Source code of Windows XP (NT5)
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
//--------------------------------------------------------------------
// Reference-counted pointer implementation.
// Copyright (C) Microsoft Corporation, 2000-2001
//
// Created by: Duncan Bryce (duncanb), 12-09-2000
//
#ifndef _MY_AUTO_PTR_H_
#define _MY_AUTO_PTR_H_ 1
template <class T> class Ref { public: Ref(T *pT) : m_pT(pT), m_nRefCount(NULL == pT ? 0 : 1) { }; ~Ref() { delete (m_pT); }
volatile long m_nRefCount; T * m_pT; private: Ref(); Ref(const Ref & rhs); Ref & operator=(const Ref & rhs); };
//
// The AutoPtr class implements a reference-counting wrapper for
// pointer types.
//
// The requirements for use are:
// * class T must implement operator ==
// * class T must implement operator <
//
// Furthermore, for an AutoPtr, a, such that NULL == a, none of the operations
// in this class are valid except
// * operator!=
// * operator==
//
template <class T> class AutoPtr { public: AutoPtr(T * pT = NULL) { if (NULL == pT) { m_pRef = NULL; } else { m_pRef = new Ref<T>(pT); if (NULL == m_pRef) { // Delete pT since we can't create a reference to it,
// and the caller is not going to delete it.
delete (pT); } } }
AutoPtr(const AutoPtr & rhs) : m_pRef(rhs.m_pRef) { if (NULL != m_pRef) { InterlockedIncrement(&m_pRef->m_nRefCount); } } ~AutoPtr() { if (NULL != m_pRef) { if (0 == InterlockedDecrement(&m_pRef->m_nRefCount)) { delete (m_pRef); } } }
AutoPtr & operator=(const AutoPtr & rhs) { if (m_pRef == rhs.m_pRef) { return *this; }
if (NULL != m_pRef) { if (0 == InterlockedDecrement(&m_pRef->m_nRefCount)) { delete (m_pRef); } }
m_pRef = rhs.m_pRef; if (NULL != rhs.m_pRef) { InterlockedIncrement(&m_pRef->m_nRefCount); }
return *this; } //
// If both this and rhs reference non-NULL pointers,
// forward the == operation to the == operator in class T.
// Otherwise, return true iff both this AutoPtr and rhs reference
// the same pointer.
//
BOOL operator==(const AutoPtr & rhs) { if (NULL == m_pRef || NULL == rhs.m_pRef) { return m_pRef == rhs.m_pRef; } else { return m_pRef->m_pT->operator==(*(rhs.m_pRef->m_pT)); } }
//
// If both this AutoPtr and rhs point to non-NULL pointers,
// forward the < operation to the < operator in class T.
// Otherwise, operator < returns TRUE iff this AutoPtr pointers
// to a non-NULL pointer, but rhs points to a NULL pointer.
//
BOOL operator<(const AutoPtr & rhs) { if (NULL == m_pRef || NULL == rhs.m_pRef) { return NULL != m_pRef && NULL == rhs.m_pRef; } else { return m_pRef->m_pT->operator<(*(rhs.m_pRef->m_pT)); } }
T * operator->() const { return m_pRef->m_pT; } T & operator*() const { return *m_pRef->m_pT; } //
// Overloading == and != to allow AutoPtrs to be NULL checked transparently.
//
// Note, however, that this allows some code to compile which
// might not make sense:
//
// LPWSTR pwsz;
// NtpPeerPtr npp;
// if (npp == pwsz) { // no compile error
// ...
//
friend BOOL operator==(const AutoPtr & ap, const void * pv) { return (NULL == ap.m_pRef && NULL == pv) ||(ap.m_pRef->m_pT == pv); }
friend BOOL operator==(const void * pv, const AutoPtr & ap) { return ap == pv; }
friend BOOL operator!=(const AutoPtr & ap, const void * pv) { return !(ap == pv); }
friend BOOL operator!=(const void * pv, const AutoPtr & ap) { return !(ap == pv); }
private: Ref<T> *m_pRef; };
#endif // #ifndef _MY_AUTO_PTR_H_
|