|
|
//+-------------------------------------------------------------------------
//
// Microsoft Windows
//
// Copyright (C) Microsoft Corporation, 1998 - 1999
//
// File: readwrit.c
//
//--------------------------------------------------------------------------
//
// This file contains functions associated with handling Read and Write requests
//
#include "pch.h"
#include "ecp.h"
#include "readwrit.h"
NTSTATUS ParForwardToReverse( IN PDEVICE_EXTENSION Extension ) /*++
Routine Description:
This routine flips the bus from Forward to Reverse direction.
Arguments:
Extension - Supplies the device extension.
Return Value:
None.
--*/ { NTSTATUS Status = STATUS_SUCCESS;
// Do a quick check to see if we are where we want to be.
// Happy punt if everything is ok.
if (Extension->Connected && (Extension->CurrentPhase == PHASE_REVERSE_IDLE || Extension->CurrentPhase == PHASE_REVERSE_XFER)) { ParDump2(PARINFO, ( "ParForwardToReverse: Already in Reverse Mode!\r\n" )); return Status; }
if (Extension->Connected) { if (Extension->CurrentPhase != PHASE_REVERSE_IDLE && Extension->CurrentPhase != PHASE_REVERSE_XFER) { if (afpForward[Extension->IdxForwardProtocol].ProtocolFamily == arpReverse[Extension->IdxReverseProtocol].ProtocolFamily) {
ParDump2(PARINFO, ( "ParForwardToReverse: Protocol families match!\r\n" ));
// Protocol Families match and we are in Fwd. Exit Fwd to cleanup the state
// machine, fifo, etc. We will call EnterReverse later to
// actually bus flip. Also only do this if in safe mode
if ( (afpForward[Extension->IdxForwardProtocol].fnExitForward) ) { Status = afpForward[Extension->IdxForwardProtocol].fnExitForward(Extension); } } else {
ParDump2(PARINFO, ( "ParForwardToReverse: Protocol families DO NOT match!\r\n" )); //
// Protocol Families don't match...need to terminate from the forward mode
//
if (afpForward[Extension->IdxForwardProtocol].fnDisconnect) { ParDump2(PARINFO, ("ParForwardToReverse: Calling afpForward.fnDisconnect\r\n")); afpForward[Extension->IdxForwardProtocol].fnDisconnect (Extension); } if ((Extension->ForwardInterfaceAddress != DEFAULT_ECP_CHANNEL) && (afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress)) Extension->SetForwardAddress = TRUE; } } }
if ((!Extension->Connected) && (arpReverse[Extension->IdxReverseProtocol].fnConnect)) {
ParDump2(PARINFO, ( "ParForwardToReverse: Not Connected so Calling Reverse Connect!\r\n" ));
//
// If we are still connected the protocol families match...
//
Status = arpReverse[Extension->IdxReverseProtocol].fnConnect(Extension, FALSE);
//
// Makes the assumption that the connected address is always 0
//
if ((NT_SUCCESS(Status)) && (arpReverse[Extension->IdxReverseProtocol].fnSetInterfaceAddress) && (Extension->ReverseInterfaceAddress != DEFAULT_ECP_CHANNEL)) { Extension->SetReverseAddress = TRUE; } }
//
// Set the channel address if we need to.
//
if (NT_SUCCESS(Status) && Extension->SetReverseAddress && (arpReverse[Extension->IdxReverseProtocol].fnSetInterfaceAddress)) {
Status = arpReverse[Extension->IdxReverseProtocol].fnSetInterfaceAddress ( Extension, Extension->ReverseInterfaceAddress); if (NT_SUCCESS(Status)) Extension->SetReverseAddress = FALSE; else Extension->SetReverseAddress = TRUE; }
//
// Do we need to reverse?
//
if ( (NT_SUCCESS(Status)) && ((Extension->CurrentPhase != PHASE_REVERSE_IDLE) && (Extension->CurrentPhase != PHASE_REVERSE_XFER)) ) { ParDump2(PARINFO, ( "ParForwardToReverse: Not IN REVERSE IDLE so Calling Reverse ENTER!\r\n" ));
if ((arpReverse[Extension->IdxReverseProtocol].fnEnterReverse)) Status = arpReverse[Extension->IdxReverseProtocol].fnEnterReverse(Extension); }
ParDump2(PAREXIT, ( "ParForwardToReverse: Exit [%d]\r\n", NT_SUCCESS(Status))); return Status; }
BOOLEAN ParHaveReadData( IN PDEVICE_EXTENSION Extension ) /*++
Routine Description: This method determines if the peripheral has any data ready to send to the host.
Arguments: Extension - Supplies the device EXTENSION.
Return Value: TRUE - Either the peripheral has data FALSE - No data --*/ { if (Extension->CurrentPhase == PHASE_REVERSE_IDLE || Extension->CurrentPhase == PHASE_REVERSE_XFER) { if (arpReverse[Extension->IdxReverseProtocol].fnHaveReadData) { if (arpReverse[Extension->IdxReverseProtocol].fnHaveReadData(Extension)) return TRUE; // Don't have data. This could be a fluke. Let's
// flip the bus and try in Fwd mode.
ParReverseToForward(Extension); } }
if (Extension->CurrentPhase == PHASE_FORWARD_IDLE || Extension->CurrentPhase == PHASE_FORWARD_XFER) { if (afpForward[Extension->IdxForwardProtocol].ProtocolFamily == FAMILY_BECP || afpForward[Extension->IdxForwardProtocol].Protocol & ECP_HW_NOIRQ || afpForward[Extension->IdxForwardProtocol].Protocol & ECP_HW_IRQ) { if (ParEcpHwHaveReadData(Extension)) return TRUE; // Hmmm. No data. Is the chip stuck?
#define DVRH_DO_RETRY 0
#if (1 == DVRH_DO_RETRY)
// retry - slap periph to wake it up, then try again
ParPing(Extension); return ParEcpHwHaveReadData(Extension); #else
return FALSE; #endif
} else if (afpForward[Extension->IdxForwardProtocol].Protocol & ECP_SW) return ParEcpHaveReadData(Extension); } // DVRH RMT
// We got here because the protocol doesn't support peeking.
// Let's go ahead and flip the bus to see if there is anything
// there.
return TRUE; }
NTSTATUS ParPing( IN PDEVICE_EXTENSION Extension ) /*++
Routine Description: This method pings the device.
Arguments: Extension - Supplies the device EXTENSION.
Return Value: none --*/ { NTSTATUS NtStatus = STATUS_SUCCESS; #if 0
if ((Extension->CurrentPhase == PHASE_REVERSE_IDLE) || (Extension->CurrentPhase == PHASE_REVERSE_XFER)) { ParReverseToForward(Extension); if (arpReverse[Extension->IdxReverseProtocol].fnDisconnect) { ParDump2(PARINFO, ("ParPing: Calling arpReverse.fnDisconnect\n")); arpReverse[Extension->IdxReverseProtocol].fnDisconnect(Extension); } } else if ((Extension->CurrentPhase != PHASE_REVERSE_IDLE) && (Extension->CurrentPhase != PHASE_REVERSE_XFER)) { if (afpForward[Extension->IdxForwardProtocol].fnDisconnect) { ParDump2(PARINFO, ("ParPing: Calling afpForward.fnDisconnect\n")); afpForward[Extension->IdxForwardProtocol].fnDisconnect(Extension); } }
if (afpForward[Extension->IdxForwardProtocol].fnConnect) { NtStatus = afpForward[Extension->IdxForwardProtocol].fnConnect(Extension, FALSE); if (NT_SUCCESS(NtStatus) && (Extension->ForwardInterfaceAddress != DEFAULT_ECP_CHANNEL) && (afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress)) { NtStatus = afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress(Extension, Extension->ForwardInterfaceAddress); } } #endif
return NtStatus; }
NTSTATUS ParReadWrite( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp )
/*++
Routine Description:
This is the dispatch routine for READ and WRITE requests.
Arguments:
DeviceObject - Supplies the device object.
Irp - Supplies the I/O request packet.
Return Value:
STATUS_PENDING - Request pending - a worker thread will carry out the request at PASSIVE_LEVEL IRQL
STATUS_SUCCESS - Success - asked for a read or write of length zero.
STATUS_INVALID_PARAMETER - Invalid parameter.
STATUS_DELETE_PENDING - This device object is being deleted.
--*/
{ PIO_STACK_LOCATION IrpSp; PDEVICE_EXTENSION Extension;
Irp->IoStatus.Information = 0;
IrpSp = IoGetCurrentIrpStackLocation(Irp); Extension = DeviceObject->DeviceExtension;
ParTimerMainCheck( ("Enter ParReadWrite(...) - %wZ\r\n", &Extension->SymbolicLinkName) );
//
// bail out if a delete is pending for this device object
//
if(Extension->DeviceStateFlags & PAR_DEVICE_DELETE_PENDING) {
Irp->IoStatus.Status = STATUS_DELETE_PENDING; ParCompleteRequest(Irp, IO_NO_INCREMENT); return STATUS_DELETE_PENDING; } //
// bail out if a remove is pending for our ParPort device object
//
if(Extension->DeviceStateFlags & PAR_DEVICE_PORT_REMOVE_PENDING) {
Irp->IoStatus.Status = STATUS_DELETE_PENDING; ParCompleteRequest(Irp, IO_NO_INCREMENT); return STATUS_DELETE_PENDING; }
//
// bail out if device has been removed
//
if(Extension->DeviceStateFlags & (PAR_DEVICE_REMOVED|PAR_DEVICE_SURPRISE_REMOVAL) ) {
Irp->IoStatus.Status = STATUS_DEVICE_REMOVED; ParCompleteRequest(Irp, IO_NO_INCREMENT); return STATUS_DEVICE_REMOVED; }
//
// Note that checks of the Write IRP parameters also handles Read IRPs
// because the Write and Read structures are identical in the
// IO_STACK_LOCATION.Parameters union
//
//
// bail out on nonzero offset
//
if( (IrpSp->Parameters.Write.ByteOffset.HighPart != 0) || (IrpSp->Parameters.Write.ByteOffset.LowPart != 0) ) {
Irp->IoStatus.Status = STATUS_INVALID_PARAMETER; ParCompleteRequest(Irp, IO_NO_INCREMENT); return STATUS_INVALID_PARAMETER; }
//
// immediately succeed read or write request of length zero
//
if (IrpSp->Parameters.Write.Length == 0) {
Irp->IoStatus.Status = STATUS_SUCCESS; ParCompleteRequest(Irp, IO_NO_INCREMENT); return STATUS_SUCCESS; }
//
// Request appears to be valid, queue it for our worker thread to handle at
// PASSIVE_LEVEL IRQL and wake up the thread to do the work
//
{ KIRQL OldIrql;
// make sure IRP isn't cancelled out from under us
IoAcquireCancelSpinLock(&OldIrql); if (Irp->Cancel) { // IRP has been cancelled, bail out
IoReleaseCancelSpinLock(OldIrql); return STATUS_CANCELLED; } else { BOOLEAN needToSignalSemaphore = IsListEmpty( &Extension->WorkQueue ); IoSetCancelRoutine(Irp, ParCancelRequest); IoMarkIrpPending(Irp); InsertTailList(&Extension->WorkQueue, &Irp->Tail.Overlay.ListEntry); IoReleaseCancelSpinLock(OldIrql); if( needToSignalSemaphore ) { KeReleaseSemaphore(&Extension->RequestSemaphore, 0, 1, FALSE); } return STATUS_PENDING; } } }
NTSTATUS ParRead( IN PDEVICE_EXTENSION Extension, OUT PVOID Buffer, IN ULONG NumBytesToRead, OUT PULONG NumBytesRead ) { NTSTATUS Status = STATUS_SUCCESS; PUCHAR lpsBufPtr = (PUCHAR)Buffer; // Pointer to buffer cast to desired data type
ULONG Bytes = 0; #if (1 == DVRH_RAISE_IRQL)
KIRQL OldIrql; #endif
*NumBytesRead = Bytes; #if (1 == DVRH_RAISE_IRQL)
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql); #endif
// only do this if we are in safe mode
if ( Extension->ModeSafety == SAFE_MODE ) {
if (arpReverse[Extension->IdxReverseProtocol].fnReadShadow) { Queue *pQueue; pQueue = &(Extension->ShadowBuffer); arpReverse[Extension->IdxReverseProtocol].fnReadShadow(pQueue, lpsBufPtr, NumBytesToRead, &Bytes); NumBytesToRead -= Bytes; *NumBytesRead += Bytes; lpsBufPtr += Bytes; if ( 0 == NumBytesToRead ) { ParDump2(PARINFO, ( "ParRead: Read everything from the ShadowBuffer\r\n" )); Status = STATUS_SUCCESS; if ((!Queue_IsEmpty(pQueue)) && (TRUE == Extension->P12843DL.bEventActive) ) { KeSetEvent(Extension->P12843DL.Event, 0, FALSE); } goto ParRead_ExitLabel; } }
if (arpReverse[Extension->IdxReverseProtocol].fnHaveReadData) { if (!arpReverse[Extension->IdxReverseProtocol].fnHaveReadData(Extension)) { ParDump2(PARINFO, ( "ParRead: Periph doesn't have data. Happy punt to give cycles to someone else.\r\n" )); Status = STATUS_SUCCESS; goto ParRead_ExitLabel; } }
}
// Go ahead and flip the bus if need be. The proc will just make sure we're properly
// connected and pointing in the right direction.
Status = ParForwardToReverse( Extension );
//
// The read mode will vary depending upon the currently negotiated mode.
// Default: Nibble
//
if (NT_SUCCESS(Status)) { #if (1 == DVRH_USE_CORRECT_PTRS)
if (Extension->fnRead || arpReverse[Extension->IdxReverseProtocol].fnRead) { //
// Do the read...
//
if(Extension->fnRead) { Status = ((PPROTOCOL_READ_ROUTINE)Extension->fnRead)(Extension, (PVOID)lpsBufPtr, NumBytesToRead, &Bytes); } else { Status = arpReverse[Extension->IdxReverseProtocol].fnRead(Extension, (PVOID)lpsBufPtr, NumBytesToRead, &Bytes); } #else
if (arpReverse[Extension->IdxReverseProtocol].fnRead) { //
// Do the read...
//
Status = arpReverse[Extension->IdxReverseProtocol].fnRead(Extension, (PVOID)lpsBufPtr, NumBytesToRead, &Bytes); #endif
*NumBytesRead += Bytes; NumBytesToRead -= Bytes;
#if DVRH_SHOW_BYTE_LOG
{ ULONG i=0; DbgPrint("Parallel:Read: "); for (i=0; i<*NumBytesRead; ++i) { DbgPrint(" %02x",((PUCHAR)lpsBufPtr)[i]); } DbgPrint("\n"); } #endif
} #if DBG
else { ParDump2(PARERRORS, ( "ParRead: Don't have a fnRead! Can't Read!\r\n" )); ParDump2(PARERRORS, ( "ParRead: You're hosed man.\r\n" )); ParDump2(PARERRORS, ( "ParRead: If you are here, you've got a bug somewhere else.\r\n" )); ParDump2(PARERRORS, ( "ParRead: Go fix it!\r\n" )); } #endif
} #if DBG
else { ParDump2(PARERRORS, ( "ParRead: Failure from Above! Didn't call Read!\r\n" )); ParDump2(PARERRORS, ( "ParRead: You're hosed man.\r\n" )); ParDump2(PARERRORS, ( "ParRead: If you are here, you've got a bug somewhere else.\r\n" )); ParDump2(PARERRORS, ( "ParRead: Go fix it!\r\n" )); } #endif
ParRead_ExitLabel: #if (1 == DVRH_RAISE_IRQL)
KeLowerIrql(OldIrql); #endif
return Status; }
VOID ParReadIrp( IN PDEVICE_EXTENSION Extension )
/*++
Routine Description:
This routine implements a READ request with the extension's current irp.
Arguments:
Extension - Supplies the device extension.
Return Value:
None.
--*/
{ PIRP Irp; PIO_STACK_LOCATION IrpSp; ULONG NumBytesRead;
Irp = Extension->CurrentOpIrp; IrpSp = IoGetCurrentIrpStackLocation(Irp);
ParDump2(PARENTRY, ( "ParReadIrp: Start. BytesToRead[%d]\r\n", IrpSp->Parameters.Read.Length )); ParTimerCheck(( "ParReadIrp: Start. BytesToRead[%d]\r\n", IrpSp->Parameters.Read.Length ));
Irp->IoStatus.Status = ParRead( Extension, Irp->AssociatedIrp.SystemBuffer, IrpSp->Parameters.Read.Length, &NumBytesRead);
Irp->IoStatus.Information = NumBytesRead; ParTimerCheck(( "ParReadIrp: End. BytesRead[%d]\r\n", NumBytesRead )); }
NTSTATUS ParReverseToForward( IN PDEVICE_EXTENSION Extension ) /*++
Routine Description:
This routine flips the bus from Reverse to Forward direction.
Arguments:
Extension - Supplies the device extension.
Return Value:
None.
--*/ { NTSTATUS Status = STATUS_SUCCESS;
// dvdr
ParDump2(PARINFO, ("ParReverseToForward: Entering\n"));
if (Extension->Connected) { // Do a quick check to see if we are where we want to be.
// Happy punt if everything is ok.
if (Extension->CurrentPhase == PHASE_FORWARD_IDLE || Extension->CurrentPhase == PHASE_FORWARD_XFER) { ParDump2(PAREXIT, ( "ParReverseToForward: Already in Fwd. Exit STATUS_SUCCESS\n" )); return Status; } else { if (afpForward[Extension->IdxForwardProtocol].ProtocolFamily != arpReverse[Extension->IdxReverseProtocol].ProtocolFamily) { //
// Protocol Families don't match...need to terminate from the forward mode
//
if (arpReverse[Extension->IdxReverseProtocol].fnDisconnect) { ParDump2(PARINFO, ("ParReverseToForward: Calling arpReverse.fnDisconnect\r\n")); arpReverse[Extension->IdxReverseProtocol].fnDisconnect (Extension); } if ((Extension->ReverseInterfaceAddress != DEFAULT_ECP_CHANNEL) && (arpReverse[Extension->IdxReverseProtocol].fnSetInterfaceAddress)) Extension->SetReverseAddress = TRUE; } else if ((Extension->CurrentPhase == PHASE_REVERSE_IDLE) || (Extension->CurrentPhase == PHASE_REVERSE_XFER)) { if ( (arpReverse[Extension->IdxReverseProtocol].fnExitReverse) ) { Status = arpReverse[Extension->IdxReverseProtocol].fnExitReverse(Extension); } } else { // We are in a screwy state.
ParDump2(PARERRORS, ( "ParReverseToForward: We're lost! Gonna start spewing!\r\n" )); ParDump2(PARERRORS, ( "ParReverseToForward: You're hosed man.\r\n" )); ParDump2(PARERRORS, ( "ParReverseToForward: If you are here, you've got a bug somewhere else.\r\n" )); ParDump2(PARERRORS, ( "ParReverseToForward: Go fix it!\r\n" )); Status = STATUS_IO_TIMEOUT; // I picked a RetVal from thin air!
} } }
// Yes, we stil want to check for connection since we might have temrinated in the previous
// code block!
if (!Extension->Connected && afpForward[Extension->IdxForwardProtocol].fnConnect) {
Status = afpForward[Extension->IdxForwardProtocol].fnConnect ( Extension, FALSE); //
// Makes the assumption that the connected address is always 0
//
if ((NT_SUCCESS(Status)) && (Extension->ForwardInterfaceAddress != DEFAULT_ECP_CHANNEL)) { Extension->SetForwardAddress = TRUE; } }
//
// Do we need to enter a forward mode?
//
if ( (NT_SUCCESS(Status)) && (Extension->CurrentPhase != PHASE_FORWARD_IDLE) && (Extension->CurrentPhase != PHASE_FORWARD_XFER) && (afpForward[Extension->IdxForwardProtocol].fnEnterForward) ) { Status = afpForward[Extension->IdxForwardProtocol].fnEnterForward(Extension); }
ParDump2(PAREXIT, ( "ParReverseToForward: Exit [%d]\r\n", NT_SUCCESS(Status) )); return Status; }
NTSTATUS ParSetFwdAddress( IN PDEVICE_EXTENSION Extension ) { NTSTATUS Status = STATUS_SUCCESS;
ParDump2( PARENTRY, ("ParSetFwdAddress: Start: Channel [%x]\n", Extension->ForwardInterfaceAddress)); if (afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress) { Status = ParReverseToForward(Extension); if (!NT_SUCCESS(Status)) { ParDump2(PARERRORS, ("ParSetFwdAddress: FAIL. Couldn't flip the bus for Set ECP/EPP Channel failed.\n") ); goto ParSetFwdAddress_ExitLabel; } Status = afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress ( Extension, Extension->ForwardInterfaceAddress); if (NT_SUCCESS(Status)) Extension->SetForwardAddress = FALSE; else { ParDump2(PARERRORS, ("ParSetFwdAddress: FAIL. Set ECP/EPP Channel failed.\n") ); goto ParSetFwdAddress_ExitLabel; } } else { ParDump2(PARERRORS, ("ParSetFwdAddress: FAIL. Protocol doesn't support SetECP/EPP Channel\n") ); Status = STATUS_UNSUCCESSFUL; goto ParSetFwdAddress_ExitLabel; }
ParSetFwdAddress_ExitLabel: return Status; }
VOID ParTerminate( IN PDEVICE_EXTENSION Extension ) { if (!Extension->Connected) return;
if (Extension->CurrentPhase == PHASE_REVERSE_IDLE || Extension->CurrentPhase == PHASE_REVERSE_XFER) { if (afpForward[Extension->IdxForwardProtocol].ProtocolFamily != arpReverse[Extension->IdxReverseProtocol].ProtocolFamily) { if (arpReverse[Extension->IdxReverseProtocol].fnDisconnect) { ParDump2(PARINFO, ("ParTerminate: Calling arpReverse.fnDisconnect\r\n")); arpReverse[Extension->IdxReverseProtocol].fnDisconnect (Extension); } return; } ParReverseToForward(Extension); } if (afpForward[Extension->IdxForwardProtocol].fnDisconnect) { ParDump2(PARINFO, ("ParTerminate: Calling afpForward.fnDisconnect\r\n")); afpForward[Extension->IdxForwardProtocol].fnDisconnect (Extension); } }
NTSTATUS ParWrite( IN PDEVICE_EXTENSION Extension, OUT PVOID Buffer, IN ULONG NumBytesToWrite, OUT PULONG NumBytesWritten ) { NTSTATUS Status = STATUS_SUCCESS; #if (1 == DVRH_RAISE_IRQL)
KIRQL OldIrql; #endif
#if (1 == DVRH_RAISE_IRQL)
KeRaiseIrql(DISPATCH_LEVEL, &OldIrql); #endif
// dvdr
ParDump2(PARINFO, ("ParWrite: Entering\n"));
//
// The routine which performs the write varies depending upon the currently
// negotiated mode. Start I/O moves the IRP into the Extension (CurrentOpIrp)
//
// Default mode: Centronics
//
// dvdr
ParDump2(PARINFO, ("ParWrite: Calling ParReverseToForward\n"));
// Go ahead and flip the bus if need be. The proc will just make sure we're properly
// connected and pointing in the right direction.
Status = ParReverseToForward( Extension );
// only do this if we are in safe mode
if ( Extension->ModeSafety == SAFE_MODE ) {
//
// Set the channel address if we need to.
//
if (NT_SUCCESS(Status) && Extension->SetForwardAddress && (afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress)) { // dvdr
ParDump2(PARINFO, ("ParWrite: Calling Protocol %x\n", Extension->IdxForwardProtocol));
Status = afpForward[Extension->IdxForwardProtocol].fnSetInterfaceAddress ( Extension, Extension->ForwardInterfaceAddress); if (NT_SUCCESS(Status)) Extension->SetForwardAddress = FALSE; else Extension->SetForwardAddress = TRUE; } }
if (NT_SUCCESS(Status)) { #if (1 == DVRH_USE_CORRECT_PTRS)
if (Extension->fnWrite || afpForward[Extension->IdxForwardProtocol].fnWrite) { #else
if (afpForward[Extension->IdxForwardProtocol].fnWrite) { #endif
*NumBytesWritten = 0;
#if DVRH_SHOW_BYTE_LOG
{ ULONG i=0; DbgPrint("Parallel:Write: "); for (i=0; i<NumBytesToWrite; ++i) { DbgPrint(" %02x",*((PUCHAR)Buffer+i)); } DbgPrint("\n"); } #endif
#if (1 == DVRH_USE_CORRECT_PTRS)
if( Extension->fnWrite) { Status = ((PPROTOCOL_WRITE_ROUTINE)Extension->fnWrite)(Extension, Buffer, NumBytesToWrite, NumBytesWritten); } else { Status = afpForward[Extension->IdxForwardProtocol].fnWrite(Extension, Buffer, NumBytesToWrite, NumBytesWritten); } #else
Status = afpForward[Extension->IdxForwardProtocol].fnWrite(Extension, Buffer, NumBytesToWrite, NumBytesWritten); #endif
} #if DBG
else { ParDump2(PARERRORS, ( "ParReadIrp: Don't have a fnWrite!\r\n" )); ParDump2(PARERRORS, ( "ParReadIrp: You're hosed man.\r\n" )); ParDump2(PARERRORS, ( "ParReadIrp: If you are here, you've got a bug somewhere else.\r\n" )); ParDump2(PARERRORS, ( "ParReadIrp: Go fix it!\r\n" )); } #endif
} #if DBG
else { ParDump2(PARERRORS, ( "ParReadIrp: Failure from above! Didn't call Write!\r\n" )); ParDump2(PARERRORS, ( "ParReadIrp: You're hosed man.\r\n" )); ParDump2(PARERRORS, ( "ParReadIrp: If you are here, you've got a bug somewhere else.\r\n" )); ParDump2(PARERRORS, ( "ParReadIrp: Go fix it!\r\n" )); } #endif
#if (1 == DVRH_RAISE_IRQL)
KeLowerIrql(OldIrql); #endif
// dvdr
ParDump2(PARINFO, ("ParWrite: Leaving\n"));
return Status; }
VOID ParWriteIrp( IN PDEVICE_EXTENSION Extension )
/*++
Routine Description:
This routine implements a WRITE request with the extension's current irp.
Arguments:
Extension - Supplies the device extension.
Return Value:
None.
--*/
{ PIRP Irp; PIO_STACK_LOCATION IrpSp; ULONG NumBytesWritten = 0;
Irp = Extension->CurrentOpIrp; IrpSp = IoGetCurrentIrpStackLocation(Irp);
ParTimerCheck(( "ParWriteIrp: Start. BytesToWrite[%d]\r\n", IrpSp->Parameters.Write.Length ));
Irp->IoStatus.Status = ParWrite(Extension, Irp->AssociatedIrp.SystemBuffer, IrpSp->Parameters.Write.Length, &NumBytesWritten);
Irp->IoStatus.Information = NumBytesWritten; ParTimerCheck(( "ParWriteIrp: End. BytesWritten[%d]\r\n", NumBytesWritten )); }
|