.
  5467. --*/
  5468. {
  5469. PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp );
  5470. UNREFERENCED_PARAMETER( DeviceObject );
  5471. DebugTrace( +1, Dbg, ("NtfsPagingFileCompletionRoutine, MasterIrp = %08lx\n", MasterIrp) );
  5472. ASSERT( (Irp->IoStatus.Status != STATUS_INSUFFICIENT_RESOURCES) ||
  5473. (IrpSp->Parameters.Read.Length > PAGE_SIZE) );
  5474. if (!FT_SUCCESS( Irp->IoStatus.Status )) {
  5475. //
  5476. // Track any lower drivers that fail a paging file operation insuff. resources
  5477. //
  5478. if (Irp->IoStatus.Status == STATUS_INSUFFICIENT_RESOURCES) {
  5479. NtfsFailedHandedOffPagingFileOps += 1;
  5480. }
  5481. if (!FsRtlIsTotalDeviceFailure( Irp->IoStatus.Status ) &&
  5482. (Irp->IoStatus.Status != STATUS_VERIFY_REQUIRED) &&
  5483. !FlagOn( (ULONG_PTR) MasterIrp, 0x1 )) {
  5484. if (Irp->IoStatus.Status == STATUS_FT_READ_RECOVERY_FROM_BACKUP) {
  5485. //
  5486. // If the volume manager has actually completed the read
  5487. // from a backup, there's little point in telling MM about that.
  5488. //
  5489. Irp->IoStatus.Status = STATUS_SUCCESS;
  5490. }
  5491. //
  5492. // We don't want to try to hotfix READ errors on the paging file
  5493. // because of deadlock possibilities with MM. Instead we'll just
  5494. // return the error for MM to deal with. Chances are that
  5495. // MM (eg. MiWaitForInPageComplete) will bugcheck anyway,
  5496. // but it's still nicer than walking right into the deadlock.
  5497. // We also only asynchronously fix write errors and just return the error
  5498. // back for mm to retry elsewhere
  5499. //
  5500. if (IrpSp->MajorFunction != IRP_MJ_READ) {
  5501. VBO BadVbo;
  5502. BadVbo = IrpSp->Parameters.Read.Key;
  5503. NtfsPostHotFix( Irp,
  5504. &BadVbo,
  5505. IrpSp->Parameters.Read.ByteOffset.QuadPart,
  5506. IrpSp->Parameters.Read.Length,
  5507. FALSE );
  5508. }
  5509. }
  5510. //
  5511. // If we got an error (or verify required), remember it in the Irp
  5512. //
  5513. ClearFlag( (ULONG_PTR) MasterIrp, 0x1 );
  5514. ((PIRP) MasterIrp)->IoStatus = Irp->IoStatus;
  5515. }
  5516. DebugTrace( -1, Dbg, ("NtfsPagingFileCompletionRoutine => (STATUS_SUCCESS)\n") );
  5517. return STATUS_SUCCESS;
  5518. }
  5519. //
  5520. // Local support routine.
  5521. //
  5522. NTSTATUS
  5523. NtfsPagingFileNoAllocCompletionRoutine (
  5524. IN PDEVICE_OBJECT DeviceObject,
  5525. IN PIRP Irp,
  5526. IN PVOID Context
  5527. )
  5528. /*++
  5529. Routine Description:
  5530. This is the completion routine for all reads and writes started via
  5531. NtfsPagingFileIoNoAllocation.
  5532. The completion routine signals back to the main routine and stops processing
  5533. Arguments:
  5534. DeviceObject - Pointer to the file system device object.
  5535. Irp - Pointer to the associated Irp which is being completed. (This
  5536. Irp will no longer be accessible after this routine returns.)
  5537. Context - Actually the event to signal
  5538. Return Value:
  5539. Always returns STATUS_SUCCESS.
  5540. --*/
  5541. {
  5542. PKEVENT Event = (PKEVENT) Context;
  5543. PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp );
  5544. ASSERT( (Irp->IoStatus.Status != STATUS_INSUFFICIENT_RESOURCES) ||
  5545. (IrpSp->Parameters.Read.Length > PAGE_SIZE) );
  5546. //
  5547. // Track any lower drivers that fail a paging file operation insuff. resources
  5548. //
  5549. if (Irp->IoStatus.Status == STATUS_INSUFFICIENT_RESOURCES) {
  5550. NtfsFailedHandedOffPagingFileOps += 1;
  5551. }
  5552. KeSetEvent( Event, IO_NO_INCREMENT, FALSE );
  5553. return STATUS_MORE_PROCESSING_REQUIRED;
  5554. UNREFERENCED_PARAMETER( DeviceObject );
  5555. UNREFERENCED_PARAMETER( Irp );
  5556. }
  5557. //
  5558. // Local support routine
  5559. //
  5560. VOID
  5561. NtfsSingleNonAlignedSync (
  5562. IN PIRP_CONTEXT IrpContext,
  5563. IN PVCB Vcb,
  5564. IN PSCB Scb,
  5565. IN PUCHAR Buffer,
  5566. IN VBO Vbo,
  5567. IN LBO Lbo,
  5568. IN ULONG ByteCount,
  5569. IN PIRP Irp
  5570. )
  5571. /*++
  5572. Routine Description:
  5573. This routine reads or writes one or more contiguous sectors from a device
  5574. Synchronously, and does so to a buffer that must come from non paged
  5575. pool. It saves a pointer to the Irp's original Mdl, and creates a new
  5576. one describing the given buffer. It implements the read by simply filling
  5577. in the next stack frame in the Irp, and passing it on. The transfer
  5578. occurs to the single buffer originally specified in the user request.
  5579. Currently, only reads are supported.
  5580. Arguments:
  5581. IrpContext->MajorFunction - Supplies either IRP_MJ_READ or IRP_MJ_WRITE.
  5582. Vcb - Supplies the device to read
  5583. Scb - Supplies the Scb to read
  5584. Buffer - Supplies a buffer from non-paged pool.
  5585. Vbo - Supplies the starting Virtual Block Offset to begin reading from
  5586. Lbo - Supplies the starting Logical Block Offset to begin reading from
  5587. ByteCount - Supplies the number of bytes to read from the device
  5588. Irp - Supplies the master Irp to associated with the async
  5589. request.
  5590. Context - Asynchronous I/O context structure
  5591. Return Value:
  5592. None.
  5593. --*/
  5594. {
  5595. PIO_STACK_LOCATION IrpSp;
  5596. PMDL Mdl;
  5597. PMDL SavedMdl;
  5598. PAGED_CODE();
  5599. DebugTrace( +1, Dbg, ("NtfsSingleNonAlignedSync\n") );
  5600. DebugTrace( 0, Dbg, ("MajorFunction = %08lx\n", IrpContext->MajorFunction) );
  5601. DebugTrace( 0, Dbg, ("Vcb = %08lx\n", Vcb) );
  5602. DebugTrace( 0, Dbg, ("Buffer = %08lx\n", Buffer) );
  5603. DebugTrace( 0, Dbg, ("Lbo = %016I64x\n", Lbo) );
  5604. DebugTrace( 0, Dbg, ("ByteCount = %08lx\n", ByteCount) );
  5605. DebugTrace( 0, Dbg, ("Irp = %08lx\n", Irp) );
  5606. //
  5607. // Create a new Mdl describing the buffer, saving the current one in the
  5608. // Irp
  5609. //
  5610. SavedMdl = Irp->MdlAddress;
  5611. Irp->MdlAddress = 0;
  5612. Mdl = IoAllocateMdl( Buffer,
  5613. ByteCount,
  5614. FALSE,
  5615. FALSE,
  5616. Irp );
  5617. if (Mdl == NULL) {
  5618. Irp->MdlAddress = SavedMdl;
  5619. NtfsRaiseStatus( IrpContext, STATUS_INSUFFICIENT_RESOURCES, NULL, NULL );
  5620. }
  5621. //
  5622. // Lock the new Mdl in memory.
  5623. //
  5624. try {
  5625. MmProbeAndLockPages( Mdl, KernelMode, IoWriteAccess );
  5626. } finally {
  5627. if (AbnormalTermination()) {
  5628. IoFreeMdl( Mdl );
  5629. Irp->MdlAddress = SavedMdl;
  5630. }
  5631. }
  5632. //
  5633. // Set up the completion routine address in our stack frame.
  5634. //
  5635. IoSetCompletionRoutine( Irp,
  5636. &NtfsSingleSyncCompletionRoutine,
  5637. IrpContext->Union.NtfsIoContext,
  5638. TRUE,
  5639. TRUE,
  5640. TRUE );
  5641. //
  5642. // Setup the next IRP stack location in the associated Irp for the disk
  5643. // driver beneath us.
  5644. //
  5645. IrpSp = IoGetNextIrpStackLocation( Irp );
  5646. //
  5647. // Setup the Stack location to do a read from the disk driver.
  5648. //
  5649. IrpSp->MajorFunction = IrpContext->MajorFunction;
  5650. IrpSp->Parameters.Read.Length = ByteCount;
  5651. IrpSp->Parameters.Read.ByteOffset.QuadPart = Lbo;
  5652. //
  5653. // Initialize the Kernel Event in the context structure so that the
  5654. // caller can wait on it. Set remaining pointers to NULL.
  5655. //
  5656. KeInitializeEvent( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  5657. NotificationEvent,
  5658. FALSE );
  5659. //
  5660. // Issue the read request
  5661. //
  5662. // If IoCallDriver returns an error, it has completed the Irp
  5663. // and the error will be caught by our completion routines
  5664. // and dealt with as a normal IO error.
  5665. //
  5666. try {
  5667. (VOID)IoCallDriver( Vcb->TargetDeviceObject, Irp );
  5668. NtfsWaitSync( IrpContext );
  5669. //
  5670. // See if we need to do a hot fix.
  5671. //
  5672. if (!FT_SUCCESS(Irp->IoStatus.Status)) {
  5673. IO_RUN IoRun;
  5674. IoRun.StartingVbo = Vbo;
  5675. IoRun.StartingLbo = Lbo;
  5676. IoRun.BufferOffset = 0;
  5677. IoRun.ByteCount = ByteCount;
  5678. IoRun.SavedIrp = NULL;
  5679. //
  5680. // Try to fix the problem
  5681. //
  5682. NtfsFixDataError( IrpContext,
  5683. Scb,
  5684. Vcb->TargetDeviceObject,
  5685. Irp,
  5686. 1,
  5687. &IoRun );
  5688. }
  5689. } finally {
  5690. MmUnlockPages( Mdl );
  5691. IoFreeMdl( Mdl );
  5692. Irp->MdlAddress = SavedMdl;
  5693. }
  5694. //
  5695. // And return to our caller
  5696. //
  5697. DebugTrace( -1, Dbg, ("NtfsSingleNonAlignedSync -> VOID\n") );
  5698. return;
  5699. }
  5700. //
  5701. // Local support routine
  5702. //
  5703. NTSTATUS
  5704. NtfsEncryptBuffers (
  5705. IN PIRP_CONTEXT IrpContext,
  5706. IN PIRP Irp,
  5707. IN PSCB Scb,
  5708. IN VBO StartingVbo,
  5709. IN ULONG NumberRuns,
  5710. IN PCOMPRESSION_CONTEXT CompressionContext
  5711. )
  5712. /*++
  5713. Routine Description:
  5714. This routine is called by NtfsPrepareBuffers during a write
  5715. operation on an encrypted file. It allocates a compression
  5716. buffer if necessary and calls the encyrption callout routine
  5717. to compress each run of data in the CompressionContext.
  5718. Arguments:
  5719. Irp - Supplies the requesting Irp.
  5720. Scb - Supplies the stream file to act on.
  5721. StartingVbo - The starting point for the operation.
  5722. ByteCount - The lengh of the operation.
  5723. NumberRuns - The size of the IoRuns array in the compression context.
  5724. CompressionContext - Supplies the CompressionContext for this stream.
  5725. Return Value:
  5726. None.
  5727. --*/
  5728. {
  5729. ULONG Run;
  5730. ULONG BufferSize;
  5731. LARGE_INTEGER OffsetWithinFile;
  5732. PIO_RUN IoRun;
  5733. PUCHAR SourceBuffer;
  5734. PUCHAR DestinationBuffer;
  5735. NTSTATUS Status;
  5736. ASSERT( NumberRuns > 0 );
  5737. ASSERT( IrpContext->MajorFunction == IRP_MJ_WRITE );
  5738. //
  5739. // These functions are just for debugging purposes. We need to call them
  5740. // somewhere so the compiler doesn't optimize them out as unreferenced functions.
  5741. //
  5742. #ifdef EFSDBG
  5743. if (CompressionContext->SystemBufferOffset != 0) {
  5744. DebugTrace( 0, Dbg, ("\nEncryptBuffers: SystemBufferOffset = %x", CompressionContext->SystemBufferOffset) );
  5745. }
  5746. #endif
  5747. //
  5748. // If we have not already mapped the user buffer, then do so.
  5749. //
  5750. if (CompressionContext->SystemBuffer == NULL) {
  5751. CompressionContext->SystemBuffer = NtfsMapUserBuffer( Irp );
  5752. }
  5753. //
  5754. // For uncompressed files, we may not have a buffer allocated yet.
  5755. // The buffer needs to be big enough for this entire transfer.
  5756. // It must be big enough to go from StartingVbo for this
  5757. // transfer to the end of the last iorun for this transfer.
  5758. //
  5759. BufferSize = (ULONG) ((CompressionContext->IoRuns[NumberRuns-1].StartingVbo +
  5760. CompressionContext->IoRuns[NumberRuns-1].ByteCount) -
  5761. StartingVbo);
  5762. if (BufferSize > LARGE_BUFFER_SIZE) {
  5763. BufferSize = LARGE_BUFFER_SIZE;
  5764. }
  5765. //
  5766. // If the data already got transformed, the buffer should still be allocated.
  5767. //
  5768. ASSERT( (!CompressionContext->DataTransformed) ||
  5769. (CompressionContext->CompressionBuffer != NULL) );
  5770. //
  5771. // This function conveniently only allocates/reallocates the buffer
  5772. // if there is not one allocated yet or if the existing one is not
  5773. // big enough.
  5774. //
  5775. NtfsAllocateCompressionBuffer( IrpContext,
  5776. Scb,
  5777. Irp,
  5778. CompressionContext,
  5779. &BufferSize );
  5780. //
  5781. // If the data has already be transformed into the compression buffer, for
  5782. // a compressed or sparse file, for instance, we want to work with the
  5783. // transformed data. Otherwise, we need to pluck it directly out of the
  5784. // system buffer.
  5785. //
  5786. if (CompressionContext->DataTransformed) {
  5787. SourceBuffer = DestinationBuffer = CompressionContext->CompressionBuffer;
  5788. } else {
  5789. SourceBuffer = Add2Ptr( CompressionContext->SystemBuffer, CompressionContext->SystemBufferOffset );
  5790. DestinationBuffer = CompressionContext->CompressionBuffer;
  5791. }
  5792. //
  5793. // Now look at each run of real data heading to the disk and
  5794. // let the encryption driver encrypt it.
  5795. //
  5796. for (Run = 0; Run < NumberRuns; Run++) {
  5797. IoRun = &CompressionContext->IoRuns[Run];
  5798. OffsetWithinFile.QuadPart = IoRun->StartingVbo;
  5799. Status = NtfsData.EncryptionCallBackTable.BeforeWriteProcess( Add2Ptr(SourceBuffer, IoRun->BufferOffset),
  5800. Add2Ptr(DestinationBuffer, IoRun->BufferOffset),
  5801. &OffsetWithinFile,
  5802. IoRun->ByteCount,
  5803. Scb->EncryptionContext);
  5804. #if DBG
  5805. #ifdef SYSCACHE
  5806. //
  5807. // If we're using the dummy encryption callback, then we didn't really
  5808. // encrypt anything, so we should be able to verify the syscache
  5809. // pattern still.
  5810. //
  5811. if (FlagOn(Scb->ScbState, SCB_STATE_SYSCACHE_FILE) &&
  5812. VerifySyscacheData &&
  5813. (NtfsData.EncryptionCallBackTable.BeforeWriteProcess == NtfsDummyEfsWrite)) {
  5814. FsRtlVerifySyscacheData( Scb->FileObject,
  5815. Add2Ptr(CompressionContext->CompressionBuffer, IoRun->BufferOffset),
  5816. IoRun->ByteCount,
  5817. OffsetWithinFile.LowPart );
  5818. }
  5819. #endif
  5820. #endif
  5821. if (!NT_SUCCESS( Status )) {
  5822. return Status;
  5823. }
  5824. }
  5825. return STATUS_SUCCESS;
  5826. }
  5827. VOID
  5828. NtfsFixDataError (
  5829. IN PIRP_CONTEXT IrpContext,
  5830. IN PSCB Scb,
  5831. IN PDEVICE_OBJECT DeviceObject,
  5832. IN PIRP MasterIrp,
  5833. IN ULONG MultipleIrpCount,
  5834. IN PIO_RUN IoRuns
  5835. )
  5836. /*
  5837. Routine Description:
  5838. This routine is called when a read error, write error, or Usa error
  5839. is received when doing noncached I/O on a stream. It attempts to
  5840. recover from Usa errors if FT is present. For bad clusters it attempts
  5841. to isolate the error to one or more bad clusters, for which hot fix
  5842. requests are posted.
  5843. Arguments:
  5844. Scb - Supplies the Scb for the stream which got the error
  5845. DeviceObject - Supplies the Device Object for the stream
  5846. MasterIrp - Supplies the original master Irp for the failing read or write
  5847. MultipleIrpCount - Supplies the number of runs in which the current
  5848. was broken into at the time the error occured.
  5849. IoRuns - Supplies an array describing the runs being accessed at the
  5850. time of the error
  5851. Return Value:
  5852. None
  5853. -*/
  5854. {
  5855. PVOID SystemBuffer;
  5856. ULONG RunNumber, ByteOffset, FtCase;
  5857. BOOLEAN SecondaryAvailable;
  5858. BOOLEAN FixingUsaError;
  5859. BOOLEAN FinalPass;
  5860. ULONG ClusterMask;
  5861. ULONG ClustersToRecover;
  5862. ULONG UsaBlockSize;
  5863. PIO_STACK_LOCATION IrpSp;
  5864. PVCB Vcb = Scb->Vcb;
  5865. ULONG BytesPerCluster = Vcb->BytesPerCluster;
  5866. NTSTATUS FinalStatus = STATUS_SUCCESS;
  5867. ULONG AlignedRunNumber = 0;
  5868. ULONG AlignedByteOffset = 0;
  5869. NTSTATUS IrpStatus = MasterIrp->IoStatus.Status;
  5870. PTOP_LEVEL_CONTEXT TopLevelContext;
  5871. PNTFS_IO_CONTEXT Context = IrpContext->Union.NtfsIoContext;
  5872. LONGLONG LlTemp1;
  5873. LONGLONG LlTemp2;
  5874. PAGED_CODE();
  5875. //
  5876. // First, if the error we got indicates a total device failure, then we
  5877. // just report it rather than trying to hot fix every sector on the volume!
  5878. // Also, do not do hot fix for the read ahead thread, because that is a
  5879. // good way to conceal errors from the App.
  5880. //
  5881. if (FsRtlIsTotalDeviceFailure( MasterIrp->IoStatus.Status ) ||
  5882. (Scb->CompressionUnit != 0)) {
  5883. return;
  5884. }
  5885. //
  5886. // Get out if we got an error and the current thread is doing read ahead.
  5887. //
  5888. if (!NT_SUCCESS( MasterIrp->IoStatus.Status ) && NtfsIsReadAheadThread()) {
  5889. return;
  5890. }
  5891. //
  5892. // Also get out if the top level request came from the fast io path.
  5893. //
  5894. TopLevelContext = NtfsGetTopLevelContext();
  5895. if (TopLevelContext->SavedTopLevelIrp == (PIRP) FSRTL_FAST_IO_TOP_LEVEL_IRP) {
  5896. return;
  5897. }
  5898. //
  5899. // We can't hot fix the mft mirror or the boot file. If we're in here
  5900. // for one of those files, we have to get out now. We'll make sure we
  5901. // aren't trying to hot fix the beginning of the mft itself just before
  5902. // we call NtfsPostHotFix down below.
  5903. //
  5904. ASSERT (Scb != NULL);
  5905. if ((Scb == Vcb->Mft2Scb) ||
  5906. (NtfsEqualMftRef( &Scb->Fcb->FileReference, &BootFileReference ) &&
  5907. (Scb->AttributeTypeCode == $DATA))) {
  5908. return;
  5909. }
  5910. //
  5911. // Determine whether a secondary device is available
  5912. //
  5913. SecondaryAvailable = (BOOLEAN)!FlagOn( Vcb->VcbState, VCB_STATE_NO_SECONDARY_AVAILABLE );
  5914. //
  5915. // Assume that we are recovering from a Usa error, if the MasterIrp has
  5916. // the success status.
  5917. //
  5918. FixingUsaError = FT_SUCCESS( MasterIrp->IoStatus.Status );
  5919. //
  5920. // We cannot fix any Usa errors if there is no secondary. Even if there is
  5921. // a secondary, Usa errors should only occur during restart. If it is not
  5922. // restart we are probably looking at uninitialized data, so don't try to
  5923. // "fix" it.
  5924. //
  5925. if (FixingUsaError &&
  5926. (!SecondaryAvailable || !FlagOn( Vcb->VcbState, VCB_STATE_RESTART_IN_PROGRESS ))) {
  5927. return;
  5928. }
  5929. //
  5930. // If there is no secondary available and this is a user non-cached read then simply
  5931. // return the error. Give this user a chance to re-write the sector himself using
  5932. // non-cached io.
  5933. //
  5934. if (!SecondaryAvailable &&
  5935. (IrpContext->MajorFunction == IRP_MJ_READ) &&
  5936. (FlagOn( MasterIrp->Flags, IRP_PAGING_IO | IRP_NOCACHE ) == IRP_NOCACHE)) {
  5937. return;
  5938. }
  5939. //
  5940. // No hot fixing at all if the volume is read only.
  5941. //
  5942. if (NtfsIsVolumeReadOnly( Vcb )) {
  5943. return;
  5944. }
  5945. //
  5946. // Initialize Context, for use in Read/Write Multiple Asynch.
  5947. //
  5948. ASSERT( Context != NULL );
  5949. Context->MasterIrp = MasterIrp;
  5950. KeInitializeEvent( &Context->Wait.SyncEvent, NotificationEvent, FALSE );
  5951. HotFixTrace(("NtfsFixDataError, MasterIrp: %08lx, MultipleIrpCount: %08lx\n", MasterIrp, MultipleIrpCount));
  5952. HotFixTrace((" IoRuns: %08lx, UsaError: %02lx\n", IoRuns, FixingUsaError));
  5953. HotFixTrace((" Thread: %08lx\n", PsGetCurrentThread()));
  5954. HotFixTrace((" Scb: %08lx BadClusterScb: %08lx\n", Scb, Vcb->BadClusterFileScb));
  5955. //
  5956. // In most cases we will need to access the buffer for this transfer directly,
  5957. // so map it here.
  5958. //
  5959. SystemBuffer = NtfsMapUserBuffer( MasterIrp );
  5960. //
  5961. // If this is a Usa-protected structure, get the block size now.
  5962. //
  5963. if (FlagOn( Scb->ScbState, SCB_STATE_USA_PRESENT )) {
  5964. //
  5965. // Get the the number of blocks, based on what type of stream it is.
  5966. // First check for Mft or Log file.
  5967. //
  5968. if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_MFT) {
  5969. ASSERT( (Scb == Vcb->MftScb) || (Scb == Vcb->Mft2Scb) );
  5970. UsaBlockSize = Vcb->BytesPerFileRecordSegment;
  5971. } else if (Scb->Header.NodeTypeCode == NTFS_NTC_SCB_DATA) {
  5972. //
  5973. // For the log file, we will just go a page at a time, which
  5974. // is generally what the log file does. Any USA errors would
  5975. // tend to be only at the logical end of the log file anyway.
  5976. //
  5977. ASSERT( Scb == Vcb->LogFileScb );
  5978. //
  5979. // For the log file, assume it is right in the record, use that
  5980. // if we get a plausible number, else use page size.
  5981. //
  5982. RunNumber = (USHORT)(((PMULTI_SECTOR_HEADER)SystemBuffer)->UpdateSequenceArraySize - 1);
  5983. UsaBlockSize = RunNumber * SEQUENCE_NUMBER_STRIDE;
  5984. if ((UsaBlockSize != 0x1000) && (UsaBlockSize != 0x2000) && (UsaBlockSize != PAGE_SIZE)) {
  5985. UsaBlockSize = PAGE_SIZE;
  5986. }
  5987. //
  5988. // Otherwise it is an index, so we can get the count out of the Scb.
  5989. //
  5990. } else {
  5991. UsaBlockSize = Scb->ScbType.Index.BytesPerIndexBuffer;
  5992. }
  5993. //
  5994. // Verify the maximum of UsaBlockSize and cluster size.
  5995. //
  5996. if (BytesPerCluster > UsaBlockSize) {
  5997. //
  5998. // Determine which is smaller the cluster size or the
  5999. // size of the buffer being read.
  6000. //
  6001. IrpSp = IoGetCurrentIrpStackLocation( MasterIrp );
  6002. UsaBlockSize = IrpSp->Parameters.Read.Length;
  6003. if (UsaBlockSize > BytesPerCluster) {
  6004. UsaBlockSize = BytesPerCluster;
  6005. }
  6006. }
  6007. }
  6008. //
  6009. // We know we got a failure in the given transfer, which could be any size.
  6010. // We first want to localize the error to the failing cluster(s).
  6011. //
  6012. // We do this in the following nested loops:
  6013. //
  6014. // do (for the entire transfer, 32 clusters at a time)
  6015. //
  6016. // for (primary, secondary if available, primary again if necessary)
  6017. //
  6018. // for (each run)
  6019. //
  6020. // for (each cluster)
  6021. //
  6022. // The inner-most two loops above have the ability to restart on successive
  6023. // 32-cluster boundaries, relative to the first cluster in the transfer.
  6024. // For the Ft case, where there is a secondary device available, clusters
  6025. // are blocked out of a mask as errors are found and corrected, so they
  6026. // do not have to be read in successive passes; Usa errors are blocked out
  6027. // of the mask immediately, while for I/O errors we force ourselves to read
  6028. // both copies to locate the error, only reading the primary again if the
  6029. // secondary contained the error.
  6030. //
  6031. //
  6032. // Loop through the entire transfer, 32 clusters at a time. The innermost
  6033. // loops will terminate on 32 cluster boundaries, so the outermost loop
  6034. // will simply keep looping until we exhaust the IoRuns array.
  6035. //
  6036. do {
  6037. //
  6038. // Initialize the clusters to recover to "all".
  6039. //
  6040. ClustersToRecover = MAXULONG;
  6041. FinalPass = FALSE;
  6042. //
  6043. // For these 32 clusters, loop through primary, secondary (if available),
  6044. // and primary again (only reading when necessary).
  6045. //
  6046. for (FtCase = 0; !FinalPass; FtCase++) {
  6047. //
  6048. // Calculate whether this is the final pass or not.
  6049. //
  6050. FinalPass = !SecondaryAvailable ||
  6051. (FtCase == 2) ||
  6052. (IrpContext->MajorFunction == IRP_MJ_WRITE);
  6053. //
  6054. // Initialize the current cluster mask for cluster 0
  6055. //
  6056. ClusterMask = 1;
  6057. //
  6058. // Loop through all of the runs in the IoRuns array, or until the
  6059. // ClusterMask indicates that we hit a 32 cluster boundary.
  6060. //
  6061. for (RunNumber = AlignedRunNumber;
  6062. (RunNumber < MultipleIrpCount) && (ClusterMask != 0);
  6063. (ClusterMask != 0) ? RunNumber++ : 0) {
  6064. //
  6065. // Loop through all of the clusters within this run, or until
  6066. // the ClusterMask indicates that we hit a 32 cluster boundary.
  6067. //
  6068. for (ByteOffset = (RunNumber == AlignedRunNumber) ? AlignedByteOffset : 0;
  6069. (ByteOffset < IoRuns[RunNumber].ByteCount) && (ClusterMask != 0);
  6070. ByteOffset += BytesPerCluster, ClusterMask <<= 1) {
  6071. LONGLONG StartingVbo, StartingLbo;
  6072. PIRP Irp;
  6073. PMDL Mdl;
  6074. BOOLEAN LowFileRecord;
  6075. FT_SPECIAL_READ SpecialRead;
  6076. ULONG Length;
  6077. HotFixTrace(("Doing ByteOffset: %08lx for FtCase: %02lx\n",
  6078. (((ULONG)IoRuns[RunNumber].StartingVbo) + ByteOffset),
  6079. FtCase));
  6080. //
  6081. // If this cluster no longer needs to be recovered, we can
  6082. // skip it.
  6083. //
  6084. if ((ClustersToRecover & ClusterMask) == 0) {
  6085. continue;
  6086. }
  6087. //
  6088. // Temporarily get the 64-bit byte offset into StartingVbo, then
  6089. // calculate the actual StartingLbo and StartingVbo.
  6090. //
  6091. StartingVbo = ByteOffset;
  6092. StartingLbo = IoRuns[RunNumber].StartingLbo + StartingVbo;
  6093. StartingVbo = IoRuns[RunNumber].StartingVbo + StartingVbo;
  6094. //
  6095. // If the file is compressed, then NtfsPrepareBuffers builds
  6096. // an IoRuns array where it compresses contiguous Lcns, and
  6097. // the Vcns do not always line up correctly. But we know there
  6098. // must be a corresponding Vcn for every Lcn in the stream,
  6099. // and that that Vcn can only be >= to the Vcn we have just
  6100. // calculated from the IoRuns array. Therefore, since performance
  6101. // of hotfix is not the issue here, we use the following simple
  6102. // loop to sequentially scan the Mcb for a matching Vcn for
  6103. // the current Lcn.
  6104. //
  6105. if (Scb->CompressionUnit != 0) {
  6106. VCN TempVcn;
  6107. LCN TempLcn, LcnOut;
  6108. TempLcn = LlClustersFromBytes( Vcb, StartingLbo );
  6109. TempVcn = LlClustersFromBytes( Vcb, StartingVbo );
  6110. //
  6111. // Scan to the end of the Mcb (we assert below this
  6112. // did not happen) or until we find a Vcn with the
  6113. // Lcn we currently want to read.
  6114. //
  6115. while (NtfsLookupNtfsMcbEntry( &Scb->Mcb,
  6116. TempVcn,
  6117. &LcnOut,
  6118. NULL,
  6119. NULL,
  6120. NULL,
  6121. NULL,
  6122. NULL )
  6123. &&
  6124. (LcnOut != TempLcn)) {
  6125. TempVcn = TempVcn + 1;
  6126. }
  6127. ASSERT(LcnOut == TempLcn);
  6128. StartingVbo = LlBytesFromClusters( Vcb, TempVcn );
  6129. }
  6130. LowFileRecord = (Scb == Vcb->MftScb) && (((PLARGE_INTEGER)&StartingVbo)->HighPart == 0);
  6131. //
  6132. // Calculate the amount to actually read.
  6133. //
  6134. Length = IoRuns[RunNumber].ByteCount - ByteOffset;
  6135. if (Length > BytesPerCluster) {
  6136. Length = BytesPerCluster;
  6137. }
  6138. //
  6139. // Loop while verify required, or we find we really
  6140. // do not have an FT device.
  6141. //
  6142. while (TRUE) {
  6143. //
  6144. // Create an associated IRP, making sure there is one stack entry for
  6145. // us, as well.
  6146. //
  6147. Irp = IoMakeAssociatedIrp( MasterIrp, (CCHAR)(DeviceObject->StackSize + 1) );
  6148. if (Irp == NULL) {
  6149. //
  6150. // We return the error status in the Master irp when
  6151. // we were called.
  6152. //
  6153. MasterIrp->IoStatus.Status = IrpStatus;
  6154. return;
  6155. }
  6156. //
  6157. // Allocate and build a partial Mdl for the request.
  6158. //
  6159. Mdl = IoAllocateMdl( (PCHAR)MasterIrp->UserBuffer + IoRuns[RunNumber].BufferOffset + ByteOffset,
  6160. Length,
  6161. FALSE,
  6162. FALSE,
  6163. Irp );
  6164. if (Mdl == NULL) {
  6165. IoFreeIrp(Irp);
  6166. //
  6167. // We return the error status in the Master irp when
  6168. // we were called.
  6169. //
  6170. MasterIrp->IoStatus.Status = IrpStatus;
  6171. return;
  6172. }
  6173. //
  6174. // Sanity Check
  6175. //
  6176. ASSERT( Mdl == Irp->MdlAddress );
  6177. IoBuildPartialMdl( MasterIrp->MdlAddress,
  6178. Mdl,
  6179. (PCHAR)MasterIrp->UserBuffer +
  6180. IoRuns[RunNumber].BufferOffset + ByteOffset,
  6181. Length );
  6182. //
  6183. // Get the first IRP stack location in the associated Irp
  6184. //
  6185. IoSetNextIrpStackLocation( Irp );
  6186. IrpSp = IoGetCurrentIrpStackLocation( Irp );
  6187. //
  6188. // Setup the Stack location to describe our read.
  6189. //
  6190. IrpSp->MajorFunction = IrpContext->MajorFunction;
  6191. IrpSp->Parameters.Read.Length = Length;
  6192. IrpSp->Parameters.Read.ByteOffset.QuadPart = StartingVbo;
  6193. //
  6194. // Set up the completion routine address in our stack frame.
  6195. //
  6196. IoSetCompletionRoutine( Irp,
  6197. &NtfsMultiSyncCompletionRoutine,
  6198. Context,
  6199. TRUE,
  6200. TRUE,
  6201. TRUE );
  6202. //
  6203. // Setup the next IRP stack location in the associated Irp for the disk
  6204. // driver beneath us.
  6205. //
  6206. IrpSp = IoGetNextIrpStackLocation( Irp );
  6207. //
  6208. // Setup the Stack location to do a normal read or write.
  6209. //
  6210. if ((IrpContext->MajorFunction == IRP_MJ_WRITE) || !SecondaryAvailable) {
  6211. IrpSp->MajorFunction = IrpContext->MajorFunction;
  6212. IrpSp->Flags = Context->IrpSpFlags;
  6213. IrpSp->Parameters.Read.ByteOffset.QuadPart = StartingLbo;
  6214. IrpSp->Parameters.Read.Length = Length;
  6215. //
  6216. // Otherwise we are supposed to read from the primary or secondary
  6217. // on an FT drive.
  6218. //
  6219. } else {
  6220. IrpSp->MajorFunction = IRP_MJ_DEVICE_CONTROL;
  6221. if (FtCase != 1) {
  6222. IrpSp->Parameters.DeviceIoControl.IoControlCode = FT_PRIMARY_READ;
  6223. } else {
  6224. IrpSp->Parameters.DeviceIoControl.IoControlCode = FT_SECONDARY_READ;
  6225. }
  6226. Irp->AssociatedIrp.SystemBuffer = &SpecialRead;
  6227. SpecialRead.ByteOffset.QuadPart = StartingLbo;
  6228. SpecialRead.Length = Length;
  6229. }
  6230. //
  6231. // We only need to set the associated IRP count in the master irp to
  6232. // make it a master IRP. But we set the count to one more than our
  6233. // caller requested, because we do not want the I/O system to complete
  6234. // the I/O. We also set our own count.
  6235. //
  6236. Context->IrpCount = 1;
  6237. MasterIrp->AssociatedIrp.IrpCount = 2;
  6238. //
  6239. // MtfsMultiCompletionRoutine only modifies the status on errors,
  6240. // so we have to reset to success before each call.
  6241. //
  6242. MasterIrp->IoStatus.Status = STATUS_SUCCESS;
  6243. //
  6244. // If IoCallDriver returns an error, it has completed the Irp
  6245. // and the error will be caught by our completion routines
  6246. // and dealt with as a normal IO error.
  6247. //
  6248. HotFixTrace(("Calling driver with Irp: %08lx\n", Irp));
  6249. KeClearEvent( &Context->Wait.SyncEvent );
  6250. (VOID)IoCallDriver( DeviceObject, Irp );
  6251. //
  6252. // Now wait for it.
  6253. //
  6254. NtfsWaitSync( IrpContext );
  6255. HotFixTrace(("Request completion status: %08lx\n", MasterIrp->IoStatus.Status));
  6256. //
  6257. // If we were so lucky to get a verify required, then
  6258. // spin our wheels here a while.
  6259. //
  6260. if (MasterIrp->IoStatus.Status == STATUS_VERIFY_REQUIRED) {
  6261. //
  6262. // Otherwise we need to verify the volume, and if it doesn't
  6263. // verify correctly then we dismount the volume and report
  6264. // our error.
  6265. //
  6266. if (!NtfsPerformVerifyOperation( IrpContext, Vcb )) {
  6267. //**** NtfsPerformDismountOnVcb( IrpContext, Vcb, TRUE, NULL );
  6268. ClearFlag( Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED );
  6269. MasterIrp->IoStatus.Status = STATUS_FILE_INVALID;
  6270. return;
  6271. }
  6272. //
  6273. // The volume verified correctly so now clear the verify bit
  6274. // and try and I/O again
  6275. //
  6276. ClearFlag( Vcb->Vpb->RealDevice->Flags, DO_VERIFY_VOLUME );
  6277. //
  6278. // We may have assumed that there was a secondary available
  6279. // and there is not. We can only tell from getting this code.
  6280. // Indicate there is no secondary and that we will be only
  6281. // making one pass.
  6282. //
  6283. } else if (MasterIrp->IoStatus.Status == STATUS_INVALID_DEVICE_REQUEST) {
  6284. ASSERT((IrpContext->MajorFunction != IRP_MJ_WRITE) && SecondaryAvailable);
  6285. SetFlag(Vcb->VcbState, VCB_STATE_NO_SECONDARY_AVAILABLE);
  6286. SecondaryAvailable = FALSE;
  6287. FinalPass = TRUE;
  6288. //
  6289. // If the secondary is offline then there is nothing to recover.
  6290. //
  6291. } else if (MasterIrp->IoStatus.Status == STATUS_FT_MISSING_MEMBER) {
  6292. //
  6293. // FTDISK will return this error if they are in initialization.
  6294. // Then we don't want to set VCB_STATE_NO_SECONDARY_AVAILABLE but
  6295. // will need to check whether we really want to hotfix.
  6296. //
  6297. SecondaryAvailable = FALSE;
  6298. FinalPass = TRUE;
  6299. //
  6300. // Otherwise we got success or another error and we should proceed.
  6301. //
  6302. } else {
  6303. break;
  6304. }
  6305. }
  6306. //
  6307. // Check again if we really want to perform the hot-fix in the event the status
  6308. // of the secondary has changed.
  6309. //
  6310. if (!SecondaryAvailable &&
  6311. (IrpContext->MajorFunction == IRP_MJ_READ) &&
  6312. (FlagOn( MasterIrp->Flags, IRP_PAGING_IO | IRP_NOCACHE ) == IRP_NOCACHE)) {
  6313. MasterIrp->IoStatus.Status = IrpStatus;
  6314. return;
  6315. }
  6316. if (!FT_SUCCESS(MasterIrp->IoStatus.Status)) {
  6317. BOOLEAN IsHotFixPage;
  6318. //
  6319. // Calculate whether or not this is the hot fix thread itself
  6320. // (i.e., executing NtfsPerformHotFix).
  6321. //
  6322. IsHotFixPage = NtfsIsTopLevelHotFixScb( Scb );
  6323. LlTemp1 = StartingVbo >> PAGE_SHIFT; //**** crock for x86 compiler bug
  6324. LlTemp2 = NtfsGetTopLevelHotFixVcn() >> PAGE_SHIFT; //**** crock for x86 compiler bug
  6325. if (!IsHotFixPage ||
  6326. LlTemp1 != LlTemp2) {
  6327. IsHotFixPage = FALSE;
  6328. }
  6329. //
  6330. // If the entire device manages to fail in the middle of this,
  6331. // get out.
  6332. //
  6333. if (FsRtlIsTotalDeviceFailure(MasterIrp->IoStatus.Status)) {
  6334. MasterIrp->IoStatus.Status = IrpStatus;
  6335. return;
  6336. }
  6337. //
  6338. // If this is not a write, fill the cluster with -1 for the
  6339. // event that we ultimately never find good data. This is
  6340. // for security reasons (cannot show anyone the data that
  6341. // happens to be in the buffer now), signature reasons (let
  6342. // -1 designate read errors, as opposed to 0's which occur
  6343. // on ValidDataLength cases), and finally if we fail to read
  6344. // a bitmap, we must consider all clusters allocated if we
  6345. // wish to continue to use the volume before chkdsk sees it.
  6346. //
  6347. if (IrpContext->MajorFunction == IRP_MJ_READ) {
  6348. RtlFillMemory( (PCHAR)SystemBuffer +
  6349. IoRuns[RunNumber].BufferOffset + ByteOffset,
  6350. Length,
  6351. 0xFF );
  6352. //
  6353. // If this is file system metadata, then we better mark the
  6354. // volume corrupt.
  6355. //
  6356. if (FinalPass &&
  6357. FlagOn(Scb->ScbState, SCB_STATE_MODIFIED_NO_WRITE) &&
  6358. (!LowFileRecord || (((ULONG)StartingVbo >= PAGE_SIZE) &&
  6359. ((ULONG)StartingVbo >= (ULONG)((VOLUME_DASD_NUMBER + 1) << Vcb->MftShift))))) {
  6360. NtfsPostVcbIsCorrupt( IrpContext, 0, NULL, NULL );
  6361. }
  6362. //
  6363. // If this is a Usa-protected file, or the bitmap,
  6364. // then we will try to procede with our 0xFF pattern
  6365. // above rather than returning an error to our caller.
  6366. // The Usa guy will get a Usa error, and the bitmap
  6367. // will safely say that everything is allocated until
  6368. // chkdsk can fix it up.
  6369. //
  6370. if (FlagOn(Scb->ScbState, SCB_STATE_USA_PRESENT) ||
  6371. (Scb == Vcb->BitmapScb)) {
  6372. MasterIrp->IoStatus.Status = STATUS_SUCCESS;
  6373. }
  6374. }
  6375. //
  6376. // If we are not the page being hot fixed, we want to post the
  6377. // hot fix and possibly remember the final status.
  6378. //
  6379. if (!IsHotFixPage) {
  6380. //
  6381. // If we got a media error, post the hot fix now. We expect
  6382. // to post at most one hot fix in this routine. When we post
  6383. // it it will serialize on the current stream. Do not attempt
  6384. // hot fixes during restart, or if we do not have the bad
  6385. // cluster file yet.
  6386. //
  6387. if (!FlagOn( Vcb->VcbState, VCB_STATE_RESTART_IN_PROGRESS ) &&
  6388. (Vcb->BadClusterFileScb != NULL) &&
  6389. (!LowFileRecord ||
  6390. ((ULONG)StartingVbo >= Vcb->Mft2Scb->Header.FileSize.LowPart))) {
  6391. NtfsPostHotFix( MasterIrp,
  6392. &StartingVbo,
  6393. StartingLbo,
  6394. BytesPerCluster,
  6395. FALSE );
  6396. }
  6397. //
  6398. // Now see if we ended up with an error on this cluster, and handle
  6399. // it accordingly.
  6400. //
  6401. // If we are the one actually trying to fix this error,
  6402. // then we need to get success so that we can make the page
  6403. // valid with whatever good data we have and flush data
  6404. // to its new location.
  6405. //
  6406. // Currently we will not try to figure out if the error
  6407. // is actually on the Scb (not to mention the sector) that
  6408. // we are hot fixing, assuming that the best thing is to
  6409. // just try to charge on.
  6410. //
  6411. if (FinalPass) {
  6412. //
  6413. // Make sure he gets the error (if we still have an
  6414. // error (see above).
  6415. //
  6416. if (!FT_SUCCESS(MasterIrp->IoStatus.Status)) {
  6417. FinalStatus = MasterIrp->IoStatus.Status;
  6418. }
  6419. }
  6420. }
  6421. }
  6422. //
  6423. // If this is a Usa-protected stream, we now perform end of
  6424. // Usa processing. (Otherwise do end of cluster processing
  6425. // below.)
  6426. //
  6427. if (FlagOn(Scb->ScbState, SCB_STATE_USA_PRESENT)) {
  6428. ULONG NextOffset = IoRuns[RunNumber].BufferOffset + ByteOffset + Length;
  6429. //
  6430. // If we are not at the end of a Usa block, there is no work
  6431. // to do now.
  6432. //
  6433. if ((NextOffset & (UsaBlockSize - 1)) == 0) {
  6434. HotFixTrace(("May be verifying UsaBlock\n"));
  6435. //
  6436. // If the Usa block is ok, we may be able to knock the
  6437. // corresponding sectors out of the ClustersToRecover mask.
  6438. //
  6439. if ((IrpContext->MajorFunction != IRP_MJ_READ) ||
  6440. NtfsVerifyAndRevertUsaBlock( IrpContext,
  6441. Scb,
  6442. (PCHAR)SystemBuffer + NextOffset -
  6443. UsaBlockSize,
  6444. UsaBlockSize,
  6445. StartingVbo - (UsaBlockSize - Length) )) {
  6446. //
  6447. // If we are only fixing a Usa error anyway, or this is
  6448. // the final pass or at least not the first pass, then
  6449. // we can remove these clusters from the recover mask.
  6450. //
  6451. if (FixingUsaError || FinalPass || (FtCase != 0)) {
  6452. ULONG ShiftCount = UsaBlockSize >> Vcb->ClusterShift;
  6453. ClustersToRecover -= (ClusterMask * 2) -
  6454. (ClusterMask >> (ShiftCount - 1));
  6455. }
  6456. //
  6457. // Note, that even if we get a Usa error, we want to
  6458. // update the byte count on the final pass, because
  6459. // our reader expects that.
  6460. //
  6461. } else if (FinalPass) {
  6462. HotFixTrace(("Verify may have failed\n"));
  6463. }
  6464. }
  6465. //
  6466. // Perform end of cluster processing if not a Usa-protected stream.
  6467. //
  6468. } else {
  6469. //
  6470. // If the read succeeded and this is the final pass or at least
  6471. // not the first pass, we can take this cluster out of the cluster
  6472. // to recover mask.
  6473. //
  6474. if (FT_SUCCESS(MasterIrp->IoStatus.Status) && (FinalPass || (FtCase != 0))) {
  6475. ClustersToRecover -= ClusterMask;
  6476. }
  6477. }
  6478. }
  6479. }
  6480. }
  6481. //
  6482. // Assume we terminated the inner loops because we hit a 32 cluster boundary,
  6483. // and advance our alignment points.
  6484. //
  6485. AlignedRunNumber = RunNumber;
  6486. AlignedByteOffset = ByteOffset;
  6487. } while (RunNumber < MultipleIrpCount);
  6488. //
  6489. // Now put the final status in the MasterIrp and return
  6490. //
  6491. MasterIrp->IoStatus.Status = FinalStatus;
  6492. if (!NT_SUCCESS(FinalStatus)) {
  6493. MasterIrp->IoStatus.Information = 0;
  6494. }
  6495. HotFixTrace(("NtfsFixDataError returning IoStatus = %08lx, %08lx\n",
  6496. MasterIrp->IoStatus.Status,
  6497. MasterIrp->IoStatus.Information));
  6498. }
  6499. VOID
  6500. NtfsPostHotFix (
  6501. IN PIRP Irp,
  6502. IN PLONGLONG BadVbo,
  6503. IN LONGLONG BadLbo,
  6504. IN ULONG ByteLength,
  6505. IN BOOLEAN DelayIrpCompletion
  6506. )
  6507. /*
  6508. Routine Description:
  6509. This routine posts a hot fix request to a worker thread. It has to be posted,
  6510. because we cannot expect to be able to acquire the resources we need exclusive
  6511. when the bad cluster is discovered.
  6512. Arguments:
  6513. Irp - The Irp for a read or write request which got the error
  6514. BadVbo - The Vbo of the bad cluster for the read or write request
  6515. BadLbo - The Lbo of the bad cluster
  6516. ByteLength - Length to hot fix
  6517. DelayIrpCompletion - TRUE if the Irp should not be completed until the hot
  6518. fix is done.
  6519. Return Value:
  6520. None
  6521. --*/
  6522. {
  6523. PIRP_CONTEXT HotFixIrpContext = NULL;
  6524. PVOLUME_DEVICE_OBJECT VolumeDeviceObject;
  6525. PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation(Irp);
  6526. PFILE_OBJECT FileObject = IrpSp->FileObject;
  6527. HotFixTrace(("NTFS: Posting hotfix on file object: %08lx\n", FileObject));
  6528. //
  6529. // Allocate an IrpContext to post the hot fix to a worker thread.
  6530. //
  6531. NtfsInitializeIrpContext( Irp, FALSE, &HotFixIrpContext );
  6532. //
  6533. // First reference the file object so that it will not go away
  6534. // until the hot fix is done. (We cannot increment the CloseCount
  6535. // in the Scb, since we are not properly synchronized.)
  6536. //
  6537. ObReferenceObject( FileObject );
  6538. HotFixIrpContext->OriginatingIrp = (PIRP)FileObject;
  6539. HotFixIrpContext->ScbSnapshot.AllocationSize = *BadVbo;
  6540. HotFixIrpContext->ScbSnapshot.FileSize = BadLbo;
  6541. ((ULONG)HotFixIrpContext->ScbSnapshot.ValidDataLength) = ByteLength;
  6542. if (DelayIrpCompletion) {
  6543. #ifdef _WIN64
  6544. //
  6545. // (fcf) The IrpToComplete pointer is stashed into the high half of a
  6546. // LONGLONG. This is problematic on WIN64, so we have to store it
  6547. // somewhere else on 64-bit platforms. IrpContext->SharedScb is unused
  6548. // in this codepath (asserted below), so we'll use that.
  6549. //
  6550. // Its possible that this change could be made for 32-bit platforms as
  6551. // well, if only to avoid this conditional compilation, but I would
  6552. // prefer the original authors to sanity-check this first.
  6553. //
  6554. // See also NtfsPerformHotFix() where this pointer is extracted.
  6555. //
  6556. ASSERT(HotFixIrpContext->SharedScbSize == 0);
  6557. ASSERT(HotFixIrpContext->SharedScb == NULL);
  6558. (PIRP)HotFixIrpContext->SharedScb = Irp;
  6559. #else // !_WIN64
  6560. ((PLARGE_INTEGER)&HotFixIrpContext->ScbSnapshot.ValidDataLength)->HighPart = (ULONG)Irp;
  6561. #endif // _WIN64
  6562. } else {
  6563. ((PLARGE_INTEGER)&HotFixIrpContext->ScbSnapshot.ValidDataLength)->HighPart = 0;
  6564. }
  6565. //
  6566. // Locate the volume device object and Vcb that we are trying to access
  6567. //
  6568. VolumeDeviceObject = (PVOLUME_DEVICE_OBJECT)IrpSp->DeviceObject;
  6569. HotFixIrpContext->Vcb = &VolumeDeviceObject->Vcb;
  6570. //
  6571. // Send it off.....
  6572. //
  6573. ExInitializeWorkItem( &HotFixIrpContext->WorkQueueItem,
  6574. (PWORKER_THREAD_ROUTINE)NtfsPerformHotFix,
  6575. (PVOID)HotFixIrpContext );
  6576. ExQueueWorkItem( &HotFixIrpContext->WorkQueueItem, CriticalWorkQueue );
  6577. }
  6578. VOID
  6579. NtfsPerformHotFix (
  6580. IN PIRP_CONTEXT IrpContext
  6581. )
  6582. /*++
  6583. Routine Description:
  6584. This routine implements implements a hot fix that was scheduled
  6585. above, extracting its parameters from the IrpContext initialized
  6586. above. The hot fix must be for a contiguous range of Lcns (usually 1).
  6587. Arguments:
  6588. IrpContext - Supplies the IrpContext with the hot fix information
  6589. Return Value:
  6590. None.
  6591. --*/
  6592. {
  6593. TOP_LEVEL_CONTEXT TopLevelContext;
  6594. PTOP_LEVEL_CONTEXT ThreadTopLevelContext;
  6595. ATTRIBUTE_ENUMERATION_CONTEXT Context;
  6596. TYPE_OF_OPEN TypeOfOpen;
  6597. PVCB Vcb;
  6598. PFCB Fcb;
  6599. PSCB Scb;
  6600. PCCB Ccb;
  6601. PSCB BadClusterScb;
  6602. VCN BadVcn;
  6603. LCN LcnTemp, BadLcn;
  6604. LONGLONG ClusterCount;
  6605. NTSTATUS Status;
  6606. PVOID Buffer;
  6607. PIRP IrpToComplete;
  6608. ULONG ClustersToFix;
  6609. PBCB Bcb = NULL;
  6610. ERESOURCE_THREAD BcbOwner = 0;
  6611. BOOLEAN PerformFullCleanup = TRUE;
  6612. NTSTATUS CompletionStatus = STATUS_SUCCESS;
  6613. PSCB OriginalScb = NULL;
  6614. PSCB NewScb = NULL;
  6615. BOOLEAN PagingFile;
  6616. //
  6617. // Extract a description of the cluster to be fixed.
  6618. //
  6619. PFILE_OBJECT FileObject = (PFILE_OBJECT)IrpContext->OriginatingIrp;
  6620. VBO BadVbo = *(PVBO)&IrpContext->ScbSnapshot.AllocationSize;
  6621. PAGED_CODE();
  6622. ThreadTopLevelContext = NtfsInitializeTopLevelIrp( &TopLevelContext, TRUE, FALSE );
  6623. ASSERT( ThreadTopLevelContext == &TopLevelContext );
  6624. ASSERT( FlagOn( IrpContext->State, IRP_CONTEXT_STATE_ALLOC_FROM_POOL ));
  6625. NtfsUpdateIrpContextWithTopLevel( IrpContext, ThreadTopLevelContext );
  6626. //
  6627. // Initialize our local variables
  6628. //
  6629. TypeOfOpen = NtfsDecodeFileObject( IrpContext, FileObject, &Vcb, &Fcb, &Scb, &Ccb, FALSE );
  6630. BadClusterScb = Vcb->BadClusterFileScb;
  6631. BadVcn = LlClustersFromBytesTruncate( Vcb, BadVbo );
  6632. BadLcn = LlClustersFromBytesTruncate( Vcb, IrpContext->ScbSnapshot.FileSize );
  6633. ClustersToFix = ClustersFromBytes( Vcb, ((ULONG)IrpContext->ScbSnapshot.ValidDataLength) );
  6634. #ifdef _WIN64
  6635. //
  6636. // See comments in NtfsPostHotFix() regarding the location of IrpToComplete.
  6637. //
  6638. ASSERT(IrpContext->SharedScbSize == 0);
  6639. IrpToComplete = (PIRP)IrpContext->SharedScb;
  6640. //
  6641. // Reset SharedScb back to NULL just to be safe.
  6642. //
  6643. IrpContext->SharedScb = NULL;
  6644. #else // !_WIN64
  6645. IrpToComplete = (PIRP)(((PLARGE_INTEGER)&IrpContext->ScbSnapshot.ValidDataLength)->HighPart);
  6646. #endif
  6647. //
  6648. // Remember the status to complete the original Irp with.
  6649. //
  6650. if (IrpToComplete != NULL) {
  6651. CompletionStatus = IrpToComplete->IoStatus.Status;
  6652. }
  6653. NtfsInitializeAttributeContext( &Context );
  6654. //
  6655. // Set up for synchronous operation
  6656. //
  6657. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_WAIT );
  6658. //
  6659. // Show that we are performing a HotFix. Note we are not processing
  6660. // an Irp now.
  6661. //
  6662. IrpContext->OriginatingIrp = NULL;
  6663. TopLevelContext.VboBeingHotFixed = BadVbo;
  6664. TopLevelContext.ScbBeingHotFixed = Scb;
  6665. //
  6666. // Acquire the Vcb before acquiring the paging Io resource.
  6667. //
  6668. NtfsAcquireExclusiveVcb( IrpContext, Vcb, TRUE );
  6669. ASSERT( 1 == ExIsResourceAcquiredSharedLite( &Vcb->Resource ) );
  6670. //
  6671. // While we're holding the Vcb, let's make sure the volume is still mounted.
  6672. // If it isn't mounted, we need to clean up and get out.
  6673. //
  6674. if (!FlagOn( Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED )) {
  6675. NtfsCleanupAttributeContext( IrpContext, &Context );
  6676. NtfsReleaseVcb( IrpContext, Vcb );
  6677. NtfsCompleteRequest( IrpContext, IrpToComplete, CompletionStatus );
  6678. return;
  6679. }
  6680. //
  6681. // Acquire the paging io resource for this Fcb if it exists.
  6682. //
  6683. if (Scb->Header.PagingIoResource != NULL) {
  6684. NtfsAcquireExclusivePagingIo( IrpContext, Fcb );
  6685. }
  6686. //
  6687. // Just because we are hot fixing one file, it is possible that someone
  6688. // will log to another file and try to lookup Lcns. So we will acquire
  6689. // all files. Example: Hot fix is in Mft, and SetFileInfo has only the
  6690. // file acquired, and will log something to the Mft, and cause Lcns to be
  6691. // looked up.
  6692. //
  6693. NtfsAcquireAllFiles( IrpContext, Vcb, TRUE, FALSE, FALSE );
  6694. //
  6695. // Don't attempt to hotfix if the scb is deleted
  6696. //
  6697. if (!FlagOn( Scb->ScbState, SCB_STATE_ATTRIBUTE_DELETED )) {
  6698. //
  6699. // Catch all exceptions. Note, we should not get any I/O error exceptions
  6700. // on our device.
  6701. //
  6702. try {
  6703. PagingFile = FlagOn( Fcb->FcbState, FCB_STATE_PAGING_FILE ) && FlagOn( Scb->ScbState, SCB_STATE_UNNAMED_DATA );
  6704. //
  6705. // Hotfixing the paging file is tricky because paging file i/o acquires no resources
  6706. // So we create a shadow scb to do the work in
  6707. //
  6708. if (PagingFile) {
  6709. UNICODE_STRING Mirror;
  6710. BOOLEAN Existing;
  6711. VCN Vcn;
  6712. LCN Lcn;
  6713. LONGLONG ClusterCount;
  6714. #ifdef BENL_DBG
  6715. KdPrint(( "NTFS: hotfixing pagefile\n "));
  6716. #endif
  6717. Mirror.Length = Mirror.MaximumLength = 12;
  6718. Mirror.Buffer = L"Mirror";
  6719. NewScb = NtfsCreateScb( IrpContext, Scb->Fcb, $DATA, &Mirror, FALSE, &Existing );
  6720. ASSERT( Existing == FALSE );
  6721. ASSERT( FlagOn( NewScb->ScbState, SCB_STATE_NONPAGED ));
  6722. //
  6723. // Null out the name so we think it points to real unnamed $data
  6724. //
  6725. NewScb->AttributeName.Length = 0;
  6726. //
  6727. // Now update the mirror from the attribute to get the header info and
  6728. // snapshot it
  6729. //
  6730. NtfsUpdateScbFromAttribute( IrpContext, NewScb, NULL );
  6731. NtfsSnapshotScb( IrpContext, NewScb );
  6732. //
  6733. // Load the real scb's mcb cluster info into the mirror
  6734. //
  6735. for (Vcn = 0; Vcn < LlClustersFromBytes( Vcb, Scb->Header.AllocationSize.QuadPart ); Vcn += ClusterCount ) {
  6736. if (NtfsLookupNtfsMcbEntry( &Scb->Mcb, Vcn, &Lcn, &ClusterCount, NULL, NULL, NULL, NULL )) {
  6737. NtfsAddNtfsMcbEntry( &NewScb->Mcb, Vcn, Lcn, ClusterCount, FALSE );
  6738. } else {
  6739. ASSERTMSG( "Missing range in paging file.\n", FALSE );
  6740. break;
  6741. }
  6742. }
  6743. OriginalScb = Scb;
  6744. Scb = NewScb;
  6745. }
  6746. for (; ClustersToFix != 0; ClustersToFix--) {
  6747. //
  6748. // Lookup the bad cluster to see if it is already in the bad cluster
  6749. // file, and do nothing if it is.
  6750. //
  6751. if (!NtfsLookupAllocation( IrpContext,
  6752. BadClusterScb,
  6753. BadLcn,
  6754. &LcnTemp,
  6755. &ClusterCount,
  6756. NULL,
  6757. NULL ) &&
  6758. NtfsLookupAllocation( IrpContext,
  6759. Scb,
  6760. BadVcn,
  6761. &LcnTemp,
  6762. &ClusterCount,
  6763. NULL,
  6764. NULL ) &&
  6765. (LcnTemp == BadLcn)) {
  6766. //
  6767. // Pin the bad cluster in memory, so that we will not lose whatever data
  6768. // we have for it. (This data will be the correct data if we are talking
  6769. // to the FT driver or got a write error, otherwise it may be all -1's.)
  6770. //
  6771. // Do not try to do this if we are holding on to the original Irp, as that
  6772. // will cause a collided page wait deadlock.
  6773. //
  6774. if (IrpToComplete == NULL) {
  6775. ULONG Count = 100;
  6776. NtfsCreateInternalAttributeStream( IrpContext,
  6777. Scb,
  6778. FALSE,
  6779. &NtfsInternalUseFile[PERFORMHOTFIX_FILE_NUMBER] );
  6780. //
  6781. // We loop as long as we get an data error. We want our
  6782. // thread to read from the disk because we will recognize
  6783. // an I/O request started in PerformHotFix and ignore the
  6784. // data error. The cases where we do get an error will
  6785. // probably be from Mm intercepting this request because
  6786. // of a collided read with another thread.
  6787. //
  6788. do {
  6789. Status = STATUS_SUCCESS;
  6790. try {
  6791. NtfsPinStream( IrpContext, Scb, BadVbo, Vcb->BytesPerCluster, &Bcb, &Buffer );
  6792. } except ((!FsRtlIsNtstatusExpected( Status = GetExceptionCode())
  6793. || FsRtlIsTotalDeviceFailure( Status ))
  6794. ? EXCEPTION_CONTINUE_SEARCH
  6795. : EXCEPTION_EXECUTE_HANDLER) {
  6796. NOTHING;
  6797. }
  6798. } while (Count-- && (Status != STATUS_SUCCESS));
  6799. if (Status != STATUS_SUCCESS) {
  6800. NtfsRaiseStatus( IrpContext, Status, NULL, NULL );
  6801. }
  6802. }
  6803. //
  6804. // If we're hotfixing the logfile set the owner bcb owner to thread & 0x1 so
  6805. // we don't run into trouble if the logged changes to it use the same page
  6806. // Lfs will also set the bcb owner and our release will fail because the threadowner
  6807. // has been changed
  6808. //
  6809. if (Scb == Vcb->LogFileScb) {
  6810. BcbOwner = (ERESOURCE_THREAD) (((ULONG_PTR) PsGetCurrentThread()) | 1);
  6811. CcSetBcbOwnerPointer( Bcb, (PVOID)BcbOwner );
  6812. }
  6813. //
  6814. // Now deallocate the bad cluster in this stream in the bitmap only,
  6815. // since in general we do not support sparse deallocation in the file
  6816. // record. We will update the allocation below.
  6817. //
  6818. #if DBG
  6819. KdPrint(("NTFS: Freeing Bad Vcn: %08lx, %08lx\n", ((ULONG)BadVcn), ((PLARGE_INTEGER)&BadVcn)->HighPart));
  6820. #endif
  6821. //
  6822. // Deallocate clusters directly - so the change is only in memory
  6823. // Because we're not using the normal NtfsDeleteAllocation its necc. to
  6824. // manually create the snapshots that will correctly unload the modified range in
  6825. // case of a raise
  6826. //
  6827. NtfsSnapshotScb( IrpContext, Scb );
  6828. if (BadVcn < Scb->ScbSnapshot->LowestModifiedVcn) {
  6829. Scb->ScbSnapshot->LowestModifiedVcn = BadVcn;
  6830. }
  6831. if (BadVcn > Scb->ScbSnapshot->HighestModifiedVcn) {
  6832. Scb->ScbSnapshot->HighestModifiedVcn = BadVcn;
  6833. }
  6834. NtfsDeallocateClusters( IrpContext,
  6835. Vcb,
  6836. Scb,
  6837. BadVcn,
  6838. BadVcn,
  6839. &Scb->TotalAllocated );
  6840. //
  6841. // Look up the bad cluster attribute.
  6842. //
  6843. NtfsLookupAttributeForScb( IrpContext, BadClusterScb, NULL, &Context );
  6844. //
  6845. // Now append this cluster to the bad cluster file
  6846. //
  6847. #if DBG
  6848. KdPrint(("NTFS: Retiring Bad Lcn: %08lx, %08lx\n", ((ULONG)BadLcn), ((PLARGE_INTEGER)&BadLcn)->HighPart));
  6849. #endif
  6850. NtfsAddBadCluster( IrpContext, Vcb, BadLcn );
  6851. //
  6852. // Now update the file record for the bad cluster file to
  6853. // show the new cluster.
  6854. //
  6855. NtfsAddAttributeAllocation( IrpContext,
  6856. BadClusterScb,
  6857. &Context,
  6858. &BadLcn,
  6859. (PVCN)&Li1 );
  6860. //
  6861. // Now reallocate a cluster to the original stream to replace the bad cluster.
  6862. //
  6863. HotFixTrace(("NTFS: Reallocating Bad Vcn\n"));
  6864. NtfsAddAllocation( IrpContext, NULL, Scb, BadVcn, (LONGLONG)1, FALSE, NULL );
  6865. //
  6866. // Unpin the pages now so that the flush won't block if we are hot-fixing the Mft.
  6867. //
  6868. NtfsCleanupAttributeContext( IrpContext, &Context );
  6869. //
  6870. // Now that there is a new home for the data, mark the page dirty, unpin
  6871. // it and flush it out to its new home.
  6872. //
  6873. if (IrpToComplete == NULL) {
  6874. LONGLONG BiasedBadVbo = BadVbo;
  6875. CcSetDirtyPinnedData( Bcb, NULL );
  6876. if (Scb != Vcb->LogFileScb) {
  6877. NtfsUnpinBcb( IrpContext, &Bcb );
  6878. } else {
  6879. NtfsUnpinBcbForThread( IrpContext, &Bcb, BcbOwner );
  6880. }
  6881. //
  6882. // Flush the stream. Ignore the status - if we get something like
  6883. // a log file full, the Lazy Writer will eventually write the page.
  6884. // Bias the write if this is the Usn Journal.
  6885. //
  6886. if (FlagOn( Scb->ScbPersist, SCB_PERSIST_USN_JOURNAL )) {
  6887. BiasedBadVbo -= Scb->Vcb->UsnCacheBias;
  6888. }
  6889. (VOID)NtfsFlushUserStream( IrpContext, Scb, &BiasedBadVbo, 1 );
  6890. }
  6891. //
  6892. // Commit the transaction.
  6893. //
  6894. NtfsCommitCurrentTransaction( IrpContext );
  6895. //
  6896. // Now that the data is flushed to its new location, we will write the
  6897. // hot fix record. We don't write the log record if we are
  6898. // fixing the logfile. Instead we explicitly flush the Mft record
  6899. // for the log file. The log file is one file where we expect
  6900. // to be able to read the mapping pairs on restart.
  6901. //
  6902. if (Scb == Vcb->LogFileScb) {
  6903. if (Vcb->MftScb->FileObject != NULL) {
  6904. CcFlushCache( &Vcb->MftScb->NonpagedScb->SegmentObject,
  6905. &Li0,
  6906. Vcb->BytesPerFileRecordSegment * ATTRIBUTE_DEF_TABLE_NUMBER,
  6907. NULL );
  6908. }
  6909. } else {
  6910. (VOID) NtfsWriteLog( IrpContext,
  6911. Scb,
  6912. NULL,
  6913. HotFix,
  6914. NULL,
  6915. 0,
  6916. Noop,
  6917. NULL,
  6918. 0,
  6919. LlBytesFromClusters( Vcb, BadVcn ),
  6920. 0,
  6921. 0,
  6922. Vcb->BytesPerCluster );
  6923. //
  6924. // And we have to commit that one, too.
  6925. //
  6926. NtfsCommitCurrentTransaction( IrpContext );
  6927. }
  6928. //
  6929. // Now flush the log to insure that the hot fix gets remembered,
  6930. // especially important if this is the paging file.
  6931. //
  6932. LfsFlushToLsn( Vcb->LogHandle, LiMax );
  6933. HotFixTrace(("NTFS: Bad Cluster replaced\n"));
  6934. }
  6935. //
  6936. // Get ready for another possible pass through the loop
  6937. //
  6938. BadVcn = BadVcn + 1;
  6939. BadLcn = BadLcn + 1;
  6940. ASSERT( NULL == Bcb );
  6941. }
  6942. //
  6943. // Move the in memory allocation from the mirror of the paging file
  6944. // back to the real scb in an atomic matter
  6945. //
  6946. if (NewScb != NULL) {
  6947. NtfsSwapMcbs( &NewScb->Mcb, &OriginalScb->Mcb );
  6948. NtfsDeleteScb( IrpContext, &NewScb );
  6949. Scb = OriginalScb;
  6950. }
  6951. } except(NtfsExceptionFilter( IrpContext, GetExceptionInformation() )) {
  6952. NTSTATUS ExceptionCode = GetExceptionCode();
  6953. //
  6954. // We are not prepared to have our IrpContext requeued, so just
  6955. // consider these cases to be bad luck. We will put a status of
  6956. // data error in the irp context and pass that code to the process
  6957. // exception routine.
  6958. //
  6959. if ((ExceptionCode == STATUS_LOG_FILE_FULL) ||
  6960. (ExceptionCode == STATUS_CANT_WAIT)) {
  6961. ExceptionCode = IrpContext->ExceptionStatus = STATUS_DATA_ERROR;
  6962. }
  6963. //
  6964. // We won't be calling ReleaseAllFiles. Decrement the Acquire count
  6965. // before releasing the Fcbs.
  6966. //
  6967. ASSERT( Vcb->AcquireFilesCount != 0 );
  6968. Vcb->AcquireFilesCount -= 1;
  6969. //
  6970. // Cleanup the temporary mirror scb (if there is one) while we have an
  6971. // irpcontext
  6972. //
  6973. if (NewScb != NULL) {
  6974. NtfsDeleteScb( IrpContext, &NewScb );
  6975. Scb = OriginalScb;
  6976. }
  6977. NtfsProcessException( IrpContext, NULL, ExceptionCode );
  6978. //
  6979. // The IrpContext is really gone now.
  6980. //
  6981. IrpContext = NULL;
  6982. PerformFullCleanup = FALSE;
  6983. ASSERT( IoGetTopLevelIrp() != (PIRP) &TopLevelContext );
  6984. }
  6985. }
  6986. //
  6987. // Let any errors be handled in the except clause above, however we
  6988. // cleanup on the way out, because for example we need the IrpContext
  6989. // still in the except clause.
  6990. //
  6991. try {
  6992. NtfsCleanupAttributeContext( IrpContext, &Context );
  6993. if (Scb != Vcb->LogFileScb) {
  6994. NtfsUnpinBcb( IrpContext, &Bcb );
  6995. } else {
  6996. NtfsUnpinBcbForThread( IrpContext, &Bcb, BcbOwner );
  6997. }
  6998. //
  6999. // If we aborted this operation then all of the file resources have
  7000. // already been released.
  7001. //
  7002. if (PerformFullCleanup) {
  7003. NtfsReleaseAllFiles( IrpContext, Vcb, FALSE );
  7004. NtfsReleaseVcb( IrpContext, Vcb );
  7005. //
  7006. // The files have been released but not the Vcb or the volume bitmap.
  7007. //
  7008. } else {
  7009. if (Vcb->BitmapScb != NULL
  7010. && NtfsIsExclusiveScb( Vcb->BitmapScb )) {
  7011. NtfsReleaseResource( IrpContext, Vcb->BitmapScb );
  7012. }
  7013. //
  7014. // We need to release the Vcb twice since we specifically acquire
  7015. // it once and then again with all the files.
  7016. //
  7017. NtfsReleaseVcb( IrpContext, Vcb );
  7018. NtfsReleaseVcb( IrpContext, Vcb );
  7019. }
  7020. ObDereferenceObject( FileObject );
  7021. //
  7022. // The IrpContext and Irp will already be NULL if they have been completed already.
  7023. //
  7024. NtfsCompleteRequest( IrpContext, IrpToComplete, CompletionStatus );
  7025. } except(EXCEPTION_EXECUTE_HANDLER) {
  7026. NOTHING;
  7027. }
  7028. ASSERT( IoGetTopLevelIrp() != (PIRP) &TopLevelContext );
  7029. }
  7030. BOOLEAN
  7031. NtfsGetReservedBuffer (
  7032. IN PFCB ThisFcb,
  7033. OUT PVOID *Buffer,
  7034. OUT PULONG Length,
  7035. IN UCHAR Need2
  7036. )
  7037. /*++
  7038. Routine Description:
  7039. This routine allocates the reserved buffers depending on the needs of
  7040. the caller. If the caller might require two buffers then we will allocate
  7041. buffers 1 or 2. Otherwise we can allocate any of the three.
  7042. Arguments:
  7043. ThisFcb - This is the Fcb where the io is occurring.
  7044. Buffer - Address to store the address of the allocated buffer.
  7045. Length - Address to store the length of the returned buffer.
  7046. Need2 - Zero if only one buffer needed. Either 1 or 2 if two buffers
  7047. might be needed. Buffer 2 can be acquired recursively. If buffer
  7048. 1 is needed and the current thread already owns buffer 1 then
  7049. grant buffer three instead.
  7050. Return Value:
  7051. BOOLEAN - Indicates whether the buffer was acquired.
  7052. --*/
  7053. {
  7054. BOOLEAN Allocated = FALSE;
  7055. PVOID CurrentThread;
  7056. //
  7057. // Capture the current thread and the Fcb for the file we are acquiring
  7058. // the buffer for.
  7059. //
  7060. CurrentThread = (PVOID) PsGetCurrentThread();
  7061. ExAcquireFastMutexUnsafe( &NtfsReservedBufferMutex );
  7062. //
  7063. // If we need two buffers then allocate either buffer 1 or buffer 2.
  7064. // We allow this caller to get a buffer if
  7065. //
  7066. // - He already owns one of these buffers (or)
  7067. //
  7068. // - Neither of the 2 buffers are allocated (and)
  7069. // - No other thread has a buffer on behalf of this file
  7070. //
  7071. if (Need2) {
  7072. if ((NtfsReservedBufferThread == CurrentThread) ||
  7073. (!FlagOn( NtfsReservedInUse, 3 ) &&
  7074. ((NtfsReserved3Fcb != ThisFcb) ||
  7075. (NtfsReserved3Thread == CurrentThread)))) {
  7076. NtfsReservedBufferThread = CurrentThread;
  7077. NtfsReserved12Fcb = ThisFcb;
  7078. //
  7079. // Check whether the caller wants buffer 1 or buffer 2.
  7080. //
  7081. if (Need2 == RESERVED_BUFFER_TWO_NEEDED) {
  7082. //
  7083. // If we don't own buffer 1 then reserve it now.
  7084. //
  7085. if (!FlagOn( NtfsReservedInUse, 1 )) {
  7086. NtfsReserved1Thread = CurrentThread;
  7087. SetFlag( NtfsReservedInUse, 1 );
  7088. *Buffer = NtfsReserved1;
  7089. *Length = LARGE_BUFFER_SIZE;
  7090. Allocated = TRUE;
  7091. } else if (!FlagOn( NtfsReservedInUse, 4 )) {
  7092. NtfsReserved3Fcb = ThisFcb;
  7093. NtfsReserved3Thread = CurrentThread;
  7094. SetFlag( NtfsReservedInUse, 4 );
  7095. *Buffer = NtfsReserved3;
  7096. *Length = LARGE_BUFFER_SIZE;
  7097. Allocated = TRUE;
  7098. }
  7099. } else {
  7100. ASSERT( Need2 == RESERVED_BUFFER_WORKSPACE_NEEDED );
  7101. NtfsReserved2Thread = CurrentThread;
  7102. SetFlag( NtfsReservedInUse, 2 );
  7103. *Buffer = NtfsReserved2;
  7104. *Length = WORKSPACE_BUFFER_SIZE;
  7105. NtfsReserved2Count += 1;
  7106. Allocated = TRUE;
  7107. }
  7108. }
  7109. //
  7110. // We only need 1 buffer. If this thread is the exclusive owner then
  7111. // we know it is safe to use buffer 2. The data in this buffer doesn't
  7112. // need to be preserved across a recursive call.
  7113. //
  7114. } else if (NtfsReservedBufferThread == CurrentThread) {
  7115. NtfsReserved2Thread = CurrentThread;
  7116. SetFlag( NtfsReservedInUse, 2 );
  7117. *Buffer = NtfsReserved2;
  7118. *Length = LARGE_BUFFER_SIZE;
  7119. NtfsReserved2Count += 1;
  7120. Allocated = TRUE;
  7121. //
  7122. // We only need 1 buffer. Try for buffer 3 first.
  7123. //
  7124. } else if (!FlagOn( NtfsReservedInUse, 4)) {
  7125. //
  7126. // Check if the owner of the first two buffers is operating in the
  7127. // same file but is a different thread. We can't grant another buffer
  7128. // for a different stream in the same file.
  7129. //
  7130. if (ThisFcb != NtfsReserved12Fcb) {
  7131. NtfsReserved3Fcb = ThisFcb;
  7132. NtfsReserved3Thread = CurrentThread;
  7133. SetFlag( NtfsReservedInUse, 4 );
  7134. *Buffer = NtfsReserved3;
  7135. *Length = LARGE_BUFFER_SIZE;
  7136. Allocated = TRUE;
  7137. }
  7138. //
  7139. // If there is no exclusive owner then we can use either of the first
  7140. // two buffers. Note that getting one of the first two buffers will
  7141. // lock out the guy who needs two buffers.
  7142. //
  7143. } else if (NtfsReservedBufferThread == NULL) {
  7144. if (!FlagOn( NtfsReservedInUse, 2 )) {
  7145. NtfsReserved2Thread = CurrentThread;
  7146. SetFlag( NtfsReservedInUse, 2 );
  7147. *Buffer = NtfsReserved2;
  7148. *Length = LARGE_BUFFER_SIZE;
  7149. NtfsReserved2Count += 1;
  7150. Allocated = TRUE;
  7151. } else if (!FlagOn( NtfsReservedInUse, 1 )) {
  7152. NtfsReserved1Thread = CurrentThread;
  7153. SetFlag( NtfsReservedInUse, 1 );
  7154. *Buffer = NtfsReserved1;
  7155. *Length = LARGE_BUFFER_SIZE;
  7156. Allocated = TRUE;
  7157. }
  7158. }
  7159. ExReleaseFastMutexUnsafe(&NtfsReservedBufferMutex);
  7160. return Allocated;
  7161. }
  7162. BOOLEAN
  7163. NtfsFreeReservedBuffer (
  7164. IN PVOID Buffer
  7165. )
  7166. {
  7167. BOOLEAN Deallocated = FALSE;
  7168. ExAcquireFastMutexUnsafe(&NtfsReservedBufferMutex);
  7169. if (Buffer == NtfsReserved1) {
  7170. ASSERT( FlagOn( NtfsReservedInUse, 1 ));
  7171. ClearFlag( NtfsReservedInUse, 1 );
  7172. NtfsReserved1Thread = NULL;
  7173. if (!FlagOn( NtfsReservedInUse, 2)) {
  7174. NtfsReservedBufferThread = NULL;
  7175. NtfsReserved12Fcb = NULL;
  7176. }
  7177. Deallocated = TRUE;
  7178. } else if (Buffer == NtfsReserved2) {
  7179. ASSERT( FlagOn( NtfsReservedInUse, 2 ));
  7180. NtfsReserved2Count -= 1;
  7181. if (NtfsReserved2Count == 0) {
  7182. ClearFlag( NtfsReservedInUse, 2 );
  7183. NtfsReserved2Thread = NULL;
  7184. if (!FlagOn( NtfsReservedInUse, 1)) {
  7185. NtfsReservedBufferThread = NULL;
  7186. NtfsReserved12Fcb = NULL;
  7187. }
  7188. }
  7189. Deallocated = TRUE;
  7190. } else if (Buffer == NtfsReserved3) {
  7191. ASSERT( FlagOn( NtfsReservedInUse, 4 ));
  7192. ClearFlag( NtfsReservedInUse, 4 );
  7193. Deallocated = TRUE;
  7194. NtfsReserved3Thread = NULL;
  7195. NtfsReserved3Fcb = NULL;
  7196. }
  7197. ExReleaseFastMutexUnsafe(&NtfsReservedBufferMutex);
  7198. return Deallocated;
  7199. }
  7200. NTSTATUS
  7201. NtfsDefragFile (
  7202. IN PIRP_CONTEXT IrpContext,
  7203. IN PIRP Irp
  7204. )
  7205. /*++
  7206. Routine Description:
  7207. Direct defrag. This routines modifies the input buffer to track progress. So the
  7208. FSCTL must always be buffered.
  7209. Arguments:
  7210. Irp - Supplies the Irp being processed.
  7211. Return Value:
  7212. NTSTATUS - The return status for the operation.
  7213. --*/
  7214. {
  7215. NTSTATUS Status;
  7216. PIO_STACK_LOCATION IrpSp;
  7217. PIO_STACK_LOCATION NextIrpSp;
  7218. ULONG FsControlCode;
  7219. PFILE_OBJECT FileObject;
  7220. TYPE_OF_OPEN TypeOfOpen;
  7221. PVCB Vcb;
  7222. PFCB Fcb;
  7223. PSCB Scb;
  7224. PCCB Ccb;
  7225. ATTRIBUTE_ENUMERATION_CONTEXT AttrContext;
  7226. #if defined( _WIN64 )
  7227. MOVE_FILE_DATA MoveDataLocal;
  7228. #endif
  7229. PMOVE_FILE_DATA MoveData;
  7230. LONGLONG FileOffset;
  7231. PMDL Mdl = NULL;
  7232. BOOLEAN AcquiredScb = FALSE;
  7233. BOOLEAN AcquiredAllFiles = FALSE;
  7234. BOOLEAN AcquiredVcb = FALSE;
  7235. ULONG DeletePendingFailureCountsLeft;
  7236. extern POBJECT_TYPE *IoFileObjectType;
  7237. PVOID Buffer = NULL;
  7238. ULONG BufferLength;
  7239. NTFS_IO_CONTEXT NtfsIoContext;
  7240. BOOLEAN AcquiredBitmap = FALSE;
  7241. BOOLEAN AcquiredMft = FALSE;
  7242. BOOLEAN FreeRecentlyDeallocated = FALSE;
  7243. PAGED_CODE( );
  7244. //
  7245. // Always make this synchronous for MoveFile
  7246. // We should never be in the FSP for this. Otherwise the user handle
  7247. // is invalid. Also disable quota accounting since defrag doesn't affect it
  7248. // Otherwise we might trigger it while moving attributes around due to mapping pair
  7249. // changes and deadlock
  7250. //
  7251. SetFlag( IrpContext->State, IRP_CONTEXT_STATE_WAIT | IRP_CONTEXT_STATE_QUOTA_DISABLE );
  7252. ASSERT( !FlagOn( IrpContext->State, IRP_CONTEXT_STATE_IN_FSP ));
  7253. //
  7254. // Get the current Irp stack location and save some references.
  7255. //
  7256. IrpSp = IoGetCurrentIrpStackLocation( Irp );
  7257. NextIrpSp = IoGetNextIrpStackLocation( Irp );
  7258. FsControlCode = IrpSp->Parameters.FileSystemControl.FsControlCode;
  7259. DebugTrace( +1, Dbg, ("NtfsMoveFile, FsControlCode = %08lx\n", FsControlCode) );
  7260. //
  7261. // Extract and decode the file object and check for type of open.
  7262. //
  7263. TypeOfOpen = NtfsDecodeFileObject( IrpContext, IrpSp->FileObject, &Vcb, &Fcb, &Scb, &Ccb, TRUE );
  7264. if ((Ccb == NULL) || !FlagOn( Ccb->AccessFlags, MANAGE_VOLUME_ACCESS )) {
  7265. NtfsCompleteRequest( IrpContext, Irp, STATUS_ACCESS_DENIED );
  7266. return STATUS_ACCESS_DENIED;
  7267. }
  7268. #if defined(_WIN64)
  7269. //
  7270. // Win32/64 thunking code
  7271. //
  7272. if (IoIs32bitProcess( Irp )) {
  7273. PMOVE_FILE_DATA32 MoveData32;
  7274. if (IrpSp->Parameters.FileSystemControl.InputBufferLength < sizeof( MOVE_FILE_DATA32 )) {
  7275. NtfsCompleteRequest( IrpContext, Irp, STATUS_BUFFER_TOO_SMALL );
  7276. return STATUS_BUFFER_TOO_SMALL;
  7277. }
  7278. MoveData32 = (PMOVE_FILE_DATA32) Irp->AssociatedIrp.SystemBuffer;
  7279. MoveDataLocal.ClusterCount = MoveData32->ClusterCount;
  7280. MoveDataLocal.FileHandle = (HANDLE)(ULONG_PTR)(LONG) MoveData32->FileHandle;
  7281. MoveDataLocal.StartingLcn.QuadPart = MoveData32->StartingLcn.QuadPart;
  7282. MoveDataLocal.StartingVcn.QuadPart = MoveData32->StartingVcn.QuadPart;
  7283. MoveData = &MoveDataLocal;
  7284. } else {
  7285. #endif
  7286. //
  7287. // Get the input buffer pointer and check its length.
  7288. //
  7289. if (IrpSp->Parameters.FileSystemControl.InputBufferLength < sizeof( MOVE_FILE_DATA )) {
  7290. NtfsCompleteRequest( IrpContext, Irp, STATUS_BUFFER_TOO_SMALL );
  7291. return STATUS_BUFFER_TOO_SMALL;
  7292. }
  7293. MoveData = Irp->AssociatedIrp.SystemBuffer;
  7294. #if defined(_WIN64)
  7295. }
  7296. #endif
  7297. //
  7298. // Try to get a pointer to the file object from the handle passed in.
  7299. // Remember that we need to dereference this as some point but don't
  7300. // do it right away in case some gets in before we acquire it.
  7301. //
  7302. Status = ObReferenceObjectByHandle( MoveData->FileHandle,
  7303. 0,
  7304. *IoFileObjectType,
  7305. Irp->RequestorMode,
  7306. &FileObject,
  7307. NULL );
  7308. if (!NT_SUCCESS(Status)) {
  7309. NtfsCompleteRequest( IrpContext, Irp, Status );
  7310. return Status;
  7311. }
  7312. //
  7313. // Check that this file object is opened on the same volume as the
  7314. // DASD handle used to call this routine.
  7315. //
  7316. if (FileObject->Vpb != Vcb->Vpb) {
  7317. ObDereferenceObject( FileObject );
  7318. NtfsCompleteRequest( IrpContext, Irp, STATUS_INVALID_PARAMETER );
  7319. return STATUS_INVALID_PARAMETER;
  7320. }
  7321. //
  7322. // Now decode this FileObject. We don't care to raise on dismounts here
  7323. // because we check for that further down anyway. Hence, RaiseOnError=FALSE.
  7324. //
  7325. TypeOfOpen = NtfsDecodeFileObject( IrpContext, FileObject, &Vcb, &Fcb, &Scb, &Ccb, FALSE );
  7326. //
  7327. // Limit the files we will allow defragging to. We can't defrag a file which needs
  7328. // its own mapping to write log records (volume bitmap). We also eliminate the
  7329. // log file and usn journal. For the MFT we disallow moving the first 16 non-user files
  7330. //
  7331. if (((TypeOfOpen != UserFileOpen) &&
  7332. (TypeOfOpen != UserDirectoryOpen) &&
  7333. (TypeOfOpen != UserViewIndexOpen)) ||
  7334. FlagOn( Fcb->FcbState, FCB_STATE_PAGING_FILE ) ||
  7335. ((NtfsSegmentNumber( &Fcb->FileReference ) < ATTRIBUTE_DEF_TABLE_NUMBER) &&
  7336. ((NtfsSegmentNumber( &Fcb->FileReference ) != MASTER_FILE_TABLE_NUMBER) ||
  7337. (MoveData->StartingVcn.QuadPart < LlClustersFromBytes( Vcb, FIRST_USER_FILE_NUMBER * Vcb->BytesPerFileRecordSegment )))) ||
  7338. FlagOn( Fcb->FcbState, FCB_STATE_USN_JOURNAL ) ||
  7339. NtfsEqualMftRef( &Fcb->FileReference, &BitmapFileReference )) {
  7340. ObDereferenceObject( FileObject );
  7341. NtfsCompleteRequest( IrpContext, Irp, STATUS_INVALID_PARAMETER );
  7342. return STATUS_INVALID_PARAMETER;
  7343. }
  7344. //
  7345. // Disallow defragging on a read-only volume
  7346. //
  7347. if (NtfsIsVolumeReadOnly( Vcb )) {
  7348. NtfsCompleteRequest( IrpContext, Irp, STATUS_MEDIA_WRITE_PROTECTED );
  7349. return STATUS_MEDIA_WRITE_PROTECTED;
  7350. }
  7351. //
  7352. // Verify that the start Vcn, Lcn and cluster count are valid values.
  7353. //
  7354. if ((MoveData->StartingVcn.QuadPart < 0) ||
  7355. (MoveData->StartingVcn.QuadPart + MoveData->ClusterCount < MoveData->ClusterCount) ||
  7356. (Vcb->MaxClusterCount < MoveData->StartingVcn.QuadPart + MoveData->ClusterCount) ||
  7357. (MoveData->StartingLcn.QuadPart < 0) ||
  7358. (MoveData->StartingLcn.QuadPart >= Vcb->TotalClusters)) {
  7359. ObDereferenceObject( FileObject );
  7360. NtfsCompleteRequest( IrpContext, Irp, STATUS_INVALID_PARAMETER );
  7361. return STATUS_INVALID_PARAMETER;
  7362. }
  7363. NtfsInitializeAttributeContext( &AttrContext );
  7364. try {
  7365. //
  7366. // For system files we need the vcb to test for dismounted volumes
  7367. //
  7368. if (FlagOn( Scb->Fcb->FcbState, FCB_STATE_SYSTEM_FILE )) {
  7369. NtfsAcquireExclusiveVcb( IrpContext, Vcb, TRUE );
  7370. AcquiredVcb = TRUE;
  7371. if (!FlagOn(Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED )) {
  7372. try_return( Status = STATUS_VOLUME_DISMOUNTED );
  7373. }
  7374. }
  7375. //
  7376. // We now want to acquire the Scb to check if we can continue. It is
  7377. // important to test whether this Scb has a paging io resource, not
  7378. // whether the Fcb has one. Consider the case where a directory has
  7379. // a named data stream in it -- the Fcb will have a paging io resource,
  7380. // but the index root Scb will not. In that case it would be a mistake
  7381. // to acquire the Fcb's paging io resource, since that will not serialize
  7382. // this operation with NtfsAcquireFileForCcFlush.
  7383. //
  7384. SetFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_ACQUIRE_PAGING );
  7385. NtfsAcquireFcbWithPaging( IrpContext, Scb->Fcb, 0 );
  7386. AcquiredScb = TRUE;
  7387. if (FlagOn( Scb->ScbState, SCB_STATE_VOLUME_DISMOUNTED )) {
  7388. try_return( Status = STATUS_VOLUME_DISMOUNTED );
  7389. }
  7390. //
  7391. // Check for the deny defrag being set
  7392. //
  7393. if (FlagOn( Scb->ScbPersist, SCB_PERSIST_DENY_DEFRAG )) {
  7394. try_return( Status = STATUS_ACCESS_DENIED );
  7395. }
  7396. //
  7397. // Initialize the header if necc. If the attribute doesn't exist
  7398. // just leave - for instance an index allocation buffer
  7399. //
  7400. if (!NtfsLookupAttributeByName( IrpContext,
  7401. Fcb,
  7402. &Fcb->FileReference,
  7403. Scb->AttributeTypeCode,
  7404. &Scb->AttributeName,
  7405. 0,
  7406. FALSE,
  7407. &AttrContext )) {
  7408. try_return( Status = STATUS_SUCCESS );
  7409. }
  7410. if (!FlagOn( Scb->ScbState, SCB_STATE_HEADER_INITIALIZED )) {
  7411. NtfsUpdateScbFromAttribute( IrpContext, Scb, NtfsFoundAttribute( &AttrContext ) );
  7412. }
  7413. if ((TypeOfOpen == UserDirectoryOpen) || (TypeOfOpen == UserViewIndexOpen)) {
  7414. //
  7415. // Initialize the Index information in the Scb if not done yet for indices.
  7416. //
  7417. if (Scb->ScbType.Index.BytesPerIndexBuffer == 0) {
  7418. NtfsCleanupAttributeContext( IrpContext, &AttrContext );
  7419. NtfsInitializeAttributeContext( &AttrContext );
  7420. if (!NtfsLookupAttributeByName( IrpContext,
  7421. Fcb,
  7422. &Fcb->FileReference,
  7423. $INDEX_ROOT,
  7424. &Scb->AttributeName,
  7425. 0,
  7426. FALSE,
  7427. &AttrContext )) {
  7428. ASSERTMSG("Could not find Index Root for Scb\n", FALSE);
  7429. NtfsRaiseStatus( IrpContext, STATUS_FILE_CORRUPT_ERROR, NULL, Scb->Fcb );
  7430. }
  7431. NtfsUpdateIndexScbFromAttribute( IrpContext, Scb, NtfsFoundAttribute(&AttrContext), FALSE );
  7432. }
  7433. //
  7434. // Mark the irpcontext so we don't recursively push the index root while defragging
  7435. // the index. If we hit this on retry the force push flag will be set and we can safely
  7436. // pre-push the index
  7437. //
  7438. if (FlagOn( IrpContext->State, IRP_CONTEXT_STATE_FORCE_PUSH )) {
  7439. NtfsPushIndexRoot( IrpContext, Scb );
  7440. }
  7441. SetFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_DEFERRED_PUSH );
  7442. }
  7443. //
  7444. // Cleanup the attribute context now to remove bcbs
  7445. //
  7446. NtfsCleanupAttributeContext( IrpContext, &AttrContext );
  7447. //
  7448. // If the stream is resident then we can return SUCCESS immediately.
  7449. // If the starting point is beyond file allocation then we can also
  7450. // return immediately.
  7451. //
  7452. FileOffset = (LONGLONG) LlBytesFromClusters( Vcb, MoveData->StartingVcn.QuadPart );
  7453. ASSERT( FileOffset >= 0 );
  7454. if (FlagOn( Scb->ScbState, SCB_STATE_ATTRIBUTE_RESIDENT ) ||
  7455. (Scb->Header.AllocationSize.QuadPart < FileOffset)) {
  7456. try_return( Status = STATUS_SUCCESS );
  7457. }
  7458. //
  7459. // Setup the intermediate buffer
  7460. //
  7461. ASSERT( LARGE_BUFFER_SIZE >= Vcb->BytesPerCluster );
  7462. if (LARGE_BUFFER_SIZE > Vcb->BytesPerCluster) {
  7463. BufferLength = LARGE_BUFFER_SIZE;
  7464. } else {
  7465. BufferLength = Vcb->BytesPerCluster;
  7466. }
  7467. IrpContext->Union.NtfsIoContext = &NtfsIoContext;
  7468. RtlZeroMemory( IrpContext->Union.NtfsIoContext, sizeof( NTFS_IO_CONTEXT ));
  7469. KeInitializeEvent( &IrpContext->Union.NtfsIoContext->Wait.SyncEvent,
  7470. NotificationEvent,
  7471. FALSE );
  7472. DeletePendingFailureCountsLeft = 10;
  7473. NtfsReleaseFcbWithPaging( IrpContext, Scb->Fcb );
  7474. AcquiredScb = FALSE;
  7475. if (AcquiredVcb) {
  7476. NtfsReleaseVcb( IrpContext, Vcb );
  7477. AcquiredVcb = FALSE;
  7478. }
  7479. if (IrpContext->TransactionId != 0) {
  7480. ASSERT( !AcquiredAllFiles );
  7481. //
  7482. // Complete the request which commits the pending
  7483. // transaction if there is one and releases of the
  7484. // acquired resources. The IrpContext will not
  7485. // be deleted because the no delete flag is set.
  7486. //
  7487. SetFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_DONT_DELETE | IRP_CONTEXT_FLAG_RETAIN_FLAGS );
  7488. NtfsCompleteRequest( IrpContext, NULL, STATUS_SUCCESS );
  7489. }
  7490. //
  7491. // Main loop - while there are more clusters requested to move try to move them
  7492. //
  7493. while (MoveData->ClusterCount > 0) {
  7494. LCN Lcn;
  7495. LONGLONG ClusterCount;
  7496. LONGLONG TransferSize;
  7497. LONGLONG TransferClusters;
  7498. try {
  7499. try {
  7500. #ifdef BENL_DBG
  7501. // KdPrint(( "NTFS: defrag currentvcn: 0x%I64x limit: 0x%I64x\n", MoveData->StartingVcn.QuadPart, MoveData->StartingVcn.QuadPart + MoveData->ClusterCount ));
  7502. #endif
  7503. //
  7504. // If necc. grab all the files to synchronzie with any transactions
  7505. // flush the log and try to free recently deallocated clusters
  7506. //
  7507. if (FreeRecentlyDeallocated) {
  7508. FreeRecentlyDeallocated = FALSE;
  7509. try {
  7510. NtfsPurgeFileRecordCache( IrpContext );
  7511. //
  7512. // Acquire all files to flush the log file and free recently deallocated.
  7513. // Note the flush may raise, normally log file full, which will get rid of
  7514. // the recently deallocated in a less efficient manner.
  7515. //
  7516. NtfsAcquireAllFiles( IrpContext, IrpContext->Vcb, FALSE, FALSE, FALSE );
  7517. AcquiredAllFiles = TRUE;
  7518. //
  7519. // Since we've dropped and reacquired all thes file, we must retest
  7520. // whether the volume has been dismounted. Use the vcb since acquireallfiles
  7521. // grabs it
  7522. //
  7523. if (!FlagOn( IrpContext->Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED )) {
  7524. //
  7525. // Raise we don't try to acquire the Scb exclusive in the try-finally
  7526. // below. We only hold this resource shared from the AcquireAllFiles
  7527. // above. It is OK to clear the REALLOCATE_ON_WRITE bit somewhat
  7528. // unsynchronized since we will never touch this file again.
  7529. //
  7530. NtfsRaiseStatus( IrpContext, STATUS_VOLUME_DISMOUNTED, NULL, NULL );
  7531. }
  7532. LfsFlushToLsn( IrpContext->Vcb->LogHandle, LiMax );
  7533. NtfsFreeRecentlyDeallocated( IrpContext, IrpContext->Vcb, &LiMax, TRUE );
  7534. } finally {
  7535. if (AcquiredAllFiles) {
  7536. NtfsReleaseAllFiles( IrpContext, IrpContext->Vcb, FALSE );
  7537. AcquiredAllFiles = FALSE;
  7538. }
  7539. }
  7540. }
  7541. //
  7542. // Purge anything left in cache because we hold nothing at this point
  7543. //
  7544. NtfsPurgeFileRecordCache( IrpContext );
  7545. //
  7546. // For system files we need the vcb to test for dismounted volumes
  7547. //
  7548. if (FlagOn( Scb->Fcb->FcbState, FCB_STATE_SYSTEM_FILE )) {
  7549. NtfsAcquireExclusiveVcb( IrpContext, Vcb, TRUE );
  7550. AcquiredVcb = TRUE;
  7551. if (!FlagOn(Vcb->VcbState, VCB_STATE_VOLUME_MOUNTED )) {
  7552. try_return( Status = STATUS_VOLUME_DISMOUNTED );
  7553. }
  7554. }
  7555. //
  7556. // Reacquire everything for the defrag mft case + the mft flush
  7557. // resource so we know lazy writes aren't active while we're doing stuff
  7558. //
  7559. if (NtfsSegmentNumber( &Fcb->FileReference ) == MASTER_FILE_TABLE_NUMBER) {
  7560. NtfsAcquireAllFiles( IrpContext, Vcb, TRUE, FALSE, FALSE );
  7561. AcquiredAllFiles = TRUE;
  7562. ExAcquireResourceExclusiveLite( &Vcb->MftFlushResource, TRUE );
  7563. } else {
  7564. NtfsAcquireFcbWithPaging( IrpContext, Scb->Fcb, 0 );
  7565. AcquiredScb = TRUE;
  7566. //
  7567. // Since we've dropped and reacquired the Scb, we must retest
  7568. // whether the volume has been dismounted.
  7569. //
  7570. if (FlagOn( Scb->ScbState, SCB_STATE_VOLUME_DISMOUNTED )) {
  7571. try_return( Status = STATUS_VOLUME_DISMOUNTED );
  7572. }
  7573. }
  7574. //
  7575. // If we acquired all the files above now do the work to check for free space in the mft
  7576. //
  7577. if (AcquiredAllFiles && (Vcb->MftScb->ScbType.Mft.RecordAllocationContext.NumberOfFreeBits <= 1)) {
  7578. MFT_SEGMENT_REFERENCE FileNumber;
  7579. #ifdef BENL_DBG
  7580. KdPrint(( "NTFS: too few mft records: 0x%x\n", Vcb->MftScb->ScbType.Mft.RecordAllocationContext.NumberOfFreeBits ));
  7581. #endif
  7582. FileNumber = NtfsAllocateMftRecord( IrpContext, Vcb, FALSE );
  7583. ASSERT( 0 == FileNumber.SegmentNumberHighPart );
  7584. NtfsDeallocateMftRecord( IrpContext, Vcb, FileNumber.SegmentNumberLowPart );
  7585. NtfsCheckpointCurrentTransaction( IrpContext );
  7586. #ifdef BENL_DBG
  7587. KdPrint(( "NTFS: after corection mft records: 0x%x\n", Vcb->MftScb->ScbType.Mft.RecordAllocationContext.NumberOfFreeBits ));
  7588. #endif
  7589. ASSERT( Vcb->MftScb->ScbType.Mft.RecordAllocationContext.NumberOfFreeBits > 1 );
  7590. }
  7591. //
  7592. // Check if the attribute was deleted in between
  7593. //
  7594. if (FlagOn( Scb->ScbState, SCB_STATE_ATTRIBUTE_DELETED)) {
  7595. try_return( Status = STATUS_FILE_DELETED );
  7596. }
  7597. //
  7598. // Leave if after regaining the file locks we are out of range
  7599. //
  7600. if (MoveData->StartingVcn.QuadPart > LlClustersFromBytes( Vcb, Scb->Header.AllocationSize.QuadPart )) {
  7601. break;
  7602. }
  7603. //
  7604. // Check if this range of allocation exists - if not we can skip any work
  7605. //
  7606. if (NtfsLookupAllocation( IrpContext, Scb, MoveData->StartingVcn.QuadPart, &Lcn, &ClusterCount, NULL, NULL )) {
  7607. //
  7608. // Now loop over the current range moving pieces of it
  7609. //
  7610. while ((MoveData->ClusterCount > 0) && (ClusterCount > 0)) {
  7611. LONGLONG UpperBound;
  7612. if (ClusterCount > MoveData->ClusterCount) {
  7613. TransferSize = LlBytesFromClusters( Vcb, MoveData->ClusterCount );
  7614. } else {
  7615. TransferSize = LlBytesFromClusters( Vcb, ClusterCount );
  7616. }
  7617. if (TransferSize > BufferLength ) {
  7618. TransferSize = BufferLength;
  7619. }
  7620. TransferClusters = LlClustersFromBytesTruncate( Vcb, TransferSize );
  7621. #ifdef BENL_DBG
  7622. // KdPrint(( "NTFS: defrag move vcn 0x%I64x to 0x%I64x for 0x%x\n", MoveData->StartingVcn.QuadPart, MoveData->StartingLcn.QuadPart, TransferClusters ));
  7623. #endif
  7624. //
  7625. // Reserve the new cluster if it falls within volume range
  7626. //
  7627. if (MoveData->StartingLcn.QuadPart + TransferClusters > Vcb->TotalClusters) {
  7628. NtfsRaiseStatus( IrpContext, STATUS_ALREADY_COMMITTED, NULL, NULL );
  7629. }
  7630. NtfsPreAllocateClusters( IrpContext, Vcb, MoveData->StartingLcn.QuadPart, TransferClusters, &AcquiredBitmap, &AcquiredMft );
  7631. //
  7632. // Only actually transfer ranges within VDD or VDL - for those between
  7633. // VDD and allocation size just reallocate. Use VDD for data streams
  7634. // for all others that don't update VDD use VDL
  7635. //
  7636. if (($DATA == Scb->AttributeTypeCode) &&
  7637. !FlagOn( Scb->ScbState, SCB_STATE_MODIFIED_NO_WRITE ) &&
  7638. FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_COMPRESSION_MASK)) {
  7639. //
  7640. // Modified no write streams don't use VDD. The only data
  7641. // stream currently like this is $Secure and $UsnJrnl which are not
  7642. // defraggable
  7643. //
  7644. UpperBound = LlClustersFromBytes( Vcb, Scb->ValidDataToDisk );
  7645. } else {
  7646. UpperBound = LlClustersFromBytes( Vcb, Scb->Header.ValidDataLength.QuadPart );
  7647. }
  7648. if (MoveData->StartingVcn.QuadPart <= UpperBound) {
  7649. NtfsCreateMdlAndBuffer( IrpContext,
  7650. Scb,
  7651. RESERVED_BUFFER_ONE_NEEDED,
  7652. &BufferLength,
  7653. &Mdl,
  7654. &Buffer );
  7655. Irp->MdlAddress = Mdl;
  7656. //
  7657. // First read the cluster
  7658. //
  7659. NtfsSingleAsync( IrpContext,
  7660. Vcb->TargetDeviceObject,
  7661. LlBytesFromClusters( Vcb, Lcn ),
  7662. (ULONG)TransferSize,
  7663. Irp,
  7664. IRP_MJ_READ );
  7665. NtfsWaitSync( IrpContext );
  7666. NtfsNormalizeAndCleanupTransaction( IrpContext,
  7667. &Irp->IoStatus.Status,
  7668. TRUE,
  7669. STATUS_UNEXPECTED_IO_ERROR );
  7670. //
  7671. // Clear return info field
  7672. //
  7673. Irp->IoStatus.Information = 0;
  7674. //
  7675. // Then transfer it to the new location
  7676. //
  7677. NtfsSingleAsync( IrpContext,
  7678. Vcb->TargetDeviceObject,
  7679. LlBytesFromClusters( Vcb, MoveData->StartingLcn.QuadPart ),
  7680. (ULONG)TransferSize,
  7681. Irp,
  7682. IRP_MJ_WRITE );
  7683. NtfsWaitSync( IrpContext );
  7684. NtfsNormalizeAndCleanupTransaction( IrpContext,
  7685. &Irp->IoStatus.Status,
  7686. TRUE,
  7687. STATUS_UNEXPECTED_IO_ERROR );
  7688. Irp->IoStatus.Information = 0;
  7689. //
  7690. // Release the buffer before calling lfs which may also need the reserved buffer
  7691. //
  7692. NtfsDeleteMdlAndBuffer( Mdl, Buffer );
  7693. Irp->MdlAddress = NULL;
  7694. Buffer = NULL;
  7695. }
  7696. //
  7697. // Finally reallocate the cluster in the scb and checkpoint it
  7698. //
  7699. NtfsReallocateRange( IrpContext, Scb, MoveData->StartingVcn.QuadPart, TransferClusters, MoveData->StartingVcn.QuadPart, TransferClusters, &MoveData->StartingLcn.QuadPart );
  7700. NtfsCheckpointCurrentTransaction( IrpContext );
  7701. ASSERT( IrpContext->TransactionId == 0 );
  7702. if (AcquiredBitmap) {
  7703. NtfsReleaseScb( IrpContext, Vcb->BitmapScb );
  7704. AcquiredBitmap = FALSE;
  7705. }
  7706. if (AcquiredMft) {
  7707. NtfsReleaseScb( IrpContext, Vcb->MftScb );
  7708. AcquiredMft = FALSE;
  7709. }
  7710. #ifdef BENL_DBG
  7711. // KdPrint(( "NTFS: defrag succ. move vcn 0x%I64x to 0x%I64x\n", MoveData->StartingVcn.QuadPart, MoveData->StartingLcn.QuadPart ));
  7712. #endif
  7713. MoveData->StartingLcn.QuadPart += TransferClusters;
  7714. MoveData->StartingVcn.QuadPart += TransferClusters;
  7715. MoveData->ClusterCount -= (ULONG)TransferClusters;
  7716. ClusterCount -= TransferClusters;
  7717. Lcn += TransferClusters;
  7718. } // endwhile loop over lcn range
  7719. } else {
  7720. //
  7721. // This is a hole skip over it
  7722. //
  7723. #ifdef BENL_DBG
  7724. // KdPrint(( "NTFS: defrag hole vcn 0x%I64x to 0x%I64x\n", MoveData->StartingVcn.QuadPart, MoveData->StartingLcn.QuadPart ));
  7725. #endif
  7726. MoveData->StartingVcn.QuadPart += ClusterCount;
  7727. if (ClusterCount > MoveData->ClusterCount) {
  7728. MoveData->ClusterCount = 0;
  7729. } else {
  7730. MoveData->ClusterCount -= (ULONG)ClusterCount;
  7731. }
  7732. }
  7733. } except( NtfsDefragExceptionFilter( IrpContext, GetExceptionInformation(), &DeletePendingFailureCountsLeft )) {
  7734. //
  7735. // Cleanup the delete pending failure and next time through the loop
  7736. // try to free the recently deallocated clusters to allow the cluster to be deleted
  7737. //
  7738. NtfsMinimumExceptionProcessing( IrpContext );
  7739. IrpContext->ExceptionStatus = STATUS_SUCCESS;
  7740. FreeRecentlyDeallocated = TRUE;
  7741. }
  7742. } finally {
  7743. //
  7744. // Unlock the file and let anyone else access the file before
  7745. // looping back.
  7746. //
  7747. if (Buffer != NULL) {
  7748. NtfsDeleteMdlAndBuffer( Mdl, Buffer );
  7749. Irp->MdlAddress = NULL;
  7750. Buffer = NULL;
  7751. }
  7752. if (AcquiredBitmap) {
  7753. NtfsReleaseScb( IrpContext, Vcb->BitmapScb );
  7754. AcquiredBitmap = FALSE;
  7755. }
  7756. if (AcquiredMft) {
  7757. NtfsReleaseScb( IrpContext, Vcb->MftScb );
  7758. AcquiredMft = FALSE;
  7759. }
  7760. if (AcquiredScb) {
  7761. NtfsReleaseFcbWithPaging( IrpContext, Scb->Fcb );
  7762. AcquiredScb = FALSE;
  7763. }
  7764. if (AcquiredAllFiles) {
  7765. ExReleaseResourceLite( &Vcb->MftFlushResource );
  7766. NtfsReleaseAllFiles( IrpContext, Vcb, FALSE );
  7767. AcquiredAllFiles = FALSE;
  7768. }
  7769. if (AcquiredVcb) {
  7770. NtfsReleaseVcb( IrpContext, Vcb );
  7771. AcquiredVcb = FALSE;
  7772. }
  7773. }
  7774. } // endwhile
  7775. Status = STATUS_SUCCESS;
  7776. try_exit: NOTHING;
  7777. } finally {
  7778. DebugUnwind( NtfsDefragFile );
  7779. NtfsCleanupAttributeContext( IrpContext, &AttrContext );
  7780. IrpContext->Union.NtfsIoContext = NULL;
  7781. ASSERT( !AbnormalTermination() || (IrpContext->ExceptionStatus != STATUS_SUCCESS) );
  7782. ASSERT( (Buffer == NULL) &&
  7783. !AcquiredBitmap &&
  7784. !AcquiredMft &&
  7785. !AcquiredAllFiles );
  7786. if (AcquiredScb) {
  7787. NtfsReleaseFcbWithPaging( IrpContext, Scb->Fcb );
  7788. }
  7789. if (AcquiredVcb) {
  7790. NtfsReleaseVcb( IrpContext, Vcb );
  7791. AcquiredVcb = FALSE;
  7792. }
  7793. //
  7794. // Remove our reference on the users file object.
  7795. //
  7796. ObDereferenceObject( FileObject );
  7797. }
  7798. NtfsCompleteRequest( IrpContext, Irp, Status );
  7799. return Status;
  7800. }
  7801. LONG
  7802. NtfsDefragExceptionFilter (
  7803. IN PIRP_CONTEXT IrpContext OPTIONAL,
  7804. IN PEXCEPTION_POINTERS ExceptionPointer,
  7805. IN OUT PULONG DeletePendingFailureCountsLeft
  7806. )
  7807. /*++
  7808. Routine Description:
  7809. Exception handler for defrag - pass on for all exceptions other than delete pending
  7810. in that case if there the number of retries left is > 0 execute the handler
  7811. Arguments:
  7812. ExceptionPointer - Supplies the exception record to being checked.
  7813. DeletePendingFailureCountsLeft - how many more times to retry a delete pending
  7814. Return Value:
  7815. ULONG - returns EXCEPTION_EXECUTE_HANDLER or CONTINUE_SEARCH
  7816. --*/
  7817. {
  7818. UNREFERENCED_PARAMETER( IrpContext );
  7819. if ((STATUS_DELETE_PENDING == ExceptionPointer->ExceptionRecord->ExceptionCode)) {
  7820. *DeletePendingFailureCountsLeft -= 1;
  7821. if ((*DeletePendingFailureCountsLeft) > 0) {
  7822. return EXCEPTION_EXECUTE_HANDLER;
  7823. } else {
  7824. return EXCEPTION_CONTINUE_SEARCH;
  7825. }
  7826. } else {
  7827. return EXCEPTION_CONTINUE_SEARCH;
  7828. }
  7829. }
  7830. //
  7831. // Because of protocol limitations in CIFS which uses 16 bits,
  7832. // redirector can't currently accept buffer sizes larger than 64K.
  7833. //
  7834. #define RDR_BUFFER_SIZE_LIMIT 0x00010000L
  7835. NTSTATUS
  7836. NtfsReadFromPlex(
  7837. IN PIRP_CONTEXT IrpContext,
  7838. IN PIRP Irp
  7839. )
  7840. /*++
  7841. Routine Description:
  7842. This implements directed reads from plexes. Given an offset, a length and a plexnumber
  7843. along with a handle to a file or a volume, this coordinates reads from an underlying
  7844. dynamic (mirrored) volume manager.
  7845. Note that we ignore the VcbState flag VCB_STATE_NO_SECONDARY_AVAILABLE altogether
  7846. and let the lower level driver respond.
  7847. Arguments:
  7848. IrpContext - Supplies the IrpContext to process
  7849. Irp - Incoming FSCTL IRP.
  7850. Return Value:
  7851. Status SUCCESS on success, otherwise the relevant error code.
  7852. --*/
  7853. {
  7854. PPLEX_READ_DATA_REQUEST ReadData;
  7855. PIO_STACK_LOCATION IrpSp;
  7856. ULONG InputBufferLength;
  7857. ULONG UserBufferLength;
  7858. NTSTATUS Status = STATUS_SUCCESS;
  7859. BOOLEAN Wait = TRUE;
  7860. ULONG NumberOfRuns, RemainingByteCount;
  7861. COMPRESSION_CONTEXT CompContext;
  7862. TYPE_OF_OPEN TypeOfOpen;
  7863. IO_RUN IoRuns[NTFS_MAX_PARALLEL_IOS];
  7864. VBO ByteOffset;
  7865. ULONG ByteCount;
  7866. ULONG BytesToEof;
  7867. ULONG LastReadByteCount;
  7868. ULONG CurByteCount;
  7869. LOGICAL AcquiredScb = FALSE;
  7870. VOLUME_READ_PLEX_INPUT NplexRead;
  7871. PVCB Vcb;
  7872. PSCB Scb;
  7873. PFCB Fcb;
  7874. PCCB Ccb;
  7875. //
  7876. // Extract and decode the file object
  7877. //
  7878. IrpSp = IoGetCurrentIrpStackLocation( Irp );
  7879. TypeOfOpen = NtfsDecodeFileObject( IrpContext,
  7880. IrpSp->FileObject,
  7881. &Vcb,
  7882. &Fcb,
  7883. &Scb,
  7884. &Ccb,
  7885. FALSE );
  7886. //
  7887. // FileOpens and VolumeOpens are allowed.
  7888. //
  7889. if ((TypeOfOpen != UserFileOpen) &&
  7890. (TypeOfOpen != UserVolumeOpen)) {
  7891. Status = STATUS_INVALID_PARAMETER;
  7892. NtfsCompleteRequest( IrpContext, Irp, Status );
  7893. DebugTrace( -1, Dbg, ("NtfsReadFromPlex -> %08lx\n", Status) );
  7894. return Status;
  7895. }
  7896. //
  7897. // This FSCTL is of type METHOD_OUT_DIRECT. The Io Manager has already
  7898. // copied the input parameters into the systembuffer field, probed the
  7899. // output buffer and locked the Mdls for us. So we can access these fields
  7900. // without fear.
  7901. //
  7902. ReadData = (PPLEX_READ_DATA_REQUEST)Irp->AssociatedIrp.SystemBuffer;
  7903. if (ReadData == NULL) {
  7904. Status = STATUS_INVALID_PARAMETER;
  7905. NtfsCompleteRequest( IrpContext, Irp, Status );
  7906. DebugTrace( -1, Dbg, ("NtfsReadFromPlex -> %08lx\n", Status) );
  7907. return Status;
  7908. }
  7909. ByteOffset = ReadData->ByteOffset.QuadPart;
  7910. ByteCount = ReadData->ByteLength;
  7911. //
  7912. // Now, do the grunt work and clean up within a try finally.
  7913. //
  7914. try {
  7915. //
  7916. // Sanity check the read length.
  7917. //
  7918. check_values:
  7919. CurByteCount = 0;
  7920. BytesToEof = 0;
  7921. Irp->IoStatus.Information = 0;
  7922. if ((ByteCount > MAXLONGLONG - ByteOffset) ||
  7923. //
  7924. // File offsets should be cluster aligned
  7925. //
  7926. ((TypeOfOpen == UserFileOpen) &&
  7927. ((ByteOffset & Vcb->ClusterMask) || (ByteCount & Vcb->ClusterMask))) ||
  7928. //
  7929. // Volume offsets should be sector aligned
  7930. //
  7931. ((TypeOfOpen == UserVolumeOpen) &&
  7932. (((ULONG)ByteOffset & (Vcb->BytesPerSector - 1)) || (ByteCount & (Vcb->BytesPerSector - 1))))) {
  7933. Status = STATUS_INVALID_PARAMETER;
  7934. leave;
  7935. }
  7936. //
  7937. // No-op
  7938. //
  7939. if (ByteCount == 0) {
  7940. ASSERT(Status == STATUS_SUCCESS);
  7941. ASSERT(CurByteCount == ByteCount);
  7942. leave;
  7943. }
  7944. //
  7945. // Because of protocol limitations in CIFS which uses 16 bits,
  7946. // redirector can't accept buffer sizes larger than 64K.
  7947. //
  7948. if (ByteCount & ~(RDR_BUFFER_SIZE_LIMIT - 1L)) {
  7949. Status = STATUS_INVALID_BUFFER_SIZE;
  7950. leave;
  7951. }
  7952. //
  7953. // Sanity check input/output parameters.
  7954. //
  7955. InputBufferLength = IrpSp->Parameters.FileSystemControl.InputBufferLength;
  7956. UserBufferLength = IrpSp->Parameters.FileSystemControl.OutputBufferLength;
  7957. if ((InputBufferLength < sizeof( PLEX_READ_DATA_REQUEST )) ||
  7958. (UserBufferLength < ByteCount)) {
  7959. Status = STATUS_BUFFER_TOO_SMALL;
  7960. leave;
  7961. }
  7962. //
  7963. // For volume DASD reads, we just send an IOCTL down...
  7964. //
  7965. if (TypeOfOpen == UserVolumeOpen) {
  7966. NplexRead.ByteOffset.QuadPart = ByteOffset;
  7967. NplexRead.Length = ByteCount;
  7968. NplexRead.PlexNumber = ReadData->PlexNumber;
  7969. Status = NtfsDeviceIoControl( IrpContext,
  7970. Vcb->TargetDeviceObject,
  7971. IOCTL_VOLUME_READ_PLEX,
  7972. &NplexRead,
  7973. sizeof( VOLUME_READ_PLEX_INPUT ),
  7974. NtfsMapUserBuffer( Irp ),
  7975. ByteCount,
  7976. &Irp->IoStatus.Information );
  7977. ASSERT(!NT_SUCCESS( Status ) || Irp->IoStatus.Information != 0);
  7978. DebugTrace( 0, Dbg, ("NtfsReadFromPlex: VolumeRead\n") );
  7979. leave;
  7980. }
  7981. NtfsAcquireSharedScb( IrpContext, Scb );
  7982. AcquiredScb = TRUE;
  7983. //
  7984. // If the volume isn't mounted then fail immediately.
  7985. //
  7986. if (FlagOn( Scb->ScbState, SCB_STATE_VOLUME_DISMOUNTED )) {
  7987. Status = STATUS_VOLUME_DISMOUNTED;
  7988. leave;
  7989. }
  7990. //
  7991. // We don't get along with encrypted/compressed/sparse things.
  7992. // ISSUE: supw: actually sparse should be ok, now that i'm using preparebuffers.
  7993. //
  7994. if (FlagOn( Scb->AttributeFlags, ATTRIBUTE_FLAG_ENCRYPTED |
  7995. ATTRIBUTE_FLAG_COMPRESSION_MASK |
  7996. ATTRIBUTE_FLAG_SPARSE )) {
  7997. DebugTrace( 0, Dbg, ("NtfsReadFromPlex: File encrypted or compressed -> %08lx\n",
  7998. STATUS_INVALID_PARAMETER) );
  7999. Status = STATUS_INVALID_PARAMETER;
  8000. leave;
  8001. }
  8002. NtfsAcquireFsrtlHeader( Scb );
  8003. //
  8004. // Make sure we aren't starting past the end of the file, in which case
  8005. // we would have nothing to return.
  8006. //
  8007. if (ByteOffset >= Scb->Header.FileSize.QuadPart) {
  8008. DebugTrace( 0, Dbg, ("NtfsReadFromPlex: beyond eof\n") );
  8009. Status = STATUS_END_OF_FILE;
  8010. NtfsReleaseFsrtlHeader( Scb );
  8011. leave;
  8012. }
  8013. //
  8014. // We can't read beyond filesize.
  8015. //
  8016. if (Scb->Header.FileSize.QuadPart - ByteOffset < ByteCount) {
  8017. BytesToEof = ByteCount = (ULONG)(Scb->Header.FileSize.QuadPart - ByteOffset);
  8018. ByteCount = ClusterAlign( Vcb, ByteCount );
  8019. //
  8020. // We need to sanity check ByteCount again, since we rounded it up.
  8021. //
  8022. NtfsReleaseFsrtlHeader( Scb );
  8023. ASSERT( AcquiredScb );
  8024. NtfsReleaseScb( IrpContext, Scb );
  8025. goto check_values;
  8026. }
  8027. NtfsReleaseFsrtlHeader( Scb );
  8028. //
  8029. // Can't deal with resident files.
  8030. //
  8031. if (FlagOn( Scb->ScbState, SCB_STATE_ATTRIBUTE_RESIDENT )) {
  8032. Status = STATUS_NOT_IMPLEMENTED;
  8033. leave;
  8034. }
  8035. //
  8036. // PrepareBuffers needs a CompressionContext for the IO_RUN array.
  8037. //
  8038. RtlZeroMemory( &CompContext, sizeof(COMPRESSION_CONTEXT) );
  8039. CompContext.IoRuns = IoRuns;
  8040. CompContext.AllocatedRuns = NTFS_MAX_PARALLEL_IOS;
  8041. CompContext.FinishBuffersNeeded = FALSE;
  8042. //
  8043. // Get the run information, and send the IOCTL down.
  8044. //
  8045. while (TRUE) {
  8046. ULONG RunCount;
  8047. ULONG_PTR SizeOfThisRead;
  8048. Irp->IoStatus.Status = STATUS_SUCCESS;
  8049. //
  8050. // Build an array of io runs to do our reads from.
  8051. //
  8052. RemainingByteCount = NtfsPrepareBuffers( IrpContext,
  8053. Irp,
  8054. Scb,
  8055. &ByteOffset,
  8056. ByteCount,
  8057. 0,
  8058. &Wait,
  8059. &NumberOfRuns,
  8060. &CompContext );
  8061. ASSERT( RemainingByteCount < ByteCount );
  8062. ASSERT( Wait == TRUE );
  8063. ASSERT( NumberOfRuns > 0 );
  8064. ASSERT( NumberOfRuns > 1 || RemainingByteCount == 0 );
  8065. //
  8066. // Send synchronous IOCTLs down to do the plex reads.
  8067. //
  8068. for (RunCount = 0;
  8069. RunCount < NumberOfRuns;
  8070. RunCount += 1) {
  8071. NplexRead.ByteOffset.QuadPart = CompContext.IoRuns[RunCount].StartingLbo;
  8072. NplexRead.Length = CompContext.IoRuns[RunCount].ByteCount;
  8073. NplexRead.PlexNumber = ReadData->PlexNumber;
  8074. //
  8075. // While CurByteCOunt keeps track of the total amount of bytes read,
  8076. // SizeOfThisRead carries the size of the last read done. This is usually
  8077. // equal to the IoRuns[].ByteCount.
  8078. //
  8079. SizeOfThisRead = 0;
  8080. ASSERT(CompContext.IoRuns[RunCount].ByteCount > 0);
  8081. Status = NtfsDeviceIoControl( IrpContext,
  8082. Vcb->TargetDeviceObject,
  8083. IOCTL_VOLUME_READ_PLEX,
  8084. &NplexRead,
  8085. sizeof(VOLUME_READ_PLEX_INPUT),
  8086. Add2Ptr( NtfsMapUserBuffer( Irp ), CurByteCount ),
  8087. CompContext.IoRuns[RunCount].ByteCount,
  8088. &SizeOfThisRead);
  8089. if (!NT_SUCCESS( Status )) {
  8090. //
  8091. // Success if we read anything at all.
  8092. //
  8093. if (CurByteCount != 0) {
  8094. Status = STATUS_SUCCESS;
  8095. }
  8096. leave;
  8097. }
  8098. //
  8099. // This value was taken from the Iosb.Information field of the subordinate
  8100. // IRP, and should contain a nonzero value for successful completions.
  8101. //
  8102. ASSERT( (SizeOfThisRead != 0) && ((ULONG) SizeOfThisRead <= CompContext.IoRuns[RunCount].ByteCount) );
  8103. CurByteCount = CurByteCount + (ULONG) SizeOfThisRead;
  8104. //
  8105. // We don't have any more space left
  8106. //
  8107. if (UserBufferLength <= (ULONG) SizeOfThisRead) {
  8108. ASSERT( Status == STATUS_SUCCESS );
  8109. leave;
  8110. }
  8111. UserBufferLength = UserBufferLength - (ULONG) SizeOfThisRead;
  8112. }
  8113. if (RemainingByteCount == 0) {
  8114. ASSERT( Status == STATUS_SUCCESS );
  8115. break;
  8116. }
  8117. //
  8118. // We have more to read. Make sure we have enough buffer space.
  8119. //
  8120. LastReadByteCount = ByteCount - RemainingByteCount;
  8121. ByteOffset = ByteOffset + LastReadByteCount;
  8122. CompContext.SystemBufferOffset = CompContext.SystemBufferOffset + LastReadByteCount;
  8123. ByteCount = RemainingByteCount;
  8124. }
  8125. } finally {
  8126. if (AcquiredScb) {
  8127. NtfsReleaseScb( IrpContext, Scb );
  8128. }
  8129. //
  8130. // If nothing raised then complete the irp.
  8131. //
  8132. if (!AbnormalTermination()) {
  8133. if (NT_SUCCESS( Status )) {
  8134. //
  8135. // We have to be careful to zero beyond the filesize.
  8136. //
  8137. if (CurByteCount > BytesToEof) {
  8138. RtlZeroMemory( Add2Ptr( NtfsMapUserBuffer( Irp ), BytesToEof ),
  8139. CurByteCount - BytesToEof );
  8140. Irp->IoStatus.Information = BytesToEof;
  8141. } else {
  8142. Irp->IoStatus.Information = CurByteCount;
  8143. }
  8144. }
  8145. NtfsCompleteRequest( IrpContext, Irp, Status );
  8146. }
  8147. }
  8148. DebugTrace( -1, Dbg, ("NtfsReadPlex-> %08lx\n", Status) );
  8149. return Status;
  8150. }
  8151. #if EFSDBG
  8152. NTSTATUS
  8153. NtfsDummyEfsRead (
  8154. IN OUT PUCHAR InOutBuffer,
  8155. IN PLARGE_INTEGER Offset,
  8156. IN ULONG BufferSize,
  8157. IN PVOID Context
  8158. )
  8159. {
  8160. #ifndef SYSCACHE
  8161. ULONG LocalOffset = 0;
  8162. #endif
  8163. UNREFERENCED_PARAMETER( Context );
  8164. //
  8165. // Exit cleanly if this is the call that is just there to
  8166. // make sure the compiler doesn't throw this function out.
  8167. //
  8168. if (BufferSize != 0) {
  8169. #ifdef SYSCACHE
  8170. if (FALSE && VerifySyscacheData) {
  8171. FsRtlVerifySyscacheData( NULL,
  8172. InOutBuffer,
  8173. BufferSize,
  8174. Offset->LowPart );
  8175. }
  8176. #else
  8177. ASSERT( (Offset->QuadPart & 0x1ff) == 0 );
  8178. ASSERT( (BufferSize & 0x1ff) == 0 );
  8179. while((LocalOffset + 8) < BufferSize) {
  8180. *((PLONGLONG) Add2Ptr(InOutBuffer, LocalOffset)) ^= (Offset->QuadPart + (LONGLONG) LocalOffset);
  8181. LocalOffset += 0x200;
  8182. }
  8183. // UNREFERENCED_PARAMETER( InOutBuffer );
  8184. // UNREFERENCED_PARAMETER( Offset );
  8185. // UNREFERENCED_PARAMETER( BufferSize );
  8186. #endif
  8187. }
  8188. //
  8189. // Not much to do, decryption is done in place, so we can just leave the bits
  8190. // in the buffer.
  8191. //
  8192. return STATUS_SUCCESS;
  8193. }
  8194. NTSTATUS
  8195. NtfsDummyEfsWrite (
  8196. IN PUCHAR InBuffer,
  8197. OUT PUCHAR OutBuffer,
  8198. IN PLARGE_INTEGER Offset,
  8199. IN ULONG BufferSize,
  8200. IN PUCHAR Context
  8201. )
  8202. {
  8203. #ifndef SYSCACHE
  8204. ULONG LocalOffset = 0;
  8205. #endif
  8206. UNREFERENCED_PARAMETER( Context );
  8207. //
  8208. // Exit cleanly if this is the call that is just there to
  8209. // make sure the compiler doesn't throw this function out.
  8210. //
  8211. if (BufferSize != 0) {
  8212. //
  8213. // Just copy the plaintext to the output buffer.
  8214. //
  8215. RtlCopyMemory( OutBuffer,
  8216. InBuffer,
  8217. BufferSize );
  8218. #ifdef SYSCACHE
  8219. if (FALSE && VerifySyscacheData) {
  8220. FsRtlVerifySyscacheData( NULL,
  8221. OutBuffer,
  8222. BufferSize,
  8223. Offset->LowPart );
  8224. }
  8225. #else
  8226. ASSERT( (Offset->QuadPart & 0x1ff) == 0 );
  8227. ASSERT( (BufferSize & 0x1ff) == 0 );
  8228. while((LocalOffset + 8) < BufferSize) {
  8229. *((PLONGLONG) Add2Ptr(OutBuffer, LocalOffset)) ^= (Offset->QuadPart + (LONGLONG) LocalOffset);
  8230. LocalOffset += 0x200;
  8231. }
  8232. // UNREFERENCED_PARAMETER( Offset );
  8233. #endif
  8234. }
  8235. return STATUS_SUCCESS;
  8236. }
  8237. #endif