|
|
/********************************************************************************
** Copyright (c) 1998-2000 Microsoft Corporation. All Rights Reserved. ** ** Portions Copyright (c) 1998-1999 Intel Corporation ** ********************************************************************************/
// Every debug output has "Modulname text"
static char STR_MODULENAME[] = "ICH Common: ";
#include "common.h"
/*****************************************************************************
* Static Members ***************************************************************************** */
//
// This is the register cache including registry names and default values. The
// first WORD contains the register value and the second WORD contains a flag.
// Currently, we only set SHREG_INVALID if we have to read the register at
// startup (that's true when there is no constant default value for the
// register). Note that we cache the registers only to prevent read access to
// the AC97 CoDec during runtime, because this is slow (40us).
// We only set SHREG_INIT if we want to set the register to default at driver
// startup. If needed, the third field contains the registry name and the
// forth field contains a default value that is used when there is no registry
// entry.
// The flag SHREG_NOCACHE is used when we don't want to cache the register
// at all. This is neccessary for status registers and sample rate registers.
//
tAC97Registers CAdapterCommon::m_stAC97Registers[] = { {0x0000, SHREG_INVALID, NULL, 0}, // AC97REG_RESET
{0x8000, SHREG_INIT, L"MasterVolume", 0x0000}, // AC97REG_MASTER_VOLUME
{0x8000, SHREG_INIT, L"HeadphoneVolume", 0x0000}, // AC97REG_HPHONE_VOLUME
{0x8000, SHREG_INIT, L"MonooutVolume", 0x0000}, // AC97REG_MMONO_VOLUME
{0x0F0F, SHREG_INIT, L"ToneControls", 0x0F0F}, // AC97REG_MASTER_TONE
{0x0000, SHREG_INVALID | SHREG_INIT, L"BeepVolume", 0x0000}, // AC97REG_BEEP_VOLUME
{0x8008, SHREG_INIT, L"PhoneVolume", 0x8008}, // AC97REG_PHONE_VOLUME
{0x8008, SHREG_INIT, L"MicVolume", 0x8008}, // AC97REG_MIC_VOLUME
{0x8808, SHREG_INIT, L"LineInVolume", 0x0808}, // AC97REG_LINE_IN_VOLUME
{0x8808, SHREG_INIT, L"CDVolume", 0x0808}, // AC97REG_CD_VOLUME
{0x8808, SHREG_INIT, L"VideoVolume", 0x0808}, // AC97REG_VIDEO_VOLUME
{0x8808, SHREG_INIT, L"AUXVolume", 0x0808}, // AC97REG_AUX_VOLUME
{0x8808, SHREG_INIT, L"WaveOutVolume", 0x0808}, // AC97REG_PCM_OUT_VOLUME
{0x0000, SHREG_INIT, L"RecordSelect", 0x0404}, // AC97REG_RECORD_SELECT
{0x8000, SHREG_INIT, L"RecordGain", 0x0000}, // AC97REG_RECORD_GAIN
{0x8000, SHREG_INIT, L"RecordGainMic", 0x0000}, // AC97REG_RECORD_GAIN_MIC
{0x0000, SHREG_INIT, L"GeneralPurpose", 0x0000}, // AC97REG_GENERAL
{0x0000, SHREG_INIT, L"3DControl", 0x0000}, // AC97REG_3D_CONTROL
{0x0000, SHREG_NOCACHE, NULL, 0}, // AC97REG_RESERVED
{0x0000, SHREG_NOCACHE | SHREG_INIT, L"PowerDown", 0}, // AC97REG_POWERDOWN
// AC97-2.0 registers
{0x0000, SHREG_INVALID, NULL, 0}, // AC97REG_EXT_AUDIO_ID
{0x0000, SHREG_NOCACHE | SHREG_INIT, L"ExtAudioCtrl", 0x4001}, // AC97REG_EXT_AUDIO_CTRL
{0xBB80, SHREG_NOCACHE, NULL, 0}, // AC97REG_FRONT_SAMPLERATE
{0xBB80, SHREG_NOCACHE, NULL, 0}, // AC97REG_SURROUND_SAMPLERATE
{0xBB80, SHREG_NOCACHE, NULL, 0}, // AC97REG_LFE_SAMPLERATE
{0xBB80, SHREG_NOCACHE, NULL, 0}, // AC97REG_RECORD_SAMPLERATE
{0xBB80, SHREG_NOCACHE, NULL, 0}, // AC97REG_MIC_SAMPLERATE
{0x8080, SHREG_INIT, L"CenterLFEVolume", 0x0000}, // AC97REG_CENTER_LFE_VOLUME
{0x8080, SHREG_INIT, L"SurroundVolume", 0x0000}, // AC97REG_SURROUND_VOLUME
{0x0000, SHREG_NOCACHE, NULL, 0} // AC97REG_RESERVED2
// We leave the other values blank. There would be a huge gap with 31
// elements that are currently unused, and then there would be 2 other
// (used) values, the vendor IDs. We just force a read from the vendor
// IDs in the end of ProbeHWConfig to fill the cache.
};
//
// This is the hardware configuration information. The first struct is for
// nodes, which we default to FALSE. The second struct is for Pins, which
// contains the configuration (FALSE) and the registry string which is the
// reason for making a static struct so we can just fill in the name.
//
tHardwareConfig CAdapterCommon::m_stHardwareConfig = { // Nodes
{{FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}, {FALSE}}, // Pins
{{FALSE, L"DisablePCBeep"}, // PINC_PCBEEP_PRESENT
{FALSE, L"DisablePhone"}, // PINC_PHONE_PRESENT
{FALSE, L"DisableMic2"}, // PINC_MIC2_PRESENT
{FALSE, L"DisableVideo"}, // PINC_VIDEO_PRESENT
{FALSE, L"DisableAUX"}, // PINC_AUX_PRESENT
{FALSE, L"DisableHeadphone"}, // PINC_HPOUT_PRESENT
{FALSE, L"DisableMonoOut"}, // PINC_MONOOUT_PRESENT
{FALSE, L"DisableMicIn"}, // PINC_MICIN_PRESENT
{FALSE, L"DisableMic"}, // PINC_MIC_PRESENT
{FALSE, L"DisableLineIn"}, // PINC_LINEIN_PRESENT
{FALSE, L"DisableCD"}, // PINC_CD_PRESENT
{FALSE, L"DisableSurround"}, // PINC_SURROUND_PRESENT
{FALSE, L"DisableCenterLFE"}} // PINC_CENTER_LFE_PRESENT
};
#pragma code_seg("PAGE")
/*****************************************************************************
* NewAdapterCommon ***************************************************************************** * Create a new adapter common object. */ NTSTATUS NewAdapterCommon ( OUT PUNKNOWN *Unknown, IN REFCLSID, IN PUNKNOWN UnknownOuter OPTIONAL, IN POOL_TYPE PoolType ) { PAGED_CODE ();
ASSERT (Unknown);
DOUT (DBG_PRINT, ("[NewAdapterCommon]"));
STD_CREATE_BODY_ ( CAdapterCommon, Unknown, UnknownOuter, PoolType, PADAPTERCOMMON ); }
/*****************************************************************************
* CAdapterCommon::Init ***************************************************************************** * Initialize the adapter common object -> initialize and probe HW. * Pass only checked resources. */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::Init ( IN PRESOURCELIST ResourceList, IN PDEVICE_OBJECT DeviceObject ) { PAGED_CODE ();
ASSERT (ResourceList); ASSERT (DeviceObject);
NTSTATUS ntStatus = STATUS_SUCCESS;
DOUT (DBG_PRINT, ("[CAdapterCommon::Init]")); //
// Set the topology pointer to NULL.
//
m_Topology = NULL; //
// Save the device object
//
m_pDeviceObject = DeviceObject;
//
// Get the base address for the AC97 codec and bus master.
//
ASSERT (ResourceList->FindTranslatedPort (0)); m_pCodecBase = (PUSHORT)ResourceList->FindTranslatedPort (0)-> u.Port.Start.QuadPart;
ASSERT (ResourceList->FindTranslatedPort (1)); m_pBusMasterBase = (PUCHAR)ResourceList->FindTranslatedPort (1)-> u.Port.Start.QuadPart;
DOUT (DBG_SYSINFO, ("Configuration:\n" " Bus Master = 0x%X\n" " Codec = 0x%X", m_pBusMasterBase, m_pCodecBase));
//
// Set m_bDirectRead to TRUE so that all AC97 register read and
// writes are going directly to the HW
//
m_bDirectRead = TRUE;
//
// Initialize the hardware.
//
ntStatus = InitAC97 (); if (!NT_SUCCESS (ntStatus)) return ntStatus; //
// Probe hardware configuration
//
ntStatus = ProbeHWConfig (); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("Probing of hardware configuration failed!")); return ntStatus; }
//
// Now, every AC97 read access goes to the cache.
//
m_bDirectRead = FALSE;
//
// Restore the AC97 registers now.
//
#if (DBG)
DumpConfig (); #endif
ntStatus = SetAC97Default ();
//
// Initialize the device state.
//
m_PowerState = PowerDeviceD0;
return ntStatus; }
/*****************************************************************************
* CAdapterCommon::~CAdapterCommon ***************************************************************************** * Destructor. */ CAdapterCommon::~CAdapterCommon () { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::~CAdapterCommon]")); }
#if (DBG)
/*****************************************************************************
* CAdapterCommon::DumpConfig ***************************************************************************** * Dumps the HW configuration for the AC97 codec. */ void CAdapterCommon::DumpConfig (void) { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::DumpConfig]"));
//
// Print debug output for MICIN.
//
if (GetPinConfig (PINC_MICIN_PRESENT)) { DOUT (DBG_PROBE, ("MICIN found")); } else { DOUT (DBG_PROBE, ("No MICIN found")); }
//
// Print debug output for tone controls.
//
if (GetNodeConfig (NODEC_TONE_PRESENT)) { DOUT (DBG_PROBE, ("Tone controls found")); } else { DOUT (DBG_PROBE, ("No tone controls found")); }
//
// Print debug output for mono out.
//
if (!GetPinConfig (PINC_MONOOUT_PRESENT)) { DOUT (DBG_PROBE, ("No mono out found")); }
//
// Print debug output for headphones.
//
if (!GetPinConfig (PINC_HPOUT_PRESENT)) { DOUT (DBG_PROBE, ("No headphone out found")); }
//
// Print debug output for loudness.
//
if (GetNodeConfig (NODEC_LOUDNESS_PRESENT)) { DOUT (DBG_PROBE, ("Loudness found")); } else { DOUT (DBG_PROBE, ("No Loudness found")); }
//
// Print debug output for 3D.
//
if (GetNodeConfig (NODEC_3D_PRESENT)) { DOUT (DBG_PROBE, ("3D controls found")); } else { DOUT (DBG_PROBE, ("No 3D controls found")); }
//
// Print debug output for pc beep.
//
if (GetPinConfig (PINC_PCBEEP_PRESENT)) { DOUT (DBG_PROBE, ("PC beep found")); } else { DOUT (DBG_PROBE, ("No PC beep found")); }
//
// Print debug output for phone line (or mono line input).
//
if (GetPinConfig (PINC_PHONE_PRESENT)) { DOUT (DBG_PROBE, ("Phone found")); } else { DOUT (DBG_PROBE, ("No Phone found")); }
//
// Print debug output for video.
//
if (GetPinConfig (PINC_VIDEO_PRESENT)) { DOUT (DBG_PROBE, ("Video in found")); } else { DOUT (DBG_PROBE, ("No Video in found")); }
//
// Print debug output for AUX.
//
if (GetPinConfig (PINC_AUX_PRESENT)) { DOUT (DBG_PROBE, ("AUX in found")); } else { DOUT (DBG_PROBE, ("No AUX in found")); }
//
// Print debug output for second miorophone.
//
if (GetPinConfig (PINC_MIC2_PRESENT)) { DOUT (DBG_PROBE, ("MIC2 found")); } else { DOUT (DBG_PROBE, ("No MIC2 found")); } //
// Print debug output for 3D stuff.
//
if (GetNodeConfig (NODEC_3D_PRESENT)) { if (GetNodeConfig (NODEC_3D_CENTER_ADJUSTABLE)) { DOUT (DBG_PROBE, ("Adjustable 3D center control found")); } if (GetNodeConfig (NODEC_3D_DEPTH_ADJUSTABLE)) { DOUT (DBG_PROBE, ("Nonadjustable 3D depth control found")); } }
//
// Print debug output for quality of master volume.
//
if (GetNodeConfig (NODEC_6BIT_MASTER_VOLUME)) { DOUT (DBG_PROBE, ("6bit master out found")); } else { DOUT (DBG_PROBE, ("5bit master out found")); }
//
// Print debug output for quality of headphones volume.
//
if (GetPinConfig (PINC_HPOUT_PRESENT)) { if (GetNodeConfig (NODEC_6BIT_HPOUT_VOLUME)) { DOUT (DBG_PROBE, ("6bit headphone out found")); } else { DOUT (DBG_PROBE, ("5bit headphone out found")); } }
//
// Print debug output for quality of mono out volume.
//
if (GetPinConfig (PINC_MONOOUT_PRESENT)) { if (GetNodeConfig (NODEC_6BIT_MONOOUT_VOLUME)) { DOUT (DBG_PROBE, ("6bit mono out found")); } else { DOUT (DBG_PROBE, ("5bit mono out found")); } }
//
// Print sample rate information.
//
if (GetNodeConfig (NODEC_PCM_VARIABLERATE_SUPPORTED)) { DOUT (DBG_PROBE, ("PCM variable sample rate supported")); } else { DOUT (DBG_PROBE, ("only 48KHz PCM supported")); }
//
// Print double rate information.
//
if (GetNodeConfig (NODEC_PCM_DOUBLERATE_SUPPORTED)) { DOUT (DBG_PROBE, ("PCM double sample rate supported")); }
//
// Print mic rate information.
//
if (GetNodeConfig (NODEC_MIC_VARIABLERATE_SUPPORTED)) { DOUT (DBG_PROBE, ("MIC variable sample rate supported")); } else { DOUT (DBG_PROBE, ("only 48KHz MIC supported")); }
// print DAC information
if (GetNodeConfig (NODEC_CENTER_DAC_PRESENT)) { DOUT (DBG_PROBE, ("center DAC found")); } if (GetNodeConfig (NODEC_SURROUND_DAC_PRESENT)) { DOUT (DBG_PROBE, ("surround DAC found")); } if (GetNodeConfig (NODEC_LFE_DAC_PRESENT)) { DOUT (DBG_PROBE, ("LFE DAC found")); } } #endif
/*****************************************************************************
* CAdapterCommon::NonDelegatingQueryInterface ***************************************************************************** * Obtains an interface. This function works just like a COM QueryInterface * call and is used if the object is not being aggregated. * We basically just check any GUID we know and return this object in case we * know it. */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::NonDelegatingQueryInterface ( IN REFIID Interface, OUT PVOID * Object ) { PAGED_CODE ();
ASSERT (Object);
DOUT (DBG_PRINT, ("[CAdapterCommon::NonDelegatingQueryInterface]"));
// Is it IID_IUnknown?
if (IsEqualGUIDAligned (Interface, IID_IUnknown)) { *Object = (PVOID)(PUNKNOWN)(PADAPTERCOMMON)this; } else // or IID_IAdapterCommon ...
if (IsEqualGUIDAligned (Interface, IID_IAdapterCommon)) { *Object = (PVOID)(PADAPTERCOMMON)this; } else // or IID_IAdapterPowerManagement ...
if (IsEqualGUIDAligned (Interface, IID_IAdapterPowerManagement)) { *Object = (PVOID)(PADAPTERPOWERMANAGEMENT)this; } else { // nothing found, must be an unknown interface.
*Object = NULL; return STATUS_INVALID_PARAMETER; }
//
// We reference the interface for the caller.
//
((PUNKNOWN)*Object)->AddRef (); return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::InitAC97 ***************************************************************************** * Initialize the ICH (without hosing the modem if it got installed first). */ NTSTATUS CAdapterCommon::InitAC97 (void) { PAGED_CODE (); DOUT (DBG_PRINT, ("[CAdapterCommon::InitAC97]"));
//
// First check if there is an AC link to the primary CoDec.
//
NTSTATUS ntStatus = PrimaryCodecReady (); if (NT_SUCCESS (ntStatus)) { //
// Second, reset this primary CoDec; If this is a AMC97 CoDec, only
// the audio registers are reset. If this is a MC97 CoDec, the CoDec
// should ignore the reset (according to the spec).
//
WriteCodecRegister (AC97REG_RESET, 0x00, -1); ntStatus = PowerUpCodec (); } else { DOUT (DBG_ERROR, ("Initialization of AC97 CoDec failed.")); }
return ntStatus; }
/*****************************************************************************
* CAdapterCommon::Check6thBitSupport ***************************************************************************** * Probes for 6th bit volume control support. * The passed parameters are the AC97 register that has the volume control and * the node config that should be set in this case. */ NTSTATUS CAdapterCommon::Check6thBitSupport ( IN AC97Register AC97Reg, IN TopoNodeConfig Config ) { NTSTATUS ntStatus; WORD wCodecReg; WORD wOriginal;
// Read the current value.
ntStatus = ReadCodecRegister (AC97Reg, &wOriginal); if (!NT_SUCCESS (ntStatus)) return ntStatus; // Write the 6th bit; for mono controls we write 0x20, for stereo
// controls 0x2020.
ntStatus = WriteCodecRegister (AC97Reg, (AC97Reg == AC97REG_MMONO_VOLUME) ? 0x0020 : 0x2020, -1); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// And read back.
ntStatus = ReadCodecRegister (AC97Reg, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Check return. For mono 0x20 and for stereo 0x2020.
if (((wCodecReg & 0x0020) && (AC97Reg == AC97REG_MMONO_VOLUME)) || (wCodecReg & 0x2020)) { SetNodeConfig (Config, TRUE); } else { SetNodeConfig (Config, FALSE); }
// Restore original value.
WriteCodecRegister (AC97Reg, wOriginal, -1);
return ntStatus; }
/*****************************************************************************
* CAdapterCommon::ProbeHWConfig ***************************************************************************** * Probes the hardware configuration. * If this function returns with an error, then the configuration is not * complete! Probing the registers is done by reading them (and comparing with * the HW default value) or when the default is unknown, writing to them and * reading back + restoring. * Additionally, we read the registry so that a HW vendor can overwrite (means * disable) found registers in case the adapter (e.g. video) is not visible to * the user (he can't plug in a video audio there). * * This is a very long function with all of the error checking! */ NTSTATUS CAdapterCommon::ProbeHWConfig (void) { PAGED_CODE ();
NTSTATUS ntStatus = STATUS_SUCCESS; DWORD dwGlobalStatus; WORD wCodecID; WORD wCodecReg;
DOUT (DBG_PRINT, ("[CAdapterCommon::ProbeHWConfig]"));
//
// Wait for the whatever 97 to complete reset and establish a link.
//
ntStatus = PrimaryCodecReady (); if (!NT_SUCCESS (ntStatus)) return ntStatus;
//
// Master volume is one of the supported registers on an AC97
//
ntStatus = ReadCodecRegister (AC97REG_MASTER_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Default is x8000.
if (wCodecReg != 0x8000) return STATUS_NO_SUCH_DEVICE;
//
// This gives us information about the AC97 CoDec
//
ntStatus = ReadCodecRegister (AC97REG_RESET, &wCodecID); if (!NT_SUCCESS (ntStatus)) return ntStatus;
//
// Fill out the configuration stuff.
//
SetPinConfig (PINC_MICIN_PRESENT, wCodecID & 0x0001); // Check if OEM wants to disable MIC record line.
if (DisableAC97Pin (PINC_MICIN_PRESENT)) SetPinConfig (PINC_MICIN_PRESENT, FALSE);
// If we still have MIC record line, enable the DAC in ext. audio register.
if (GetPinConfig (PINC_MICIN_PRESENT)) // Enable ADC MIC.
WriteCodecRegister (AC97REG_EXT_AUDIO_CTRL, 0, 0x4000); else // Disable ADC MIC.
WriteCodecRegister (AC97REG_EXT_AUDIO_CTRL, 0x4000, 0x4000);
//
// Continue setting configuration information.
//
SetNodeConfig (NODEC_TONE_PRESENT, wCodecID & 0x0004); SetNodeConfig (NODEC_SIMUL_STEREO_PRESENT, wCodecID & 0x0008); SetPinConfig (PINC_HPOUT_PRESENT, wCodecID & 0x0010); // Check if OEM wants to disable headphone output.
if (DisableAC97Pin (PINC_HPOUT_PRESENT)) SetPinConfig (PINC_HPOUT_PRESENT, FALSE);
SetNodeConfig (NODEC_LOUDNESS_PRESENT, wCodecID & 0x0020); SetNodeConfig (NODEC_3D_PRESENT, wCodecID & 0x7C00);
//
// Test for the input pins that are always there but could be disabled
// by the HW vender
//
// Check if OEM wants to disable mic input.
SetPinConfig (PINC_MIC_PRESENT, !DisableAC97Pin (PINC_MIC_PRESENT)); // Check if OEM wants to disable line input.
SetPinConfig (PINC_LINEIN_PRESENT, !DisableAC97Pin (PINC_LINEIN_PRESENT));
// Check if OEM wants to disable CD input.
SetPinConfig (PINC_CD_PRESENT, !DisableAC97Pin (PINC_CD_PRESENT));
//
// For the rest, we have to probe the registers.
//
//
// Test for Mono out.
//
ntStatus = ReadCodecRegister (AC97REG_MMONO_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Default is x8000.
SetPinConfig (PINC_MONOOUT_PRESENT, (wCodecReg == 0x8000));
// Check if OEM wants to disable mono output.
if (DisableAC97Pin (PINC_MONOOUT_PRESENT)) SetPinConfig (PINC_MONOOUT_PRESENT, FALSE);
//
// Test for PC beeper support.
//
ntStatus = ReadCodecRegister (AC97REG_BEEP_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// default is x0 or x8000. If it's 0x8000 then we know for sure that the
// CoDec has a PcBeep, otherwise we have to check the register
if (wCodecReg == 0x8000) SetPinConfig (PINC_PCBEEP_PRESENT, TRUE); else if (!wCodecReg) { // mute the pc beeper.
ntStatus = WriteCodecRegister (AC97REG_BEEP_VOLUME, 0x8000, -1); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// read back
ntStatus = ReadCodecRegister (AC97REG_BEEP_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
if (wCodecReg == 0x8000) { // yep, we have support.
SetPinConfig (PINC_PCBEEP_PRESENT, TRUE); // reset to default value.
WriteCodecRegister (AC97REG_BEEP_VOLUME, 0x0, -1); } else // nope, not present
SetPinConfig (PINC_PCBEEP_PRESENT, FALSE); } else // any other value then 0x0 and 0x8000.
SetPinConfig (PINC_PCBEEP_PRESENT, FALSE);
// Check if OEM wants to disable beeper support.
if (DisableAC97Pin (PINC_PCBEEP_PRESENT)) SetPinConfig (PINC_PCBEEP_PRESENT, FALSE);
//
// Test for phone support.
//
ntStatus = ReadCodecRegister (AC97REG_PHONE_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Default is x8008.
SetPinConfig (PINC_PHONE_PRESENT, (wCodecReg == 0x8008));
// Check if OEM wants to disable phone input.
if (DisableAC97Pin (PINC_PHONE_PRESENT)) SetPinConfig (PINC_PHONE_PRESENT, FALSE);
//
// Test for video support.
//
ntStatus = ReadCodecRegister (AC97REG_VIDEO_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Default is x8808.
SetPinConfig (PINC_VIDEO_PRESENT, (wCodecReg == 0x8808));
// Check if OEM wants to disable video input.
if (DisableAC97Pin (PINC_VIDEO_PRESENT)) SetPinConfig (PINC_VIDEO_PRESENT, FALSE);
//
// Test for Aux support.
//
ntStatus = ReadCodecRegister (AC97REG_AUX_VOLUME, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Default is 0x8808.
SetPinConfig (PINC_AUX_PRESENT, (wCodecReg == 0x8808));
// Check if OEM wants to disable aux input.
if (DisableAC97Pin (PINC_AUX_PRESENT)) SetPinConfig (PINC_AUX_PRESENT, FALSE);
//
// Test for Mic2 source.
//
ntStatus = ReadCodecRegister (AC97REG_GENERAL, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Test for Mic2 select bit.
if (wCodecReg & 0x0100) SetPinConfig (PINC_MIC2_PRESENT, TRUE); else { // Select Mic2 as source.
ntStatus = WriteCodecRegister (AC97REG_GENERAL, 0x0100, 0x0100); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Read back.
ntStatus = ReadCodecRegister (AC97REG_GENERAL, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
if (wCodecReg & 0x0100) { // Yep, we have support so set it to the default value.
SetPinConfig (PINC_MIC2_PRESENT, TRUE); // reset to default value.
WriteCodecRegister (AC97REG_GENERAL, 0, 0x0100); } else SetPinConfig (PINC_MIC2_PRESENT, FALSE); }
// Check if OEM wants to disable mic2 input.
if (DisableAC97Pin (PINC_MIC2_PRESENT)) SetPinConfig (PINC_MIC2_PRESENT, FALSE);
//
// Test the 3D controls.
//
if (GetNodeConfig (NODEC_3D_PRESENT)) { //
// First test for fixed 3D controls. Write default value ...
//
ntStatus = WriteCodecRegister (AC97REG_3D_CONTROL, 0, -1); if (!NT_SUCCESS (ntStatus)) return ntStatus;
// Read 3D register. Default is 0 when adjustable, otherwise it is
// a fixed value.
ntStatus = ReadCodecRegister (AC97REG_3D_CONTROL, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
//
// Check center and depth separately.
//
// For center
SetNodeConfig (NODEC_3D_CENTER_ADJUSTABLE, !(wCodecReg & 0x0F00));
// For depth
SetNodeConfig (NODEC_3D_DEPTH_ADJUSTABLE, !(wCodecReg & 0x000F));
//
// Test for adjustable controls.
//
WriteCodecRegister (AC97REG_3D_CONTROL, 0x0A0A, -1);
// Read 3D register. Now it should be 0x0A0A for adjustable controls,
// otherwise it is a fixed control or simply not there.
ReadCodecRegister (AC97REG_3D_CONTROL, &wCodecReg);
// Restore the default value
WriteCodecRegister (AC97REG_3D_CONTROL, 0, -1);
// Check the center control for beeing adjustable
if (GetNodeConfig (NODEC_3D_CENTER_ADJUSTABLE) && (wCodecReg & 0x0F00) != 0x0A00) { SetNodeConfig (NODEC_3D_CENTER_ADJUSTABLE, FALSE); } // Check the depth control for beeing adjustable
if (GetNodeConfig (NODEC_3D_DEPTH_ADJUSTABLE) && (wCodecReg & 0x000F) != 0x000A) { SetNodeConfig (NODEC_3D_DEPTH_ADJUSTABLE, FALSE); } }
//
// Check for 6th bit support in volume controls. To check the 6th bit,
// we first have to write a value (with 6th bit set) and then read it
// back. After that, we should restore the register to its default value.
//
//
// Start with the master volume.
//
Check6thBitSupport (AC97REG_MASTER_VOLUME, NODEC_6BIT_MASTER_VOLUME);
//
// Check for a headphone volume control.
//
if (GetPinConfig (PINC_HPOUT_PRESENT)) { Check6thBitSupport (AC97REG_HPHONE_VOLUME, NODEC_6BIT_HPOUT_VOLUME); }
//
// Mono out there?
//
if (GetPinConfig (PINC_MONOOUT_PRESENT)) { Check6thBitSupport (AC97REG_MMONO_VOLUME, NODEC_6BIT_MONOOUT_VOLUME); }
//
// Get extended AC97 V2.0 information
//
ntStatus = ReadCodecRegister (AC97REG_EXT_AUDIO_ID, &wCodecReg); if (!NT_SUCCESS (ntStatus)) return ntStatus;
//
// Store the information
//
SetNodeConfig (NODEC_PCM_VARIABLERATE_SUPPORTED, wCodecReg & 0x0001); SetNodeConfig (NODEC_PCM_DOUBLERATE_SUPPORTED, wCodecReg & 0x0002); SetNodeConfig (NODEC_MIC_VARIABLERATE_SUPPORTED, wCodecReg & 0x0008); SetNodeConfig (NODEC_CENTER_DAC_PRESENT, wCodecReg & 0x0040); SetNodeConfig (NODEC_SURROUND_DAC_PRESENT, wCodecReg & 0x0080); SetNodeConfig (NODEC_LFE_DAC_PRESENT, wCodecReg & 0x0100);
//
// In case we have some features get some more information and program
// the codec.
//
if (wCodecReg) { //
// Enable variable sample rate in the control register and disable
// double rate. Also enable all DACs.
//
WriteCodecRegister (AC97REG_EXT_AUDIO_CTRL, wCodecReg & 0x0009, 0x380B);
//
// Check for codecs that have only one sample rate converter. These
// codecs will stick registers AC97REG_FRONT_SAMPLERATE and
// AC97REG_RECORD_SAMPLERATE together.
//
if (GetNodeConfig (NODEC_PCM_VARIABLERATE_SUPPORTED)) { // The default of the sample rate registers should be 0xBB80.
WriteCodecRegister (AC97REG_FRONT_SAMPLERATE, 0xBB80, 0xFFFF);
// Write 44.1KHz into record VSR, then check playback again.
WriteCodecRegister (AC97REG_RECORD_SAMPLERATE, 0xAC44, 0xFFFF); ntStatus = ReadCodecRegister (AC97REG_FRONT_SAMPLERATE, &wCodecReg); WriteCodecRegister (AC97REG_RECORD_SAMPLERATE, 0xBB80, 0xFFFF); if (!NT_SUCCESS (ntStatus)) return ntStatus;
//
// Set the flag accordingly
//
SetNodeConfig (NODEC_PCM_VSR_INDEPENDENT_RATES, (wCodecReg == 0xBB80)); }
//
// Check multichanel support on the ICH.
//
if (GetNodeConfig (NODEC_SURROUND_DAC_PRESENT)) { dwGlobalStatus = ReadBMControlRegister32 (GLOB_STA); //
// Codec supports >2 chanel, does ICH too?
//
if ((GetNodeConfig (NODEC_CENTER_DAC_PRESENT) || GetNodeConfig (NODEC_LFE_DAC_PRESENT)) && (dwGlobalStatus & GLOB_STA_MC6)) { SetPinConfig (PINC_CENTER_LFE_PRESENT, TRUE); } else { SetPinConfig (PINC_CENTER_LFE_PRESENT, FALSE); }
//
// Do we support at least 4 channels?
//
SetPinConfig (PINC_SURROUND_PRESENT, (dwGlobalStatus & GLOB_STA_MC4)); } else { //
// Only 2 channel (stereo) support.
//
SetPinConfig (PINC_CENTER_LFE_PRESENT, FALSE); SetPinConfig (PINC_SURROUND_PRESENT, FALSE); } }
// Check if OEM wants to disable surround output.
if (DisableAC97Pin (PINC_SURROUND_PRESENT)) SetPinConfig (PINC_SURROUND_PRESENT, FALSE); // Check if OEM wants to disable center and LFE output.
if (DisableAC97Pin (PINC_CENTER_LFE_PRESENT)) SetPinConfig (PINC_CENTER_LFE_PRESENT, FALSE);
//
// Check the 6th bit support for the additional channels.
//
if (GetPinConfig (PINC_SURROUND_PRESENT)) Check6thBitSupport (AC97REG_SURROUND_VOLUME, NODEC_6BIT_SURROUND_VOLUME); if (GetPinConfig (PINC_CENTER_LFE_PRESENT)) Check6thBitSupport (AC97REG_CENTER_LFE_VOLUME, NODEC_6BIT_CENTER_LFE_VOLUME);
//
// We read these registers because they are dependent on the codec.
//
ReadCodecRegister (AC97REG_VENDOR_ID1, &wCodecReg); ReadCodecRegister (AC97REG_VENDOR_ID2, &wCodecReg);
return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::AcquireCodecSemiphore ***************************************************************************** * Acquires the AC97 semiphore. This can not be called at dispatch level * because it can timeout if a lower IRQL thread has the semaphore. */ NTSTATUS CAdapterCommon::AcquireCodecSemiphore () { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::AcquireCodecSemiphore]"));
ULONG ulCount = 0; while (READ_PORT_UCHAR (m_pBusMasterBase + CAS) & CAS_CAS) { //
// Do we want to give up??
//
if (ulCount++ > 100) { DOUT (DBG_ERROR, ("Cannot acquire semaphore.")); return STATUS_IO_TIMEOUT; }
//
// Let's wait a little, 40us and then try again.
//
KeStallExecutionProcessor (40L); }
return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::ReadCodecRegister ***************************************************************************** * Reads a AC97 register. Don't call at PASSIVE_LEVEL. */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::ReadCodecRegister ( IN AC97Register reg, OUT PWORD wData ) { PAGED_CODE (); ASSERT (wData); ASSERT (reg < AC97REG_INVALID); // audio can only be in the primary codec
NTSTATUS ntStatus; ULONG Status;
DOUT (DBG_PRINT, ("[CAdapterCommon::ReadCodecRegister]")); //
// Check if we have to access the HW directly.
//
if (m_bDirectRead || (m_stAC97Registers[reg].wFlags & SHREG_INVALID) || (m_stAC97Registers[reg].wFlags & SHREG_NOCACHE)) { //
// Grab the codec access semiphore.
//
ntStatus = AcquireCodecSemiphore (); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("ReadCodecRegister couldn't acquire the semiphore" " for reg. %s", reg <= AC97REG_RESERVED2 ? RegStrings[reg] : reg == AC97REG_VENDOR_ID1 ? "REG_VENDOR_ID1" : reg == AC97REG_VENDOR_ID2 ? "REG_VENDOR_ID2" : "REG_INVALID")); return ntStatus; }
//
// Read the data.
//
*wData = READ_PORT_USHORT (m_pCodecBase + reg);
//
// Check to see if the read was successful.
//
Status = READ_PORT_ULONG ((PULONG)(m_pBusMasterBase + GLOB_STA)); if (Status & GLOB_STA_RCS) { //
// clear the timeout bit
//
WRITE_PORT_ULONG ((PULONG)(m_pBusMasterBase + GLOB_STA), Status); *wData = 0; DOUT (DBG_ERROR, ("ReadCodecRegister timed out for register %s", reg <= AC97REG_RESERVED2 ? RegStrings[reg] : reg == AC97REG_VENDOR_ID1 ? "REG_VENDOR_ID1" : reg == AC97REG_VENDOR_ID2 ? "REG_VENDOR_ID2" : "REG_INVALID")); return STATUS_IO_TIMEOUT; } //
// Clear invalid flag
//
m_stAC97Registers[reg].wCache = *wData; m_stAC97Registers[reg].wFlags &= ~SHREG_INVALID; DOUT (DBG_REGS, ("AC97READ: %s = 0x%04x (HW)", reg <= AC97REG_RESERVED2 ? RegStrings[reg] : reg == AC97REG_VENDOR_ID1 ? "REG_VENDOR_ID1" : reg == AC97REG_VENDOR_ID2 ? "REG_VENDOR_ID2" : "REG_INVALID", *wData)); } else { //
// Otherwise, use the value in the cache.
//
*wData = m_stAC97Registers[reg].wCache; DOUT (DBG_REGS, ("AC97READ: %s = 0x%04x (C)", reg <= AC97REG_RESERVED2 ? RegStrings[reg] : reg == AC97REG_VENDOR_ID1 ? "REG_VENDOR_ID1" : reg == AC97REG_VENDOR_ID2 ? "REG_VENDOR_ID2" : "REG_INVALID", *wData)); }
return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::WriteCodecRegister ***************************************************************************** * Writes to a AC97 register. This can only be done at passive level because * the AcquireCodecSemiphore call could fail! */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::WriteCodecRegister ( IN AC97Register reg, IN WORD wData, IN WORD wMask ) { PAGED_CODE (); ASSERT (reg < AC97REG_INVALID); // audio can only be in the primary codec
WORD TempData = 0; NTSTATUS ntStatus = STATUS_SUCCESS;
DOUT (DBG_PRINT, ("[CAdapterCommon::WriteCodecRegister]"));
//
// No mask? Could happen when you try to prg. left channel of a
// mono volume.
//
if (!wMask) return STATUS_SUCCESS;
//
// Check to see if we are only writing specific bits. If so, we want
// to leave some bits in the register alone.
//
if (wMask != 0xffff) { //
// Read the current register contents.
//
ntStatus = ReadCodecRegister (reg, &TempData); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("WriteCodecRegiser read for mask failed")); return ntStatus; }
//
// Do the masking.
//
TempData &= ~wMask; TempData |= (wMask & wData); } else { TempData = wData; }
//
// Grab the codec access semiphore.
//
ntStatus = AcquireCodecSemiphore (); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("WriteCodecRegister failed for register %s", reg <= AC97REG_RESERVED2 ? RegStrings[reg] : reg == AC97REG_VENDOR_ID1 ? "REG_VENDOR_ID1" : reg == AC97REG_VENDOR_ID2 ? "REG_VENDOR_ID2" : "REG_INVALID")); return ntStatus; } //
// Write the data.
//
WRITE_PORT_USHORT (m_pCodecBase + reg, TempData);
//
// Update cache.
//
m_stAC97Registers[reg].wCache = TempData; DOUT (DBG_REGS, ("AC97WRITE: %s -> 0x%04x", reg <= AC97REG_RESERVED2 ? RegStrings[reg] : reg == AC97REG_VENDOR_ID1 ? "REG_VENDOR_ID1" : reg == AC97REG_VENDOR_ID2 ? "REG_VENDOR_ID2" : "REG_INVALID", TempData)); return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::PrimaryCodecReady ***************************************************************************** * Checks whether the primary codec is present and ready. This may take * awhile if we are bringing it up from a cold reset so give it a second * before giving up. */ NTSTATUS CAdapterCommon::PrimaryCodecReady (void) { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::PrimaryCodecReady]"));
//
// Enable the AC link and raise the reset line.
//
DWORD dwRegValue = ReadBMControlRegister32 (GLOB_CNT); // If someone enabled GPI Interrupt Enable, then he hopefully handles that
// too.
dwRegValue = (dwRegValue | GLOB_CNT_COLD) & ~(GLOB_CNT_ACLOFF | GLOB_CNT_PRIE); WriteBMControlRegister (GLOB_CNT, dwRegValue);
//
// Wait for the Codec to be ready.
//
ULONG WaitCycles = 200; LARGE_INTEGER WaitTime = RtlConvertLongToLargeInteger (-50000); // wait 5000us (5ms) relative
do { if (READ_PORT_ULONG ((PULONG)(m_pBusMasterBase + GLOB_STA)) & GLOB_STA_PCR) { return STATUS_SUCCESS; }
KeDelayExecutionThread (KernelMode, FALSE, &WaitTime); } while (WaitCycles--);
DOUT (DBG_ERROR, ("PrimaryCodecReady timed out!")); return STATUS_IO_TIMEOUT; }
/*****************************************************************************
* CAdapterCommon::PowerUpCodec ***************************************************************************** * Sets the Codec to the highest power state and waits until the Codec reports * that the power state is reached. */ NTSTATUS CAdapterCommon::PowerUpCodec (void) { PAGED_CODE ();
WORD wCodecReg; NTSTATUS ntStatus;
DOUT (DBG_PRINT, ("[CAdapterCommon::PowerUpCodec]"));
//
// Power up the Codec.
//
WriteCodecRegister (AC97REG_POWERDOWN, 0x00, -1);
//
// Wait for the Codec to be powered up.
//
ULONG WaitCycles = 200; LARGE_INTEGER WaitTime = RtlConvertLongToLargeInteger (-50000); // wait 5000us (5ms) relative
do { //
// Read the power management register.
//
ntStatus = ReadCodecRegister (AC97REG_POWERDOWN, &wCodecReg); if (!NT_SUCCESS (ntStatus)) { wCodecReg = 0; // Will cause an error.
break; }
//
// Check the power state. Should be ready.
//
if ((wCodecReg & 0x0f) == 0x0f) break;
//
// Let's wait a little, 5ms and then try again.
//
KeDelayExecutionThread (KernelMode, FALSE, &WaitTime); } while (WaitCycles--);
// Check if we timed out.
if ((wCodecReg & 0x0f) != 0x0f) { DOUT (DBG_ERROR, ("PowerUpCodec timed out. CoDec not powered up.")); ntStatus = STATUS_DEVICE_NOT_READY; }
return ntStatus; }
/*****************************************************************************
* CAdapterCommon::ProgramSampleRate ***************************************************************************** * Programs the sample rate. If the rate cannot be programmed, the routine * restores the register and returns STATUS_UNSUCCESSFUL. * We don't handle double rate sample rates here, because the Intel ICH con- * troller cannot serve CoDecs with double rate or surround sound. If you want * to modify this driver for another AC97 controller, then you might want to * change this function too. */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::ProgramSampleRate ( IN AC97Register Register, IN DWORD dwSampleRate ) { PAGED_CODE ();
WORD wOldRateReg, wCodecReg; NTSTATUS ntStatus;
DOUT (DBG_PRINT, ("[CAdapterCommon::ProgramSampleRate]"));
//
// Check if we support variable sample rate.
//
switch(Register) { case AC97REG_MIC_SAMPLERATE: //
// Variable sample rate supported?
//
if (GetNodeConfig (NODEC_MIC_VARIABLERATE_SUPPORTED)) { // Range supported?
if (dwSampleRate > 48000ul) { // Not possible.
DOUT (DBG_VSR, ("Samplerate %d not supported", dwSampleRate)); return STATUS_NOT_SUPPORTED; } } else { // Only 48000KHz possible.
if (dwSampleRate != 48000ul) { DOUT (DBG_VSR, ("Samplerate %d not supported", dwSampleRate)); return STATUS_NOT_SUPPORTED; }
return STATUS_SUCCESS; } break;
case AC97REG_FRONT_SAMPLERATE: case AC97REG_SURROUND_SAMPLERATE: case AC97REG_LFE_SAMPLERATE: case AC97REG_RECORD_SAMPLERATE: //
// Variable sample rate supported?
//
if (GetNodeConfig (NODEC_PCM_VARIABLERATE_SUPPORTED)) { //
// Check range supported
//
if (dwSampleRate > 48000ul) { DOUT (DBG_VSR, ("Samplerate %d not supported", dwSampleRate)); return STATUS_NOT_SUPPORTED; } } else { // Only 48KHz possible.
if (dwSampleRate != 48000ul) { DOUT (DBG_VSR, ("Samplerate %d not supported", dwSampleRate)); return STATUS_NOT_SUPPORTED; }
return STATUS_SUCCESS; } break;
default: DOUT (DBG_ERROR, ("Invalid sample rate register!")); return STATUS_UNSUCCESSFUL; }
//
// Save the old sample rate register.
//
ntStatus = ReadCodecRegister (Register, &wOldRateReg); if (!NT_SUCCESS (ntStatus)) return ntStatus; //
// program the rate.
//
ntStatus = WriteCodecRegister (Register, (WORD)dwSampleRate, -1); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("Cannot program sample rate.")); return ntStatus; }
//
// Read it back.
//
ntStatus = ReadCodecRegister (Register, &wCodecReg); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("Cannot read sample rate.")); return ntStatus; }
//
// Validate.
//
if (wCodecReg != dwSampleRate) { //
// restore sample rate and ctrl register.
//
WriteCodecRegister (Register, wOldRateReg, -1); DOUT (DBG_VSR, ("Samplerate %d not supported", dwSampleRate)); return STATUS_NOT_SUPPORTED; } DOUT (DBG_VSR, ("Samplerate changed to %d.", dwSampleRate)); return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::PowerChangeState ***************************************************************************** * Change power state for the device. We handle the codec, PowerChangeNotify * in the wave miniport handles the DMA registers. */ STDMETHODIMP_(void) CAdapterCommon::PowerChangeState ( IN POWER_STATE NewState ) { PAGED_CODE ();
NTSTATUS ntStatus = STATUS_SUCCESS;
DOUT (DBG_PRINT, ("[CAdapterCommon::PowerChangeNotify]"));
//
// Check to see if this is the current power state.
//
if (NewState.DeviceState == m_PowerState) { DOUT (DBG_POWER, ("New device state equals old state.")); return; }
//
// Check the new device state.
//
if ((NewState.DeviceState < PowerDeviceD0) || (NewState.DeviceState > PowerDeviceD3)) { DOUT (DBG_ERROR, ("Unknown device state: D%d.", (ULONG)NewState.DeviceState - (ULONG)PowerDeviceD0)); return; }
DOUT (DBG_POWER, ("Changing state to D%d.", (ULONG)NewState.DeviceState - (ULONG)PowerDeviceD0));
//
// Switch on new state.
//
switch (NewState.DeviceState) { case PowerDeviceD0: //
// If we are coming from D2 or D3 we have to restore the registers cause
// there might have been a power loss.
//
if ((m_PowerState == PowerDeviceD3) || (m_PowerState == PowerDeviceD2)) { //
// Reset AD3 to indicate that we are now awake.
// Because the system has only one power irp at a time, we are sure
// that the modem driver doesn't get called while we are restoring
// power.
//
WriteBMControlRegister (GLOB_STA, ReadBMControlRegister32 (GLOB_STA) & ~GLOB_STA_AD3);
//
// Restore codec registers.
//
ntStatus = RestoreCodecRegisters (); } else // We are coming from power state D1
{ ntStatus = PowerUpCodec (); }
// Print error code.
if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("PowerChangeState failed to restore the codec.")); } break; case PowerDeviceD1: //
// This sleep state is the lowest latency sleep state with respect
// to the latency time required to return to D0. If the
// driver is not being used an inactivity timer in portcls will
// place the driver in this state after a timeout period
// controllable via the registry.
//
// Let's power down the DAC/ADC's and analog mixer.
WriteCodecRegister (AC97REG_POWERDOWN, 0x0700, -1); break;
case PowerDeviceD2: case PowerDeviceD3: //
// This is a full hibernation state and is the longest latency sleep
// state. In this modes the power could be removed or reduced that
// much that the AC97 controller looses information, so we save
// whatever we have to save.
//
//
// Powerdown ADC, DAC, Mixer, Vref, HP amp, and Exernal Amp but not
// AC-link and Clk
//
WriteCodecRegister (AC97REG_POWERDOWN, 0xCF00, -1);
//
// Only in D3 mode we set the AD3 bit and evtl. shut off the AC link.
//
if (NewState.DeviceState == PowerDeviceD3) { //
// Set the AD3 bit.
//
ULONG ulReg = ReadBMControlRegister32 (GLOB_STA); WriteBMControlRegister (GLOB_STA, ulReg | GLOB_STA_AD3); //
// We check if the modem is sleeping. If it is, we can shut off the
// AC link also. We shut off the AC link also if the modem is not
// there.
//
if ((ulReg & GLOB_STA_MD3) || !(ulReg & GLOB_STA_SCR)) { // Set Codec to super sleep
WriteCodecRegister (AC97REG_POWERDOWN, 0xFF00, -1); // Disable the AC-link signals
ulReg = ReadBMControlRegister32 (GLOB_CNT); WriteBMControlRegister (GLOB_CNT, (ulReg | GLOB_CNT_ACLOFF) & ~GLOB_CNT_COLD); } } break; } //
// Save the new state. This local value is used to determine when to
// cache property accesses and when to permit the driver from accessing
// the hardware.
//
m_PowerState = NewState.DeviceState; DOUT (DBG_POWER, ("Entering D%d", (ULONG)m_PowerState - (ULONG)PowerDeviceD0)); }
/*****************************************************************************
* CAdapterCommon::QueryPowerChangeState ***************************************************************************** * Query to see if the device can change to this power state */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::QueryPowerChangeState ( IN POWER_STATE NewState ) { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::QueryPowerChangeState]"));
// Check here to see of a legitimate state is being requested
// based on the device state and fail the call if the device/driver
// cannot support the change requested. Otherwise, return STATUS_SUCCESS.
// Note: A QueryPowerChangeState() call is not guaranteed to always preceed
// a PowerChangeState() call.
// check the new state being requested
switch (NewState.DeviceState) { case PowerDeviceD0: case PowerDeviceD1: case PowerDeviceD2: case PowerDeviceD3: return STATUS_SUCCESS; default: DOUT (DBG_ERROR, ("Unknown device state: D%d.", (ULONG)NewState.DeviceState - (ULONG)PowerDeviceD0)); return STATUS_NOT_IMPLEMENTED; } }
/*****************************************************************************
* CAdapterCommon::QueryDeviceCapabilities ***************************************************************************** * Called at startup to get the caps for the device. This structure provides * the system with the mappings between system power state and device power * state. This typically will not need modification by the driver. * If the driver modifies these mappings then the driver is not allowed to * change the mapping to a weaker power state (e.g. from S1->D3 to S1->D1). * */ STDMETHODIMP_(NTSTATUS) CAdapterCommon::QueryDeviceCapabilities ( IN PDEVICE_CAPABILITIES PowerDeviceCaps ) { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::QueryDeviceCapabilities]"));
return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::RestoreAC97Registers ***************************************************************************** * Preset the AC97 registers with default values. The routine first checks if * There are registry entries for the default values. If not, we have hard * coded values too ;) */ NTSTATUS CAdapterCommon::SetAC97Default (void) { PAGED_CODE (); PREGISTRYKEY DriverKey; PREGISTRYKEY SettingsKey; UNICODE_STRING sKeyName; ULONG ulDisposition; ULONG ulResultLength; PVOID KeyInfo = NULL;
DOUT (DBG_PRINT, ("[CAdapterCommon::SetAC97Default]")); // open the driver registry key
NTSTATUS ntStatus = PcNewRegistryKey (&DriverKey, // IRegistryKey
NULL, // OuterUnknown
DriverRegistryKey, // Registry key type
KEY_READ, // Access flags
m_pDeviceObject, // Device object
NULL, // Subdevice
NULL, // ObjectAttributes
0, // Create options
NULL); // Disposition
if (NT_SUCCESS (ntStatus)) { // make a unicode string for the subkey name
RtlInitUnicodeString (&sKeyName, L"Settings");
// open the settings subkey
ntStatus = DriverKey->NewSubKey (&SettingsKey, // Subkey
NULL, // OuterUnknown
KEY_READ, // Access flags
&sKeyName, // Subkey name
REG_OPTION_NON_VOLATILE, // Create options
&ulDisposition);
if (NT_SUCCESS (ntStatus)) { // allocate data to hold key info
KeyInfo = ExAllocatePool (PagedPool, sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(WORD)); if (NULL != KeyInfo) { // loop through all mixer settings
for (AC97Register i = AC97REG_RESET; i <= AC97REG_RESERVED2; i = (AC97Register)(i + 1)) { if (m_stAC97Registers[i].wFlags & SHREG_INIT) { // init key name
RtlInitUnicodeString (&sKeyName, m_stAC97Registers[i].sRegistryName); // query the value key
ntStatus = SettingsKey->QueryValueKey (&sKeyName, KeyValuePartialInformation, KeyInfo, sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(WORD), &ulResultLength); if (NT_SUCCESS (ntStatus)) { PKEY_VALUE_PARTIAL_INFORMATION PartialInfo = (PKEY_VALUE_PARTIAL_INFORMATION)KeyInfo;
if (PartialInfo->DataLength == sizeof(WORD)) { // set mixer register to registry value
WriteCodecRegister (i, *(PWORD)PartialInfo->Data, -1); } else // write the hard coded default
{ // if key access failed, set to default
WriteCodecRegister (i, m_stAC97Registers[i].wWantedDefault, -1); } } else // write the hard coded default
{ // if key access failed, set to default
WriteCodecRegister (i, m_stAC97Registers[i].wWantedDefault, -1); } } }
// we want to return status success even if the last QueryValueKey
// failed.
ntStatus = STATUS_SUCCESS;
// free the key info
ExFreePool (KeyInfo); }
// release the settings key
SettingsKey->Release (); }
// release the driver key
DriverKey->Release (); }
// in case we did not query the registry (cause of lack of resources)
// restore default values and return insufficient resources.
if (!NT_SUCCESS (ntStatus) || !KeyInfo) { // copy hard coded default settings
for (AC97Register i = AC97REG_RESET; i < AC97REG_RESERVED2; i = (AC97Register)(i + 1)) { if (m_stAC97Registers[i].wFlags & SHREG_INIT) { WriteCodecRegister (i, m_stAC97Registers[i].wWantedDefault, -1); } }
ntStatus = STATUS_INSUFFICIENT_RESOURCES; }
return ntStatus; }
/*****************************************************************************
* CAdapterCommon::DisableAC97Pin ***************************************************************************** * Returns TRUE when the HW vendor wants to disable the pin. A disabled pin is * not shown to the user (means it is not included in the topology). The * reason for doing this could be that some of the input lines like Aux or * Video are not available to the user (to plug in something) but the codec * can handle those lines. */ BOOL CAdapterCommon::DisableAC97Pin ( IN TopoPinConfig pin ) { PAGED_CODE ();
PREGISTRYKEY DriverKey; PREGISTRYKEY SettingsKey; UNICODE_STRING sKeyName; ULONG ulDisposition; ULONG ulResultLength; PVOID KeyInfo = NULL; BOOL bDisable = FALSE;
DOUT (DBG_PRINT, ("[CAdapterCommon::DisableAC97Pin]")); // open the driver registry key
NTSTATUS ntStatus = PcNewRegistryKey (&DriverKey, // IRegistryKey
NULL, // OuterUnknown
DriverRegistryKey, // Registry key type
KEY_READ, // Access flags
m_pDeviceObject, // Device object
NULL, // Subdevice
NULL, // ObjectAttributes
0, // Create options
NULL); // Disposition
if (NT_SUCCESS (ntStatus)) { // make a unicode string for the subkey name
RtlInitUnicodeString (&sKeyName, L"Settings");
// open the settings subkey
ntStatus = DriverKey->NewSubKey (&SettingsKey, // Subkey
NULL, // OuterUnknown
KEY_READ, // Access flags
&sKeyName, // Subkey name
REG_OPTION_NON_VOLATILE, // Create options
&ulDisposition);
if (NT_SUCCESS (ntStatus)) { // allocate data to hold key info
KeyInfo = ExAllocatePool (PagedPool, sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(BYTE)); if (NULL != KeyInfo) { // init key name
RtlInitUnicodeString (&sKeyName, m_stHardwareConfig. Pins[pin].sRegistryName); // query the value key
ntStatus = SettingsKey->QueryValueKey (&sKeyName, KeyValuePartialInformation, KeyInfo, sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(BYTE), &ulResultLength ); if (NT_SUCCESS (ntStatus)) { PKEY_VALUE_PARTIAL_INFORMATION PartialInfo = (PKEY_VALUE_PARTIAL_INFORMATION)KeyInfo;
if (PartialInfo->DataLength == sizeof(BYTE)) { // store the value
if (*(PBYTE)PartialInfo->Data) bDisable = TRUE; else bDisable = FALSE; } }
// free the key info
ExFreePool (KeyInfo); }
// release the settings key
SettingsKey->Release (); }
// release the driver key
DriverKey->Release (); }
// if one of the stuff above fails we return the default, which is FALSE.
return bDisable; }
/*****************************************************************************
* CAdapterCommon::RestoreCodecRegisters ***************************************************************************** * write back cached mixer values to codec registers */ NTSTATUS CAdapterCommon::RestoreCodecRegisters (void) { PAGED_CODE ();
DOUT (DBG_PRINT, ("[CAdapterCommon::RestoreCodecRegisters]"));
//
// Initialize the AC97 codec.
//
NTSTATUS ntStatus = InitAC97 (); if (!NT_SUCCESS (ntStatus)) return ntStatus;
//
// Restore all codec registers. Failure is not critical.
//
for (AC97Register i = AC97REG_MASTER_VOLUME; i < AC97REG_RESERVED2; i = (AC97Register)(i + 1)) { WriteCodecRegister (i, m_stAC97Registers[i].wCache, -1); }
return STATUS_SUCCESS; }
/*****************************************************************************
* CAdapterCommon::ReadChannelConfigDefault ***************************************************************************** * This function reads the default channel config from the registry. The * registry entry "ChannelConfig" is set every every time we get a * KSPROPERTY_AUDIO_CHANNEL_CONFIG for the DAC node. * In case the key doesn't exist we assume a channel config of stereo speakers, * cause that is the default of DSOUND. */ STDMETHODIMP_(void) CAdapterCommon::ReadChannelConfigDefault ( PDWORD pdwChannelConfig, PWORD pwChannels ) { PAGED_CODE ();
PREGISTRYKEY DriverKey; PREGISTRYKEY SettingsKey; UNICODE_STRING sKeyName; ULONG ulDisposition; ULONG ulResultLength; PVOID KeyInfo = NULL;
DOUT (DBG_PRINT, ("[CAdapterCommon::ReadChannelConfigDefault]")); // This is the default: 2 speakers, stereo.
*pdwChannelConfig = KSAUDIO_SPEAKER_STEREO; *pwChannels = 2; // open the driver registry key
NTSTATUS ntStatus = PcNewRegistryKey (&DriverKey, // IRegistryKey
NULL, // OuterUnknown
DriverRegistryKey, // Registry key type
KEY_READ, // Access flags
m_pDeviceObject, // Device object
NULL, // Subdevice
NULL, // ObjectAttributes
0, // Create options
NULL); // Disposition
if (NT_SUCCESS (ntStatus)) { // make a unicode string for the subkey name
RtlInitUnicodeString (&sKeyName, L"Settings");
// open the settings subkey
ntStatus = DriverKey->NewSubKey (&SettingsKey, // Subkey
NULL, // OuterUnknown
KEY_READ, // Access flags
&sKeyName, // Subkey name
REG_OPTION_NON_VOLATILE, // Create options
&ulDisposition);
if (NT_SUCCESS (ntStatus)) { // allocate data to hold key info
KeyInfo = ExAllocatePool (PagedPool, sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(DWORD)); if (NULL != KeyInfo) { // init key name
RtlInitUnicodeString (&sKeyName, L"ChannelConfig"); // query the value key
ntStatus = SettingsKey->QueryValueKey (&sKeyName, KeyValuePartialInformation, KeyInfo, sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(DWORD), &ulResultLength ); if (NT_SUCCESS (ntStatus)) { PKEY_VALUE_PARTIAL_INFORMATION PartialInfo = (PKEY_VALUE_PARTIAL_INFORMATION)KeyInfo;
if (PartialInfo->DataLength == sizeof(DWORD)) { switch (*(PLONG)PartialInfo->Data) { case KSAUDIO_SPEAKER_QUAD: case KSAUDIO_SPEAKER_SURROUND: if (GetPinConfig (PINC_SURROUND_PRESENT)) { *pdwChannelConfig = *(PDWORD)PartialInfo->Data; *pwChannels = 4; } break;
case KSAUDIO_SPEAKER_5POINT1: if (GetPinConfig (PINC_SURROUND_PRESENT) && GetPinConfig (PINC_CENTER_LFE_PRESENT)) { *pdwChannelConfig = *(PDWORD)PartialInfo->Data; *pwChannels = 6; } break; } } }
// free the key info
ExFreePool (KeyInfo); }
// release the settings key
SettingsKey->Release (); }
// release the driver key
DriverKey->Release (); } }
/*****************************************************************************
* CAdapterCommon::WriteChannelConfigDefault ***************************************************************************** * This function writes the default channel config to the registry. The * registry entry "ChannelConfig" is set every every time we get a * KSPROPERTY_AUDIO_CHANNEL_CONFIG for the DAC node. */ STDMETHODIMP_(void) CAdapterCommon::WriteChannelConfigDefault (DWORD dwChannelConfig) { PAGED_CODE ();
PREGISTRYKEY DriverKey; PREGISTRYKEY SettingsKey; UNICODE_STRING sKeyName; ULONG ulDisposition;
DOUT (DBG_PRINT, ("[CAdapterCommon::WriteChannelConfigDefault]")); // open the driver registry key
NTSTATUS ntStatus = PcNewRegistryKey (&DriverKey, // IRegistryKey
NULL, // OuterUnknown
DriverRegistryKey, // Registry key type
KEY_WRITE, // Access flags
m_pDeviceObject, // Device object
NULL, // Subdevice
NULL, // ObjectAttributes
0, // Create options
NULL); // Disposition
if (NT_SUCCESS (ntStatus)) { // make a unicode string for the subkey name
RtlInitUnicodeString (&sKeyName, L"Settings");
// open the settings subkey
ntStatus = DriverKey->NewSubKey (&SettingsKey, // Subkey
NULL, // OuterUnknown
KEY_WRITE, // Access flags
&sKeyName, // Subkey name
REG_OPTION_NON_VOLATILE, // Create options
&ulDisposition);
if (NT_SUCCESS (ntStatus)) { // init key name
RtlInitUnicodeString (&sKeyName, L"ChannelConfig");
// query the value key
ntStatus = SettingsKey->SetValueKey (&sKeyName, REG_DWORD, &dwChannelConfig, sizeof (DWORD)); if (!NT_SUCCESS (ntStatus)) { DOUT (DBG_ERROR, ("Could not write the ChannelConfig to registry.")); }
// release the settings key
SettingsKey->Release (); }
// release the driver key
DriverKey->Release (); } }
/*****************************************************************************
* Non paged code begins here ***************************************************************************** */
#pragma code_seg()
/*****************************************************************************
* CAdapterCommon::WriteBMControlRegister ***************************************************************************** * Writes a byte (UCHAR) to BusMaster Control register. */ STDMETHODIMP_(void) CAdapterCommon::WriteBMControlRegister ( IN ULONG ulOffset, IN UCHAR ucValue ) { DOUT (DBG_PRINT, ("[CAdapterCommon::WriteBMControlRegister] (UCHAR)")); WRITE_PORT_UCHAR ((PUCHAR)(m_pBusMasterBase + ulOffset), ucValue);
DOUT (DBG_REGS, ("WriteBMControlRegister wrote 0x%2x to 0x%4x.", ucValue, m_pBusMasterBase + ulOffset)); }
/*****************************************************************************
* CAdapterCommon::WriteBMControlRegister ***************************************************************************** * Writes a word (USHORT) to BusMaster Control register. */ STDMETHODIMP_(void) CAdapterCommon::WriteBMControlRegister ( IN ULONG ulOffset, IN USHORT usValue ) { DOUT (DBG_PRINT, ("[CAdapterCommon::WriteBMControlRegister (USHORT)]"));
WRITE_PORT_USHORT ((PUSHORT)(m_pBusMasterBase + ulOffset), usValue);
DOUT (DBG_REGS, ("WriteBMControlRegister wrote 0x%4x to 0x%4x", usValue, m_pBusMasterBase + ulOffset)); }
/*****************************************************************************
* CAdapterCommon::WriteBMControlRegister ***************************************************************************** * Writes a DWORD (ULONG) to BusMaster Control register. */ STDMETHODIMP_(void) CAdapterCommon::WriteBMControlRegister ( IN ULONG ulOffset, IN ULONG ulValue ) { DOUT (DBG_PRINT, ("[CAdapterCommon::WriteBMControlRegister (ULONG)]"));
WRITE_PORT_ULONG ((PULONG)(m_pBusMasterBase + ulOffset), ulValue);
DOUT (DBG_REGS, ("WriteBMControlRegister wrote 0x%8x to 0x%4x.", ulValue, m_pBusMasterBase + ulOffset)); }
/*****************************************************************************
* CAdapterCommon::ReadBMControlRegister8 ***************************************************************************** * Read a byte (UCHAR) from BusMaster Control register. */ STDMETHODIMP_(UCHAR) CAdapterCommon::ReadBMControlRegister8 ( IN ULONG ulOffset ) { UCHAR ucValue = UCHAR(-1);
DOUT (DBG_PRINT, ("[CAdapterCommon::ReadBMControlRegister8]"));
ucValue = READ_PORT_UCHAR ((PUCHAR)(m_pBusMasterBase + ulOffset));
DOUT (DBG_REGS, ("ReadBMControlRegister read 0x%2x from 0x%4x.", ucValue, m_pBusMasterBase + ulOffset));
return ucValue; }
/*****************************************************************************
* CAdapterCommon::ReadBMControlRegister16 ***************************************************************************** * Read a word (USHORT) from BusMaster Control register. */ STDMETHODIMP_(USHORT) CAdapterCommon::ReadBMControlRegister16 ( IN ULONG ulOffset ) { USHORT usValue = USHORT(-1);
DOUT (DBG_PRINT, ("[CAdapterCommon::ReadBMControlRegister16]"));
usValue = READ_PORT_USHORT ((PUSHORT)(m_pBusMasterBase + ulOffset));
DOUT (DBG_REGS, ("ReadBMControlRegister read 0x%4x = 0x%4x", usValue, m_pBusMasterBase + ulOffset));
return usValue; }
/*****************************************************************************
* CAdapterCommon::ReadBMControlRegister32 ***************************************************************************** * Read a dword (ULONG) from BusMaster Control register. */ STDMETHODIMP_(ULONG) CAdapterCommon::ReadBMControlRegister32 ( IN ULONG ulOffset ) { ULONG ulValue = ULONG(-1);
DOUT (DBG_PRINT, ("[CAdapterCommon::ReadBMControlRegister32]"));
ulValue = READ_PORT_ULONG ((PULONG)(m_pBusMasterBase + ulOffset));
DOUT (DBG_REGS, ("ReadBMControlRegister read 0x%8x = 0x%4x", ulValue, m_pBusMasterBase + ulOffset));
return ulValue; }
|