|
|
/*****************************************************************************
* DXTmpl.h * *-----------* * This is the header file contains the DX collection class templates. It * has been derived from the MFC collection templates for compatibility. *----------------------------------------------------------------------------- * Created by: Ed Connell Date: 05/17/95 * *****************************************************************************/ #ifndef DXTmpl_h
#define DXTmpl_h
#ifndef _INC_LIMITS
#include <limits.h>
#endif
#ifndef _INC_STRING
#include <string.h>
#endif
#ifndef _INC_STDLIB
#include <stdlib.h>
#endif
#ifndef _INC_SEARCH
#include <search.h>
#endif
#define DXASSERT_VALID( pObj )
/////////////////////////////////////////////////////////////////////////////
typedef void* DXLISTPOS; typedef DWORD DXLISTHANDLE;
#define DX_BEFORE_START_POSITION ((void*)-1L)
inline BOOL DXIsValidAddress(const void* lp, UINT nBytes, BOOL bReadWrite) { // simple version using Win-32 APIs for pointer validation.
return (lp != NULL && !IsBadReadPtr(lp, nBytes) && (!bReadWrite || !IsBadWritePtr((LPVOID)lp, nBytes))); }
/////////////////////////////////////////////////////////////////////////////
// global helpers (can be overridden)
template<class TYPE> inline void DXConstructElements(TYPE* pElements, int nCount) { _ASSERT( nCount == 0 || DXIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) );
// default is bit-wise zero initialization
memset((void*)pElements, 0, nCount * sizeof(TYPE)); }
template<class TYPE> inline void DXDestructElements(TYPE* pElements, int nCount) { _ASSERT( ( nCount == 0 || DXIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) ) ); pElements; // not used
nCount; // not used
// default does nothing
}
template<class TYPE> inline void DXCopyElements(TYPE* pDest, const TYPE* pSrc, int nCount) { _ASSERT( ( nCount == 0 || DXIsValidAddress( pDest, nCount * sizeof(TYPE), TRUE )) ); _ASSERT( ( nCount == 0 || DXIsValidAddress( pSrc, nCount * sizeof(TYPE), FALSE )) );
// default is bit-wise copy
memcpy(pDest, pSrc, nCount * sizeof(TYPE)); }
template<class TYPE, class ARG_TYPE> BOOL DXCompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2) { _ASSERT( DXIsValidAddress( pElement1, sizeof(TYPE), FALSE ) ); _ASSERT( DXIsValidAddress( pElement2, sizeof(ARG_TYPE), FALSE ) ); return *pElement1 == *pElement2; }
template<class ARG_KEY> inline UINT DXHashKey(ARG_KEY key) { // default identity hash - works for most primitive values
return ((UINT)(void*)(DWORD)key) >> 4; }
/////////////////////////////////////////////////////////////////////////////
// CDXPlex
struct CDXPlex // warning variable length structure
{ CDXPlex* pNext; UINT nMax; UINT nCur; /* BYTE data[maxNum*elementSize]; */ void* data() { return this+1; }
static CDXPlex* PASCAL Create( CDXPlex*& pHead, UINT nMax, UINT cbElement ) { CDXPlex* p = (CDXPlex*) new BYTE[sizeof(CDXPlex) + nMax * cbElement]; p->nMax = nMax; p->nCur = 0; p->pNext = pHead; pHead = p; // change head (adds in reverse order for simplicity)
return p; }
void FreeDataChain() { CDXPlex* p = this; while (p != NULL) { BYTE* bytes = (BYTE*) p; CDXPlex* pNext = p->pNext; delete bytes; p = pNext; } } };
/////////////////////////////////////////////////////////////////////////////
// CDXArray<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE> class CDXArray { public: // Construction
CDXArray();
// Attributes
int GetSize() const; int GetUpperBound() const; void SetSize(int nNewSize, int nGrowBy = -1);
// Operations
// Clean up
void FreeExtra(); void RemoveAll();
// Accessing elements
TYPE GetAt(int nIndex) const; void SetAt(int nIndex, ARG_TYPE newElement); TYPE& ElementAt(int nIndex);
// Direct Access to the element data (may return NULL)
const TYPE* GetData() const; TYPE* GetData();
// Potentially growing the array
void SetAtGrow(int nIndex, ARG_TYPE newElement); int Add(ARG_TYPE newElement); int Append(const CDXArray& src); void Copy(const CDXArray& src);
// overloaded operator helpers
TYPE operator[](int nIndex) const; TYPE& operator[](int nIndex);
// Operations that move elements around
void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1); void RemoveAt(int nIndex, int nCount = 1); void InsertAt(int nStartIndex, CDXArray* pNewArray); void Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 ));
// Implementation
protected: TYPE* m_pData; // the actual array of data
int m_nSize; // # of elements (upperBound - 1)
int m_nMaxSize; // max allocated
int m_nGrowBy; // grow amount
public: ~CDXArray(); #ifdef _DEBUG
// void Dump(CDumpContext&) const;
void AssertValid() const; #endif
};
/////////////////////////////////////////////////////////////////////////////
// CDXArray<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE> inline int CDXArray<TYPE, ARG_TYPE>::GetSize() const { return m_nSize; } template<class TYPE, class ARG_TYPE> inline int CDXArray<TYPE, ARG_TYPE>::GetUpperBound() const { return m_nSize-1; } template<class TYPE, class ARG_TYPE> inline void CDXArray<TYPE, ARG_TYPE>::RemoveAll() { SetSize(0, -1); } template<class TYPE, class ARG_TYPE> inline TYPE CDXArray<TYPE, ARG_TYPE>::GetAt(int nIndex) const { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); return m_pData[nIndex]; } template<class TYPE, class ARG_TYPE> inline void CDXArray<TYPE, ARG_TYPE>::SetAt(int nIndex, ARG_TYPE newElement) { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); m_pData[nIndex] = newElement; } template<class TYPE, class ARG_TYPE> inline TYPE& CDXArray<TYPE, ARG_TYPE>::ElementAt(int nIndex) { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); return m_pData[nIndex]; } template<class TYPE, class ARG_TYPE> inline const TYPE* CDXArray<TYPE, ARG_TYPE>::GetData() const { return (const TYPE*)m_pData; } template<class TYPE, class ARG_TYPE> inline TYPE* CDXArray<TYPE, ARG_TYPE>::GetData() { return (TYPE*)m_pData; } template<class TYPE, class ARG_TYPE> inline int CDXArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; } template<class TYPE, class ARG_TYPE> inline TYPE CDXArray<TYPE, ARG_TYPE>::operator[](int nIndex) const { return GetAt(nIndex); } template<class TYPE, class ARG_TYPE> inline TYPE& CDXArray<TYPE, ARG_TYPE>::operator[](int nIndex) { return ElementAt(nIndex); }
/////////////////////////////////////////////////////////////////////////////
// CDXArray<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE> CDXArray<TYPE, ARG_TYPE>::CDXArray() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; }
template<class TYPE, class ARG_TYPE> CDXArray<TYPE, ARG_TYPE>::~CDXArray() { DXASSERT_VALID( this );
if (m_pData != NULL) { DXDestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; } }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy) { DXASSERT_VALID( this ); _ASSERT( nNewSize >= 0 );
if (nGrowBy != -1) m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0) { // shrink to nothing
if (m_pData != NULL) { DXDestructElements(m_pData, m_nSize); delete[] (BYTE*)m_pData; m_pData = NULL; } m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { // create one with exact size
#ifdef SIZE_T_MAX
_ASSERT( nNewSize <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow
#endif
m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)]; DXConstructElements(m_pData, nNewSize); m_nSize = m_nMaxSize = nNewSize; } else if (nNewSize <= m_nMaxSize) { // it fits
if (nNewSize > m_nSize) { // initialize the new elements
DXConstructElements(&m_pData[m_nSize], nNewSize-m_nSize); } else if (m_nSize > nNewSize) { // destroy the old elements
DXDestructElements(&m_pData[nNewSize], m_nSize-nNewSize); } m_nSize = nNewSize; } else { // otherwise, grow array
int nGrowBy = m_nGrowBy; if (nGrowBy == 0) { // heuristically determe growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8)); } int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) nNewMax = m_nMaxSize + nGrowBy; // granularity
else nNewMax = nNewSize; // no slush
_ASSERT( nNewMax >= m_nMaxSize ); // no wrap around
#ifdef SIZE_T_MAX
_ASSERT( nNewMax <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow
#endif
TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// construct remaining elements
_ASSERT( nNewSize > m_nSize ); DXConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData; m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } }
template<class TYPE, class ARG_TYPE> int CDXArray<TYPE, ARG_TYPE>::Append(const CDXArray& src) { DXASSERT_VALID( this ); _ASSERT( this != &src ); // cannot append to itself
int nOldSize = m_nSize; SetSize(m_nSize + src.m_nSize); DXCopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize); return nOldSize; }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::Copy(const CDXArray& src) { DXASSERT_VALID( this ); _ASSERT( this != &src ); // cannot copy to itself
SetSize(src.m_nSize); DXCopyElements(m_pData, src.m_pData, src.m_nSize); }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::FreeExtra() { DXASSERT_VALID( this );
if (m_nSize != m_nMaxSize) { // shrink to desired size
#ifdef SIZE_T_MAX
_ASSERT( m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = NULL; if (m_nSize != 0) { pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)]; // copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); }
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData; m_pData = pNewData; m_nMaxSize = m_nSize; } }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement) { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 );
if (nIndex >= m_nSize) SetSize(nIndex+1, -1); m_pData[nIndex] = newElement; }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/) { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); // will expand to meet need
_ASSERT( nCount > 0 ); // zero or negative size not allowed
if (nIndex >= m_nSize) { // adding after the end of the array
SetSize(nIndex + nCount, -1); // grow so nIndex is valid
} else { // inserting in the middle of the array
int nOldSize = m_nSize; SetSize(m_nSize + nCount, -1); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(TYPE));
// re-init slots we copied from
DXConstructElements(&m_pData[nIndex], nCount); }
// insert new value in the gap
_ASSERT( nIndex + nCount <= m_nSize ); while (nCount--) m_pData[nIndex++] = newElement; }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::RemoveAt(int nIndex, int nCount) { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); _ASSERT( nCount >= 0 ); _ASSERT( nIndex + nCount <= m_nSize );
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount); DXDestructElements(&m_pData[nIndex], nCount); if (nMoveCount) memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(TYPE)); m_nSize -= nCount; }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::InsertAt(int nStartIndex, CDXArray* pNewArray) { DXASSERT_VALID( this ); DXASSERT_VALID( pNewArray ); _ASSERT( nStartIndex >= 0 );
if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()); for (int i = 0; i < pNewArray->GetSize(); i++) SetAt(nStartIndex + i, pNewArray->GetAt(i)); } }
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 )) { DXASSERT_VALID( this ); _ASSERT( m_pData != NULL );
qsort( m_pData, m_nSize, sizeof(TYPE), compare ); }
#ifdef _DEBUG
template<class TYPE, class ARG_TYPE> void CDXArray<TYPE, ARG_TYPE>::AssertValid() const { if (m_pData == NULL) { _ASSERT( m_nSize == 0 ); _ASSERT( m_nMaxSize == 0 ); } else { _ASSERT( m_nSize >= 0 ); _ASSERT( m_nMaxSize >= 0 ); _ASSERT( m_nSize <= m_nMaxSize ); _ASSERT( DXIsValidAddress(m_pData, m_nMaxSize * sizeof(TYPE), TRUE ) ); } } #endif //_DEBUG
/////////////////////////////////////////////////////////////////////////////
// CDXList<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE> class CDXList { protected: struct CNode { CNode* pNext; CNode* pPrev; TYPE data; }; public:
// Construction
CDXList(int nBlockSize = 10);
// Attributes (head and tail)
// count of elements
int GetCount() const; BOOL IsEmpty() const;
// peek at head or tail
TYPE& GetHead(); TYPE GetHead() const; TYPE& GetTail(); TYPE GetTail() const;
// Operations
// get head or tail (and remove it) - don't call on empty list !
TYPE RemoveHead(); TYPE RemoveTail();
// add before head or after tail
DXLISTPOS AddHead(ARG_TYPE newElement); DXLISTPOS AddTail(ARG_TYPE newElement);
// add another list of elements before head or after tail
void AddHead(CDXList* pNewList); void AddTail(CDXList* pNewList);
// remove all elements
void RemoveAll();
// iteration
DXLISTPOS GetHeadPosition() const; DXLISTPOS GetTailPosition() const; TYPE& GetNext(DXLISTPOS& rPosition); // return *Position++
TYPE GetNext(DXLISTPOS& rPosition) const; // return *Position++
TYPE& GetPrev(DXLISTPOS& rPosition); // return *Position--
TYPE GetPrev(DXLISTPOS& rPosition) const; // return *Position--
// getting/modifying an element at a given position
TYPE& GetAt(DXLISTPOS position); TYPE GetAt(DXLISTPOS position) const; void SetAt(DXLISTPOS pos, ARG_TYPE newElement); void RemoveAt(DXLISTPOS position);
// inserting before or after a given position
DXLISTPOS InsertBefore(DXLISTPOS position, ARG_TYPE newElement); DXLISTPOS InsertAfter(DXLISTPOS position, ARG_TYPE newElement);
// helper functions (note: O(n) speed)
DXLISTPOS Find(ARG_TYPE searchValue, DXLISTPOS startAfter = NULL) const; // defaults to starting at the HEAD, return NULL if not found
DXLISTPOS FindIndex(int nIndex) const; // get the 'nIndex'th element (may return NULL)
// Implementation
protected: CNode* m_pNodeHead; CNode* m_pNodeTail; int m_nCount; CNode* m_pNodeFree; struct CDXPlex* m_pBlocks; int m_nBlockSize;
CNode* NewNode(CNode*, CNode*); void FreeNode(CNode*);
public: ~CDXList(); #ifdef _DEBUG
void AssertValid() const; #endif
};
/////////////////////////////////////////////////////////////////////////////
// CDXList<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE> inline int CDXList<TYPE, ARG_TYPE>::GetCount() const { return m_nCount; } template<class TYPE, class ARG_TYPE> inline BOOL CDXList<TYPE, ARG_TYPE>::IsEmpty() const { return m_nCount == 0; } template<class TYPE, class ARG_TYPE> inline TYPE& CDXList<TYPE, ARG_TYPE>::GetHead() { _ASSERT( m_pNodeHead != NULL ); return m_pNodeHead->data; } template<class TYPE, class ARG_TYPE> inline TYPE CDXList<TYPE, ARG_TYPE>::GetHead() const { _ASSERT( m_pNodeHead != NULL ); return m_pNodeHead->data; } template<class TYPE, class ARG_TYPE> inline TYPE& CDXList<TYPE, ARG_TYPE>::GetTail() { _ASSERT( m_pNodeTail != NULL ); return m_pNodeTail->data; } template<class TYPE, class ARG_TYPE> inline TYPE CDXList<TYPE, ARG_TYPE>::GetTail() const { _ASSERT( m_pNodeTail != NULL ); return m_pNodeTail->data; } template<class TYPE, class ARG_TYPE> inline DXLISTPOS CDXList<TYPE, ARG_TYPE>::GetHeadPosition() const { return (DXLISTPOS) m_pNodeHead; } template<class TYPE, class ARG_TYPE> inline DXLISTPOS CDXList<TYPE, ARG_TYPE>::GetTailPosition() const { return (DXLISTPOS) m_pNodeTail; } template<class TYPE, class ARG_TYPE> inline TYPE& CDXList<TYPE, ARG_TYPE>::GetNext(DXLISTPOS& rPosition) // return *Position++
{ CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pNext; return pNode->data; } template<class TYPE, class ARG_TYPE> inline TYPE CDXList<TYPE, ARG_TYPE>::GetNext(DXLISTPOS& rPosition) const // return *Position++
{ CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pNext; return pNode->data; } template<class TYPE, class ARG_TYPE> inline TYPE& CDXList<TYPE, ARG_TYPE>::GetPrev(DXLISTPOS& rPosition) // return *Position--
{ CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pPrev; return pNode->data; } template<class TYPE, class ARG_TYPE> inline TYPE CDXList<TYPE, ARG_TYPE>::GetPrev(DXLISTPOS& rPosition) const // return *Position--
{ CNode* pNode = (CNode*) rPosition; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (DXLISTPOS) pNode->pPrev; return pNode->data; } template<class TYPE, class ARG_TYPE> inline TYPE& CDXList<TYPE, ARG_TYPE>::GetAt(DXLISTPOS position) { CNode* pNode = (CNode*) position; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); return pNode->data; } template<class TYPE, class ARG_TYPE> inline TYPE CDXList<TYPE, ARG_TYPE>::GetAt(DXLISTPOS position) const { CNode* pNode = (CNode*) position; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); return pNode->data; } template<class TYPE, class ARG_TYPE> inline void CDXList<TYPE, ARG_TYPE>::SetAt(DXLISTPOS pos, ARG_TYPE newElement) { CNode* pNode = (CNode*) pos; _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); pNode->data = newElement; }
/////////////////////////////////////////////////////////////////////////////
// CDXList<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE> CDXList<TYPE, ARG_TYPE>::CDXList( int nBlockSize ) { _ASSERT( nBlockSize > 0 );
m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; }
template<class TYPE, class ARG_TYPE> void CDXList<TYPE, ARG_TYPE>::RemoveAll() { DXASSERT_VALID( this );
// destroy elements
CNode* pNode; for (pNode = m_pNodeHead; pNode != NULL; pNode = pNode->pNext) DXDestructElements(&pNode->data, 1);
m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; }
template<class TYPE, class ARG_TYPE> CDXList<TYPE, ARG_TYPE>::~CDXList() { RemoveAll(); _ASSERT( m_nCount == 0 ); }
/////////////////////////////////////////////////////////////////////////////
// Node helpers
//
// Implementation note: CNode's are stored in CDXPlex blocks and
// chained together. Free blocks are maintained in a singly linked list
// using the 'pNext' member of CNode with 'm_pNodeFree' as the head.
// Used blocks are maintained in a doubly linked list using both 'pNext'
// and 'pPrev' as links and 'm_pNodeHead' and 'm_pNodeTail'
// as the head/tail.
//
// We never free a CDXPlex block unless the List is destroyed or RemoveAll()
// is used - so the total number of CDXPlex blocks may grow large depending
// on the maximum past size of the list.
//
template<class TYPE, class ARG_TYPE> CDXList<TYPE, ARG_TYPE>::CNode* CDXList<TYPE, ARG_TYPE>::NewNode(CDXList::CNode* pPrev, CDXList::CNode* pNext) { if (m_pNodeFree == NULL) { // add another block
CDXPlex* pNewBlock = CDXPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CNode));
// chain them into free list
CNode* pNode = (CNode*) pNewBlock->data(); // free in reverse order to make it easier to debug
pNode += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pNode--) { pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; } } _ASSERT( m_pNodeFree != NULL ); // we must have something
CDXList::CNode* pNode = m_pNodeFree; m_pNodeFree = m_pNodeFree->pNext; pNode->pPrev = pPrev; pNode->pNext = pNext; m_nCount++; _ASSERT( m_nCount > 0 ); // make sure we don't overflow
DXConstructElements(&pNode->data, 1); return pNode; }
template<class TYPE, class ARG_TYPE> void CDXList<TYPE, ARG_TYPE>::FreeNode(CDXList::CNode* pNode) { DXDestructElements(&pNode->data, 1); pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; m_nCount--; _ASSERT( m_nCount >= 0 ); // make sure we don't underflow
}
template<class TYPE, class ARG_TYPE> DXLISTPOS CDXList<TYPE, ARG_TYPE>::AddHead(ARG_TYPE newElement) { DXASSERT_VALID( this );
CNode* pNewNode = NewNode(NULL, m_pNodeHead); pNewNode->data = newElement; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = pNewNode; else m_pNodeTail = pNewNode; m_pNodeHead = pNewNode; return (DXLISTPOS) pNewNode; }
template<class TYPE, class ARG_TYPE> DXLISTPOS CDXList<TYPE, ARG_TYPE>::AddTail(ARG_TYPE newElement) { DXASSERT_VALID( this );
CNode* pNewNode = NewNode(m_pNodeTail, NULL); pNewNode->data = newElement; if (m_pNodeTail != NULL) m_pNodeTail->pNext = pNewNode; else m_pNodeHead = pNewNode; m_pNodeTail = pNewNode; return (DXLISTPOS) pNewNode; }
template<class TYPE, class ARG_TYPE> void CDXList<TYPE, ARG_TYPE>::AddHead(CDXList* pNewList) { DXASSERT_VALID( this ); DXASSERT_VALID( pNewList );
// add a list of same elements to head (maintain order)
DXLISTPOS pos = pNewList->GetTailPosition(); while (pos != NULL) AddHead(pNewList->GetPrev(pos)); }
template<class TYPE, class ARG_TYPE> void CDXList<TYPE, ARG_TYPE>::AddTail(CDXList* pNewList) { DXASSERT_VALID( this ); DXASSERT_VALID( pNewList );
// add a list of same elements
DXLISTPOS pos = pNewList->GetHeadPosition(); while (pos != NULL) AddTail(pNewList->GetNext(pos)); }
template<class TYPE, class ARG_TYPE> TYPE CDXList<TYPE, ARG_TYPE>::RemoveHead() { DXASSERT_VALID( this ); _ASSERT( m_pNodeHead != NULL ); // don't call on empty list !!!
_ASSERT( DXIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE ) );
CNode* pOldNode = m_pNodeHead; TYPE returnValue = pOldNode->data;
m_pNodeHead = pOldNode->pNext; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = NULL; else m_pNodeTail = NULL; FreeNode(pOldNode); return returnValue; }
template<class TYPE, class ARG_TYPE> TYPE CDXList<TYPE, ARG_TYPE>::RemoveTail() { DXASSERT_VALID( this ); _ASSERT( m_pNodeTail != NULL ); // don't call on empty list !!!
_ASSERT( DXIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE ) );
CNode* pOldNode = m_pNodeTail; TYPE returnValue = pOldNode->data;
m_pNodeTail = pOldNode->pPrev; if (m_pNodeTail != NULL) m_pNodeTail->pNext = NULL; else m_pNodeHead = NULL; FreeNode(pOldNode); return returnValue; }
template<class TYPE, class ARG_TYPE> DXLISTPOS CDXList<TYPE, ARG_TYPE>::InsertBefore(DXLISTPOS position, ARG_TYPE newElement) { DXASSERT_VALID( this );
if (position == NULL) return AddHead(newElement); // insert before nothing -> head of the list
// Insert it before position
CNode* pOldNode = (CNode*) position; CNode* pNewNode = NewNode(pOldNode->pPrev, pOldNode); pNewNode->data = newElement;
if (pOldNode->pPrev != NULL) { _ASSERT( DXIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) ); pOldNode->pPrev->pNext = pNewNode; } else { _ASSERT( pOldNode == m_pNodeHead ); m_pNodeHead = pNewNode; } pOldNode->pPrev = pNewNode; return (DXLISTPOS) pNewNode; }
template<class TYPE, class ARG_TYPE> DXLISTPOS CDXList<TYPE, ARG_TYPE>::InsertAfter(DXLISTPOS position, ARG_TYPE newElement) { DXASSERT_VALID( this );
if (position == NULL) return AddTail(newElement); // insert after nothing -> tail of the list
// Insert it before position
CNode* pOldNode = (CNode*) position; _ASSERT( DXIsValidAddress(pOldNode, sizeof(CNode), TRUE )); CNode* pNewNode = NewNode(pOldNode, pOldNode->pNext); pNewNode->data = newElement;
if (pOldNode->pNext != NULL) { _ASSERT( DXIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE )); pOldNode->pNext->pPrev = pNewNode; } else { _ASSERT( pOldNode == m_pNodeTail ); m_pNodeTail = pNewNode; } pOldNode->pNext = pNewNode; return (DXLISTPOS) pNewNode; }
template<class TYPE, class ARG_TYPE> void CDXList<TYPE, ARG_TYPE>::RemoveAt(DXLISTPOS position) { DXASSERT_VALID( this );
CNode* pOldNode = (CNode*) position; _ASSERT( DXIsValidAddress(pOldNode, sizeof(CNode), TRUE ) );
// remove pOldNode from list
if (pOldNode == m_pNodeHead) { m_pNodeHead = pOldNode->pNext; } else { _ASSERT( DXIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) ); pOldNode->pPrev->pNext = pOldNode->pNext; } if (pOldNode == m_pNodeTail) { m_pNodeTail = pOldNode->pPrev; } else { _ASSERT( DXIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE ) ); pOldNode->pNext->pPrev = pOldNode->pPrev; } FreeNode(pOldNode); }
template<class TYPE, class ARG_TYPE> DXLISTPOS CDXList<TYPE, ARG_TYPE>::FindIndex(int nIndex) const { DXASSERT_VALID( this ); _ASSERT( nIndex >= 0 );
if (nIndex >= m_nCount) return NULL; // went too far
CNode* pNode = m_pNodeHead; while (nIndex--) { _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE )); pNode = pNode->pNext; } return (DXLISTPOS) pNode; }
template<class TYPE, class ARG_TYPE> DXLISTPOS CDXList<TYPE, ARG_TYPE>::Find(ARG_TYPE searchValue, DXLISTPOS startAfter) const { DXASSERT_VALID( this );
CNode* pNode = (CNode*) startAfter; if (pNode == NULL) { pNode = m_pNodeHead; // start at head
} else { _ASSERT( DXIsValidAddress(pNode, sizeof(CNode), TRUE ) ); pNode = pNode->pNext; // start after the one specified
}
for (; pNode != NULL; pNode = pNode->pNext) if (DXCompareElements(&pNode->data, &searchValue)) return (DXLISTPOS)pNode; return NULL; }
#ifdef _DEBUG
template<class TYPE, class ARG_TYPE> void CDXList<TYPE, ARG_TYPE>::AssertValid() const { if (m_nCount == 0) { // empty list
_ASSERT( m_pNodeHead == NULL ); _ASSERT( m_pNodeTail == NULL ); } else { // non-empty list
_ASSERT( DXIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE )); _ASSERT( DXIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE )); } } #endif //_DEBUG
/////////////////////////////////////////////////////////////////////////////
// CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> class CDXMap { protected: // Association
struct CAssoc { CAssoc* pNext; UINT nHashValue; // needed for efficient iteration
KEY key; VALUE value; }; public: // Construction
CDXMap( int nBlockSize = 10 );
// Attributes
// number of elements
int GetCount() const; BOOL IsEmpty() const;
// Lookup
BOOL Lookup(ARG_KEY key, VALUE& rValue) const;
// Operations
// Lookup and add if not there
VALUE& operator[](ARG_KEY key);
// add a new (key, value) pair
void SetAt(ARG_KEY key, ARG_VALUE newValue);
// removing existing (key, ?) pair
BOOL RemoveKey(ARG_KEY key); void RemoveAll();
// iterating all (key, value) pairs
DXLISTPOS GetStartPosition() const; void GetNextAssoc(DXLISTPOS& rNextPosition, KEY& rKey, VALUE& rValue) const;
// advanced features for derived classes
UINT GetHashTableSize() const; void InitHashTable(UINT hashSize, BOOL bAllocNow = TRUE);
// Implementation
protected: CAssoc** m_pHashTable; UINT m_nHashTableSize; int m_nCount; CAssoc* m_pFreeList; struct CDXPlex* m_pBlocks; int m_nBlockSize;
CAssoc* NewAssoc(); void FreeAssoc(CAssoc*); CAssoc* GetAssocAt(ARG_KEY, UINT&) const;
public: ~CDXMap(); #ifdef _DEBUG
// void Dump(CDumpContext&) const;
void AssertValid() const; #endif
};
/////////////////////////////////////////////////////////////////////////////
// CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE> inline functions
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> inline int CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetCount() const { return m_nCount; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> inline BOOL CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::IsEmpty() const { return m_nCount == 0; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> inline void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::SetAt(ARG_KEY key, ARG_VALUE newValue) { (*this)[key] = newValue; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> inline DXLISTPOS CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetStartPosition() const { return (m_nCount == 0) ? NULL : DX_BEFORE_START_POSITION; } template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> inline UINT CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetHashTableSize() const { return m_nHashTableSize; }
/////////////////////////////////////////////////////////////////////////////
// CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE> out-of-line functions
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CDXMap( int nBlockSize ) { _ASSERT( nBlockSize > 0 );
m_pHashTable = NULL; m_nHashTableSize = 17; // default size
m_nCount = 0; m_pFreeList = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::InitHashTable( UINT nHashSize, BOOL bAllocNow) //
// Used to force allocation of a hash table or to override the default
// hash table size of (which is fairly small)
{ DXASSERT_VALID( this ); _ASSERT( m_nCount == 0 ); _ASSERT( nHashSize > 0 );
if (m_pHashTable != NULL) { // free hash table
delete[] m_pHashTable; m_pHashTable = NULL; }
if (bAllocNow) { m_pHashTable = new CAssoc* [nHashSize]; memset(m_pHashTable, 0, sizeof(CAssoc*) * nHashSize); } m_nHashTableSize = nHashSize; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::RemoveAll() { DXASSERT_VALID( this );
if (m_pHashTable != NULL) { // destroy elements (values and keys)
for (UINT nHash = 0; nHash < m_nHashTableSize; nHash++) { CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { DXDestructElements(&pAssoc->value, 1); DXDestructElements(&pAssoc->key, 1); } } }
// free hash table
delete[] m_pHashTable; m_pHashTable = NULL;
m_nCount = 0; m_pFreeList = NULL; m_pBlocks->FreeDataChain(); m_pBlocks = NULL; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::~CDXMap() { RemoveAll(); _ASSERT( m_nCount == 0 ); }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CAssoc* CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::NewAssoc() { if (m_pFreeList == NULL) { // add another block
CDXPlex* newBlock = CDXPlex::Create(m_pBlocks, m_nBlockSize, sizeof(CDXMap::CAssoc)); // chain them into free list
CDXMap::CAssoc* pAssoc = (CDXMap::CAssoc*) newBlock->data(); // free in reverse order to make it easier to debug
pAssoc += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pAssoc--) { pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; } } _ASSERT( m_pFreeList != NULL ); // we must have something
CDXMap::CAssoc* pAssoc = m_pFreeList; m_pFreeList = m_pFreeList->pNext; m_nCount++; _ASSERT( m_nCount > 0 ); // make sure we don't overflow
DXConstructElements(&pAssoc->key, 1); DXConstructElements(&pAssoc->value, 1); // special construct values
return pAssoc; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::FreeAssoc(CDXMap::CAssoc* pAssoc) { DXDestructElements(&pAssoc->value, 1); DXDestructElements(&pAssoc->key, 1); pAssoc->pNext = m_pFreeList; m_pFreeList = pAssoc; m_nCount--; _ASSERT( m_nCount >= 0 ); // make sure we don't underflow
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::CAssoc* CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetAssocAt(ARG_KEY key, UINT& nHash) const // find association (or return NULL)
{ nHash = DXHashKey(key) % m_nHashTableSize;
if (m_pHashTable == NULL) return NULL;
// see if it exists
CAssoc* pAssoc; for (pAssoc = m_pHashTable[nHash]; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (DXCompareElements(&pAssoc->key, &key)) return pAssoc; } return NULL; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> BOOL CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::Lookup(ARG_KEY key, VALUE& rValue) const { DXASSERT_VALID( this );
UINT nHash; CAssoc* pAssoc = GetAssocAt(key, nHash); if (pAssoc == NULL) return FALSE; // not in map
rValue = pAssoc->value; return TRUE; }
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> VALUE& CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::operator[](ARG_KEY key) { DXASSERT_VALID( this );
UINT nHash; CAssoc* pAssoc; if ((pAssoc = GetAssocAt(key, nHash)) == NULL) { if (m_pHashTable == NULL) InitHashTable(m_nHashTableSize);
// it doesn't exist, add a new Association
pAssoc = NewAssoc(); pAssoc->nHashValue = nHash; pAssoc->key = key; // 'pAssoc->value' is a constructed object, nothing more
// put into hash table
pAssoc->pNext = m_pHashTable[nHash]; m_pHashTable[nHash] = pAssoc; } return pAssoc->value; // return new reference
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> BOOL CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::RemoveKey(ARG_KEY key) // remove key - return TRUE if removed
{ DXASSERT_VALID( this );
if (m_pHashTable == NULL) return FALSE; // nothing in the table
CAssoc** ppAssocPrev; ppAssocPrev = &m_pHashTable[DXHashKey(key) % m_nHashTableSize];
CAssoc* pAssoc; for (pAssoc = *ppAssocPrev; pAssoc != NULL; pAssoc = pAssoc->pNext) { if (DXCompareElements(&pAssoc->key, &key)) { // remove it
*ppAssocPrev = pAssoc->pNext; // remove from list
FreeAssoc(pAssoc); return TRUE; } ppAssocPrev = &pAssoc->pNext; } return FALSE; // not found
}
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::GetNextAssoc(DXLISTPOS& rNextPosition, KEY& rKey, VALUE& rValue) const { DXASSERT_VALID( this ); _ASSERT( m_pHashTable != NULL ); // never call on empty map
CAssoc* pAssocRet = (CAssoc*)rNextPosition; _ASSERT( pAssocRet != NULL );
if (pAssocRet == (CAssoc*) DX_BEFORE_START_POSITION) { // find the first association
for (UINT nBucket = 0; nBucket < m_nHashTableSize; nBucket++) if ((pAssocRet = m_pHashTable[nBucket]) != NULL) break; _ASSERT( pAssocRet != NULL ); // must find something
}
// find next association
_ASSERT( DXIsValidAddress(pAssocRet, sizeof(CAssoc), TRUE )); CAssoc* pAssocNext; if ((pAssocNext = pAssocRet->pNext) == NULL) { // go to next bucket
for (UINT nBucket = pAssocRet->nHashValue + 1; nBucket < m_nHashTableSize; nBucket++) if ((pAssocNext = m_pHashTable[nBucket]) != NULL) break; }
rNextPosition = (DXLISTPOS) pAssocNext;
// fill in return data
rKey = pAssocRet->key; rValue = pAssocRet->value; }
#ifdef _DEBUG
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE> void CDXMap<KEY, ARG_KEY, VALUE, ARG_VALUE>::AssertValid() const { _ASSERT( m_nHashTableSize > 0 ); _ASSERT( (m_nCount == 0 || m_pHashTable != NULL) ); // non-empty map should have hash table
} #endif //_DEBUG
#endif //--- This must be the last line in the file
|