|
|
/*++
Copyright (c) 2000, Microsoft Corporation
Module Name:
Abstract:
The file contains the READ_WRITE_LOCK definition which allows multiple-reader/single-writer. This implementation DOES NOT starve a thread trying to acquire write accesss if there are a large number of threads interested in acquiring read access.
Revision History:
mohitt, sachins, Apr 23 2000, Created
--*/
#include "pcheapol.h"
#pragma hdrstop
//----------------------------------------------------------------------------
// Function: CreateReadWriteLock
//
// Initializes a multiple-reader/single-writer lock object
//----------------------------------------------------------------------------
DWORD CreateReadWriteLock( PREAD_WRITE_LOCK pRWL, PCHAR szName ) {
sprintf(pRWL->RWL_Name, "%.3s", szName); pRWL->RWL_ReaderCount = 0;
__try { InitializeCriticalSection(&(pRWL)->RWL_ReadWriteBlock); } __except(EXCEPTION_EXECUTE_HANDLER) { return GetLastError(); }
pRWL->RWL_ReaderDoneEvent = CreateEvent(NULL,FALSE,FALSE,NULL); if (pRWL->RWL_ReaderDoneEvent != NULL) { return GetLastError(); }
return NO_ERROR; }
//----------------------------------------------------------------------------
// Function: DeleteReadWriteLock
//
// Frees resources used by a multiple-reader/single-writer lock object
//----------------------------------------------------------------------------
VOID DeleteReadWriteLock( PREAD_WRITE_LOCK pRWL ) {
CloseHandle(pRWL->RWL_ReaderDoneEvent); pRWL->RWL_ReaderDoneEvent = NULL; DeleteCriticalSection(&pRWL->RWL_ReadWriteBlock); pRWL->RWL_ReaderCount = 0; }
//----------------------------------------------------------------------------
// Function: AcquireReadLock
//
// Secures shared ownership of the lock object for the caller.
//
// readers enter the read-write critical section, increment the count,
// and leave the critical section
//----------------------------------------------------------------------------
VOID AcquireReadLock( PREAD_WRITE_LOCK pRWL ) {
EnterCriticalSection(&pRWL->RWL_ReadWriteBlock); InterlockedIncrement(&pRWL->RWL_ReaderCount); LeaveCriticalSection(&pRWL->RWL_ReadWriteBlock); }
//----------------------------------------------------------------------------
// Function: ReleaseReadLock
//
// Relinquishes shared ownership of the lock object.
//
// the last reader sets the event to wake any waiting writers
//----------------------------------------------------------------------------
VOID ReleaseReadLock( PREAD_WRITE_LOCK pRWL ) {
if (InterlockedDecrement(&pRWL->RWL_ReaderCount) < 0) { SetEvent(pRWL->RWL_ReaderDoneEvent); } }
//----------------------------------------------------------------------------
// Function: AcquireWriteLock
//
// Secures exclusive ownership of the lock object.
//
// the writer blocks other threads by entering the ReadWriteBlock section,
// and then waits for any thread(s) owning the lock to finish
//----------------------------------------------------------------------------
VOID AcquireWriteLock( PREAD_WRITE_LOCK pRWL ) {
EnterCriticalSection(&pRWL->RWL_ReadWriteBlock); if (InterlockedDecrement(&pRWL->RWL_ReaderCount) >= 0) { WaitForSingleObject(pRWL->RWL_ReaderDoneEvent, INFINITE); } }
//----------------------------------------------------------------------------
// Function: ReleaseWriteLock
//
// Relinquishes exclusive ownership of the lock object.
//
// the writer releases the lock by setting the count to zero
// and then leaving the ReadWriteBlock critical section
//----------------------------------------------------------------------------
VOID ReleaseWriteLock( PREAD_WRITE_LOCK pRWL ) {
InterlockedIncrement(&pRWL->RWL_ReaderCount); LeaveCriticalSection(&(pRWL)->RWL_ReadWriteBlock); }
#if 0
//----------------------------------------------------------------------------
// InitializeDynamicLocksStore
//
// Initialize the structure from which dynamic readwrite locks are allocated.
//----------------------------------------------------------------------------
DWORD InitializeDynamicLocksStore ( PDYNAMIC_LOCKS_STORE pStore, HANDLE hHeap, PCHAR szName ) {
sprintf(pStore->szName, "%.3s", szName); // initialize the heap from where dynamic locks are allocated
pStore->hHeap = hHeap; INITIALIZE_LOCKED_LIST(&pStore->llFreeLocksList, szName); if (!LOCKED_LIST_INITIALIZED(&pStore->llFreeLocksList)) return GetLastError();
// initialize the count of the number of free and allocated locks
pStore->ulCountAllocated = pStore->ulCountFree = 0;
return NO_ERROR; }
//----------------------------------------------------------------------------
// DeInitializeDynamicLocksStore
//
// Fail if any allocated locks have not been freed.
// Delete the free locks and the FreeLocksList.
//----------------------------------------------------------------------------
DWORD DeInitializeDynamicLocksStore ( PDYNAMIC_LOCKS_STORE pStore ) { PDYNAMIC_READWRITE_LOCK pLock; PLIST_ENTRY pleHead, ple;
// can't complete if any locks are still allocated!!!
if (pStore->ulCountAllocated) return ERROR_CAN_NOT_COMPLETE;
// deinitialize the count of the number of free and allocated locks
pStore->ulCountAllocated = pStore->ulCountFree = 0;
// deinitialize the FreeLocksList
pStore->llFreeLocksList.created = 0;
// delete all dynamic readwrite locks and free the memory.
pleHead = &(pStore->llFreeLocksList.head); for (ple = pleHead->Flink; ple != pleHead; ple = ple->Flink) { pLock = CONTAINING_RECORD(ple, DYNAMIC_READWRITE_LOCK, leLink); DELETE_READ_WRITE_LOCK(&pLock->rwlLock); HeapFree(pStore->hHeap, 0, pLock); }
DeleteCriticalSection(&(pStore->llFreeLocksList.lock));
// deinitialize the heap from where dynamic locks are allocated
pStore->hHeap = NULL;
return NO_ERROR; }
//----------------------------------------------------------------------------
// GetDynamicReadwriteLock
//
// Return a free dynamic readwrite lock, if one is available.
// Else allocate a new dynamic readwrite lock.
// Assumes pStore->llFreeLocksList is locked.
//----------------------------------------------------------------------------
PDYNAMIC_READWRITE_LOCK GetDynamicReadwriteLock ( PDYNAMIC_LOCKS_STORE pStore ) {
PDYNAMIC_READWRITE_LOCK pLock; PLIST_ENTRY pleHead, ple;
do // breakout loop
{ // a free dynamic lock is available. Return it
pleHead = &(pStore->llFreeLocksList.head); if (!IsListEmpty(pleHead)) { pStore->ulCountFree--; ple = RemoveHeadList(pleHead); pLock = CONTAINING_RECORD(ple, DYNAMIC_READWRITE_LOCK, leLink); break; } // allocate memory for a new dynamic lock
pLock = HeapAlloc(pStore->hHeap, 0, sizeof(DYNAMIC_READWRITE_LOCK)); if (pLock == NULL) break;
// initialize the fields
CREATE_READ_WRITE_LOCK(&(pLock->rwlLock), pStore->szName); if (!READ_WRITE_LOCK_CREATED(&(pLock->rwlLock))) { HeapFree(pStore->hHeap, 0, pLock); pLock = NULL; break; } } while (FALSE);
if (pLock != NULL) { pStore->ulCountAllocated++; pLock->ulCount = 0; }
return pLock; }
//----------------------------------------------------------------------------
// FreeDynamicReadwriteLock
//
// Accepts a released dynamic readwrite lock.
// Frees it if there are too many dynamic readwrite locks.
// Assumes pStore->llFreeLocksList is locked.
//----------------------------------------------------------------------------
VOID FreeDynamicReadwriteLock ( PDYNAMIC_READWRITE_LOCK pLock, PDYNAMIC_LOCKS_STORE pStore ) {
PLIST_ENTRY pleHead;
// decrement count of allocated locks
pStore->ulCountAllocated--;
// if there are too many dynamic readwrite locks, then free this lock
if ((pStore->ulCountAllocated + pStore->ulCountFree + 1) > DYNAMIC_LOCKS_HIGH_THRESHOLD) { DELETE_READ_WRITE_LOCK(&pLock->rwlLock); HeapFree(pStore->hHeap, 0, pLock); } else // insert into the list of free locks
{ pleHead = &(pStore->llFreeLocksList.head); InsertHeadList(pleHead, &pLock->leLink); pStore->ulCountFree++; }
return; }
//----------------------------------------------------------------------------
// AcquireDynamicLock
//
// Locks the FreeLocksList.
// Allocates a new dynamic lock if required.
// Increments the count.
// Unlocks the FreeLocksList.
// Acquires the dynamic lock.
//----------------------------------------------------------------------------
DWORD AcquireDynamicReadwriteLock ( PDYNAMIC_READWRITE_LOCK *ppLock, LOCK_MODE lmMode, PDYNAMIC_LOCKS_STORE pStore ) {
// acquire the lock for the free locks list
AcquireListLock(&pStore->llFreeLocksList); // if it does not already exist, allocate a new dynamic lock
if (*ppLock == NULL) { *ppLock = GetDynamicReadwriteLock(pStore);
// if could not get a lock we are in serious trouble
if (*ppLock == NULL) { ReleaseListLock(&pStore->llFreeLocksList); return ERROR_CAN_NOT_COMPLETE; } }
// increment count in the dynamic lock
(*ppLock)->ulCount++;
// release the lock for the free locks list
ReleaseListLock(&pStore->llFreeLocksList);
// acquire dynamic lock
if (lmMode == READ_MODE) AcquireReadLock(&(*ppLock)->rwlLock); else AcquireWriteLock(&(*ppLock)->rwlLock);
return NO_ERROR; }
//----------------------------------------------------------------------------
// ReleaseDynamicReadwriteLock
//
// Locks the FreeLocksList.
// Releases the dynamic lock.
// Decrements the count.
// Free the dynamic lock if count becomes 0.
// Unlocks the FreeLocksList.
//----------------------------------------------------------------------------
VOID ReleaseDynamicReadwriteLock ( PDYNAMIC_READWRITE_LOCK *ppLock, LOCK_MODE lmMode, PDYNAMIC_LOCKS_STORE pStore ) {
// acquire the lock for the free locks list
AcquireListLock(&pStore->llFreeLocksList);
// release the dynamic readwrite lock
if (lmMode == READ_MODE) ReleaseReadLock(&(*ppLock)->rwlLock); else ReleaseWriteLock(&(*ppLock)->rwlLock);
// decrement count in the dynamic lock, free it if count becomes 0
(*ppLock)->ulCount--; if ((*ppLock)->ulCount is 0) { FreeDynamicReadwriteLock(*ppLock, pStore); *ppLock = NULL; // so it is known that it doesn't exist
}
// release the lock for the free locks list
ReleaseListLock(&pStore->llFreeLocksList);
return; } #endif
|