|
|
/******************************Module*Header*******************************\
* Module Name: Brush.c * * Handles all brush/pattern initialization and realization. * * Copyright (c) 1992-1996 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* VOID vRealizeDitherPattern * * Generates an 8x8 dither pattern, in our internal realization format, for * the colour ulRGBToDither. Note that the high byte of ulRGBToDither does * not need to be set to zero, because vComputeSubspaces ignores it. \**************************************************************************/
VOID vRealizeDitherPattern( PDEV* ppdev, RBRUSH* prb, ULONG ulRGBToDither) { ULONG ulNumVertices; VERTEX_DATA vVertexData[4]; VERTEX_DATA* pvVertexData; LONG i;
// Calculate what colour subspaces are involved in the dither:
pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData);
// Now that we have found the bounding vertices and the number of
// pixels to dither for each vertex, we can create the dither pattern
ulNumVertices = (ULONG)(pvVertexData - vVertexData); // # of vertices with more than zero pixels in the dither
// Do the actual dithering:
vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices);
// Initialize the fields we need:
prb->fl = 0; prb->pfnFillPat = ppdev->pfnFillPatNative;
for (i = 0; i < MAX_BOARDS; i++) { prb->apbe[i] = &ppdev->beUnrealizedBrush; } }
/******************************Public*Routine******************************\
* BOOL DrvRealizeBrush * * This function allows us to convert GDI brushes into an internal form * we can use. It may be called directly by GDI at SelectObject time, or * it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush * to create a realized brush in a function like DrvBitBlt. * * Note that we have no way of determining what the current Rop or brush * alignment are at this point. * \**************************************************************************/
BOOL DrvRealizeBrush( BRUSHOBJ* pbo, SURFOBJ* psoDst, SURFOBJ* psoPattern, SURFOBJ* psoMask, XLATEOBJ* pxlo, ULONG iHatch) { PDEV* ppdev; ULONG iPatternFormat; BYTE jSrc; BYTE* pjSrc; BYTE* pjDst; LONG lSrcDelta; LONG cj; LONG i; LONG j; RBRUSH* prb; ULONG* pulXlate; SURFOBJ* psoPunt; RECTL rclDst;
ppdev = (PDEV*) psoDst->dhpdev;
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
if (iHatch & RB_DITHERCOLOR) { if (!(ppdev->flStatus & STAT_BRUSH_CACHE)) goto ReturnFalse;
// Implementing DITHERONREALIZE increased our score on a certain
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
// this didn't work in the first version of NT.
prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + ppdev->ulBrushSize); if (prb == NULL) goto ReturnFalse;
DISPDBG((5, "Realizing dithered brush"));
vRealizeDitherPattern(ppdev, prb, iHatch); goto DoneWith8x8; }
// We only handle colour brushes if we have an off-screen brush cache
// available. If there isn't one, we can simply fail the realization,
// and eventually GDI will do the drawing for us (although a lot
// slower than we could have done it).
//
// We also only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
// support patterns of any other size, it's a safe bet that 99.9%
// of the patterns we'll ever get will be 8x8:
if ((psoPattern->sizlBitmap.cx != 8) || (psoPattern->sizlBitmap.cy != 8) || ((psoPattern->iBitmapFormat != BMF_1BPP) && !(ppdev->flStatus & STAT_BRUSH_CACHE))) { goto ReturnFalse; }
prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + ppdev->ulBrushSize); if (prb == NULL) { goto ReturnFalse; }
// Initialize the fields we need:
prb->fl = 0; prb->pfnFillPat = ppdev->pfnFillPatNative;
for (i = 0; i < MAX_BOARDS; i++) { prb->apbe[i] = &ppdev->beUnrealizedBrush; }
lSrcDelta = psoPattern->lDelta; pjSrc = (BYTE*) psoPattern->pvScan0; pjDst = (BYTE*) &prb->aulPattern[0];
iPatternFormat = psoPattern->iBitmapFormat; if ((ppdev->iBitmapFormat == iPatternFormat) && ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))) { DISPDBG((5, "Realizing un-translated brush"));
// The pattern is the same colour depth as the screen, and
// there's no translation to be done:
cj = (8 * ppdev->cjPelSize); // Every pattern is 8 pels wide
for (i = 8; i != 0; i--) { RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc += lSrcDelta; pjDst += cj; } } else if (iPatternFormat == BMF_1BPP) { if (ppdev->cjHwPel == 3) { // [!!!] - add true 24 bpp support
goto ReturnFalse; }
DISPDBG((5, "Realizing 1bpp brush"));
// Since we allocated at least 64 bytes when we did our
// BRUSHOBJ_pvAllocBrush call, we've got plenty of space
// to store our monochrome brush.
//
// Since the Windows convention for monochrome bitmaps is that
// the MSB of a given byte represents the leftmost pixel, which
// is opposite that of the MGA, we must reverse the order of
// each byte before using it in SRC0 through SRC3. Moreover,
// each byte must be replicated so as to yield a 16x8 pattern.
for (i = 8; i != 0; i--) { jSrc = gajFlip[*pjSrc]; *(pjDst) = jSrc; *(pjDst + 1) = jSrc; pjDst += 2; pjSrc += lSrcDelta; }
pulXlate = pxlo->pulXlate; prb->fl |= RBRUSH_2COLOR; prb->ulColor[1] = pulXlate[1]; prb->ulColor[0] = pulXlate[0]; prb->pfnFillPat = vFillPat1bpp; } else if ((iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP)) { DISPDBG((5, "Realizing 4bpp brush"));
// The screen is 8bpp and the pattern is 4bpp:
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) && (iPatternFormat == BMF_4BPP), "Messed up brush logic");
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--) { // Inner loop is repeated only 4 times because each loop
// handles 2 pixels:
for (j = 4; j != 0; j--) { *pjDst++ = (BYTE) pulXlate[*pjSrc >> 4]; *pjDst++ = (BYTE) pulXlate[*pjSrc & 15]; pjSrc++; }
pjSrc += lSrcDelta - 4; } } else { // We've got a brush whose format we haven't special cased. No
// problem, we can have GDI convert it to our device's format.
// We simply use a temporary surface object that was created with
// the same format as the display, and point it to our brush
// realization:
DISPDBG((5, "Realizing funky brush"));
psoPunt = ppdev->psoPunt; psoPunt->pvScan0 = pjDst; psoPunt->lDelta = 8 * ppdev->cjPelSize;
rclDst.left = 0; rclDst.top = 0; rclDst.right = 8; rclDst.bottom = 8;
if (!EngCopyBits(psoPunt, psoPattern, NULL, pxlo, &rclDst, (POINTL*) &rclDst)) { goto ReturnFalse; } }
DoneWith8x8:
if ((ppdev->ulBoardId == MGA_STORM) && (ppdev->cjHwPel == 3) && (iPatternFormat != BMF_1BPP)) { // The display is at 24bpp, we need to build a special 16x8 brush.
// We already have an 8x8 pattern.
cj = 8 * 3; pjSrc = (BYTE*) &prb->aulPattern + (7 * cj); pjDst = (BYTE*) &prb->aulPattern + (7 * 2 * cj);
for (i = 8; i != 0; i--) { RtlCopyMemory(pjDst, pjSrc, cj); pjDst += cj; RtlCopyMemory(pjDst, pjSrc, cj); pjSrc -= cj; pjDst -= (3 * cj); } }
return(TRUE);
ReturnFalse:
if (psoPattern != NULL) { DISPDBG((5, "Failed realization -- Type: %li Format: %li cx: %li cy: %li flags: %x", psoPattern->iType, psoPattern->iBitmapFormat, psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy, ppdev->flStatus)); }
return(FALSE); }
/******************************Public*Routine******************************\
* BOOL bMilEnableBrushCache * * Allocates off-screen memory for storing the brush cache. * Millenium (storm) specific. \**************************************************************************/
BOOL bMilEnableBrushCache( PDEV* ppdev) { OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
ULONG ulLinearStart; ULONG ulLinearEnd; LONG cBrushCache; ULONG ulTmp; LONG x; LONG y; LONG i;
pbe = ppdev->pbe; // Points to where we'll put the first brush
// cache entry
poh = pohAllocate(ppdev, NULL, ppdev->cxMemory, BRUSH_CACHE_HEIGHT, FLOH_MAKE_PERMANENT); if (poh == NULL) { DISPDBG((2, "Brush cache NOT enabled")); goto ReturnTrue; // See note about why we can return TRUE...
}
ulLinearStart = (poh->y * ppdev->cxMemory) + ppdev->ulYDstOrg; ulLinearEnd = (poh->cy * ppdev->cxMemory) + ulLinearStart;
// The brushes must be stored with a 256-pel alignment.
ulLinearStart = (ulLinearStart + 0xff) & ~0xff;
// In general, we'll be caching 8x8 brushes, so the number of cached
// brushes can be four times the number of 256-pel slices that can be
// stored from ulLinearStart to ulLinearEnd. In 24bpp, however, we'll
// be caching 16x8 brushes, so we can cache only half this number.
// Moreover, there are wrapping problems when a brush is stored in
// the last slot of a 256-pel slice, so it's best not to use it.
cBrushCache = (ulLinearEnd - ulLinearStart) >> 8;
if (ppdev->cjPelSize == 3) { cBrushCache *= 2; // 24bpp, Don't forget they come in pairs...
} else { cBrushCache *= 3; // ... or more, but beware of some slots!
}
pbe = EngAllocMem(FL_ZERO_MEMORY, cBrushCache * sizeof(BRUSHENTRY), ALLOC_TAG);
if (pbe == NULL) goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = cBrushCache; ppdev->pbe = pbe;
for (i = 0; i < cBrushCache; i++) { // If we hadn't allocated 'pbe' with FL_ZERO_MEMORY, we would have
// to initialize pbe->prbVerify, too...
// Set up linear coordinate for reading the pattern from offscreen
// memory.
pbe->ulLinear = ulLinearStart;
// Set up coordinates for writing the pattern into offscreen
// memory, assuming a HW_PATTERN_PITCH stride.
ulTmp = ulLinearStart - ppdev->ulYDstOrg; x = ulTmp % ppdev->cxMemory; y = ulTmp / ppdev->cxMemory; pbe->ulLeft = x & 31; pbe->ulYDst = (y * ppdev->cxMemory + x) >> 5;
pbe->pvScan0 = ppdev->pjScreen + ((ulTmp + ppdev->ulYDstOrg) * ppdev->cjPelSize);
// Prepare for the next brush, accounting for the interleave.
if (ppdev->cjHwPel == 3) { // At 24bpp, every second cached brush starts on a 256+16
// boundary.
if ((i & 1) == 0) { ulLinearStart += 16; } else { ulLinearStart += (256 - 16); } } else { // In general, we have three brushes in every 256-pel slice.
if ((i % 3) == 2) { ulLinearStart += (256 - 16); } else { ulLinearStart += 8; } }
pbe++; }
// When we create a new brush, we always point it to our
// 'beUnrealizedBrush' entry, which will always have 'prbVerify'
// set to NULL. In this way, we can remove an 'if' from our
// check to see if we have to realize the brush in 'vFillPat' --
// we only have to compare to 'prbVerify'.
ppdev->beUnrealizedBrush.prbVerify = NULL;
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it.
ppdev->flStatus |= STAT_BRUSH_CACHE;
ReturnTrue:
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bMilEnableBrushCache"));
return(TRUE); }
/******************************Public*Routine******************************\
* BOOL bEnableBrushCache * * Allocates off-screen memory for storing the brush cache. \**************************************************************************/
BOOL bEnableBrushCache( PDEV* ppdev) { OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
ULONG ulLinearStart; ULONG ulLinearEnd; LONG cBrushCache; ULONG ulTmp; LONG x; LONG y; LONG i;
if (ppdev->ulBoardId == MGA_STORM) { return(bMilEnableBrushCache(ppdev)); }
pbe = ppdev->pbe; // Points to where we'll put the first brush
// cache entry
poh = pohAllocate(ppdev, NULL, ppdev->cxMemory, BRUSH_CACHE_HEIGHT, FLOH_MAKE_PERMANENT); if (poh == NULL) goto ReturnTrue; // See note about why we can return TRUE...
ulLinearStart = (poh->y * ppdev->cxMemory) + ppdev->ulYDstOrg; ulLinearEnd = (BRUSH_CACHE_HEIGHT * ppdev->cxMemory) + ulLinearStart;
// An MGA brush is always cached with a 256-pel alignment. The brush
// can be 16x16, or two interleaved 16x8 brushes. We use the second
// option, so that every second brush starts on a 256+16 alignment.
//
// So the brushes are stored in pairs, with a 256-pel alignment:
ulLinearStart = (ulLinearStart + 0xff) & ~0xff;
cBrushCache = (ulLinearEnd - ulLinearStart) >> 8; cBrushCache *= 2; // Don't forget they're pairs
pbe = EngAllocMem(FL_ZERO_MEMORY, cBrushCache * sizeof(BRUSHENTRY), ALLOC_TAG); if (pbe == NULL) goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = cBrushCache; ppdev->pbe = pbe;
do { // If we hadn't allocated 'pbe' with FL_ZERO_MEMORY, we would have
// to initialize pbe->prbVerify, too...
// Set up linear coordinate for reading the pattern from offscreen
// memory:
pbe->ulLinear = ulLinearStart;
// Set up coordinates for writing the pattern into offscreen
// memory, assuming a '32' stride:
ulTmp = ulLinearStart - ppdev->ulYDstOrg; x = ulTmp % ppdev->cxMemory; y = ulTmp / ppdev->cxMemory; pbe->ulLeft = x & 31; pbe->ulYDst = (y * ppdev->cxMemory + x) >> 5;
// Account for the interleave, where every second cached brush
// starts on a 256+16 boundary:
if ((cBrushCache & 1) == 0) { ulLinearStart += 16; } else { ulLinearStart += (256 - 16); }
} while (pbe++, --cBrushCache != 0);
// When we create a new brush, we always point it to our
// 'beUnrealizedBrush' entry, which will always have 'prbVerify'
// set to NULL. In this way, we can remove an 'if' from our
// check to see if we have to realize the brush in 'vFillPat' --
// we only have to compare to 'prbVerify':
ppdev->beUnrealizedBrush.prbVerify = NULL;
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it:
ppdev->flStatus |= STAT_BRUSH_CACHE;
ReturnTrue:
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bEnableBrushCache"));
return(TRUE); }
/******************************Public*Routine******************************\
* VOID vDisableBrushCache * * Cleans up anything done in bEnableBrushCache. \**************************************************************************/
VOID vDisableBrushCache(PDEV* ppdev) { EngFreeMem(ppdev->pbe); }
/******************************Public*Routine******************************\
* VOID vAssertModeBrushCache * * Resets the brush cache when we exit out of full-screen. \**************************************************************************/
VOID vAssertModeBrushCache( PDEV* ppdev, BOOL bEnable) { BRUSHENTRY* pbe; LONG i;
if (bEnable) { // Invalidate the brush cache:
pbe = ppdev->pbe;
for (i = ppdev->cBrushCache; i != 0; i--) { pbe->prbVerify = NULL; pbe++; } } }
|