|
|
//***************************************************************************
//
// Copyright (c) 1997-2001 Microsoft Corporation, All Rights Reserved
//
// chptrarr.cpp
//
// Purpose: Non-MFC CPtrArray class implementation
//
//***************************************************************************
//=================================================================
// NOTE: we allocate an array of 'm_nMaxSize' elements, but only
// the current size 'm_nSize' contains properly constructed
// objects.
//===============================================================
#include "precomp.h"
#pragma warning( disable : 4290 )
#include <CHString.h>
#include <chptrarr.h>
#include <AssertBreak.h>
CHPtrArray::CHPtrArray () : m_pData ( NULL ) , m_nSize ( 0 ) , m_nMaxSize ( 0 ) , m_nGrowBy ( 0 ) { }
CHPtrArray::~CHPtrArray() { if ( m_pData ) { delete [] (BYTE*) m_pData ; } }
void CHPtrArray::SetSize(int nNewSize, int nGrowBy) { ASSERT_BREAK(nNewSize >= 0) ;
if (nGrowBy != -1) { m_nGrowBy = nGrowBy ; // set new size
}
if (nNewSize == 0) { // shrink to nothing
delete[] (BYTE*)m_pData ; m_pData = NULL ; m_nSize = m_nMaxSize = 0 ; } else if (m_pData == NULL) { // create one with exact size
m_pData = (void**) new BYTE[nNewSize * sizeof(void*)] ; if ( m_pData ) { memset(m_pData, 0, nNewSize * sizeof(void*)) ; // zero fill
m_nSize = m_nMaxSize = nNewSize ; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } else if (nNewSize <= m_nMaxSize) { // it fits
if (nNewSize > m_nSize) { // initialize the new elements
memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*)) ; }
m_nSize = nNewSize ; } else { // otherwise, grow array
int nGrowBy = m_nGrowBy ; if (nGrowBy == 0) { // heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8)) ; }
int nNewMax ; if (nNewSize < m_nMaxSize + nGrowBy) { nNewMax = m_nMaxSize + nGrowBy ; // granularity
} else { nNewMax = nNewSize ; // no slush
}
ASSERT_BREAK(nNewMax >= m_nMaxSize) ; // no wrap around
void** pNewData = (void**) new BYTE[nNewMax * sizeof(void*)] ; if ( pNewData ) { // copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*)) ;
// construct remaining elements
ASSERT_BREAK(nNewSize > m_nSize) ;
memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*)) ;
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData ; m_pData = pNewData ; m_nSize = nNewSize ; m_nMaxSize = nNewMax ; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } }
int CHPtrArray::Append(const CHPtrArray& src) { ASSERT_BREAK(this != &src) ; // cannot append to itself
int nOldSize = m_nSize ; SetSize(m_nSize + src.m_nSize) ;
memcpy(m_pData + nOldSize, src.m_pData, src.m_nSize * sizeof(void*)) ;
return nOldSize ; }
void CHPtrArray::Copy(const CHPtrArray& src) { ASSERT_BREAK(this != &src) ; // cannot append to itself
SetSize(src.m_nSize) ;
memcpy(m_pData, src.m_pData, src.m_nSize * sizeof(void*)) ;
}
void CHPtrArray::FreeExtra() { if (m_nSize != m_nMaxSize) { // shrink to desired size
void** pNewData = NULL ; if (m_nSize != 0) { pNewData = (void**) new BYTE[m_nSize * sizeof(void*)] ; if ( pNewData ) { // copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*)) ; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } }
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData ; m_pData = pNewData ; m_nMaxSize = m_nSize ; } }
/////////////////////////////////////////////////////////////////////////////
void CHPtrArray::SetAtGrow(int nIndex, void* newElement) { ASSERT_BREAK(nIndex >= 0) ;
if (nIndex >= m_nSize) { SetSize(nIndex+1) ; }
m_pData[nIndex] = newElement ; }
void CHPtrArray::InsertAt(int nIndex, void* newElement, int nCount) { ASSERT_BREAK(nIndex >= 0) ; // will expand to meet need
ASSERT_BREAK(nCount > 0) ; // zero or negative size not allowed
if (nIndex >= m_nSize) { // adding after the end of the array
SetSize(nIndex + nCount) ; // grow so nIndex is valid
} else { // inserting in the middle of the array
int nOldSize = m_nSize ; SetSize(m_nSize + nCount) ; // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(void*)) ;
// re-init slots we copied from
memset(&m_pData[nIndex], 0, nCount * sizeof(void*)) ;
}
// insert new value in the gap
ASSERT_BREAK(nIndex + nCount <= m_nSize) ; while (nCount--) { m_pData[nIndex++] = newElement ; } }
void CHPtrArray::RemoveAt(int nIndex, int nCount) { ASSERT_BREAK(nIndex >= 0) ; ASSERT_BREAK(nCount >= 0) ; ASSERT_BREAK(nIndex + nCount <= m_nSize) ;
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount) ;
if (nMoveCount) { memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(void*)) ; }
m_nSize -= nCount ; }
void CHPtrArray::InsertAt(int nStartIndex, CHPtrArray* pNewArray) { ASSERT_BREAK(pNewArray != NULL) ; ASSERT_BREAK(nStartIndex >= 0) ;
if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()) ; for (int i = 0 ; i < pNewArray->GetSize() ; i++) { SetAt(nStartIndex + i, pNewArray->GetAt(i)) ; } } }
// Inline functions (from CArray)
//===============================
inline int CHPtrArray::GetSize() const {
return m_nSize ; }
inline int CHPtrArray::GetUpperBound() const {
return m_nSize-1 ; }
inline void CHPtrArray::RemoveAll() {
SetSize(0, -1) ; return ; }
inline void *CHPtrArray::GetAt(int nIndex) const {
ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ; return m_pData[nIndex] ; }
inline void CHPtrArray::SetAt(int nIndex, void * newElement) { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ; m_pData[nIndex] = newElement ; return ; }
inline void *&CHPtrArray::ElementAt(int nIndex) { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ; return m_pData[nIndex] ; }
inline const void **CHPtrArray::GetData() const {
return (const void **) m_pData ; }
inline void **CHPtrArray::GetData() {
return (void **) m_pData ; }
inline int CHPtrArray::Add(void *newElement) {
int nIndex = m_nSize ; SetAtGrow(nIndex, newElement) ; return nIndex ; }
inline void *CHPtrArray::operator[](int nIndex) const {
return GetAt(nIndex) ; }
inline void *&CHPtrArray::operator[](int nIndex) {
return ElementAt(nIndex) ; }
// Diagnostics
//============
#ifdef _DEBUG
void CHPtrArray::AssertValid() const { if (m_pData == NULL) { ASSERT_BREAK(m_nSize == 0) ; ASSERT_BREAK(m_nMaxSize == 0) ; } else { ASSERT_BREAK(m_nSize >= 0) ; ASSERT_BREAK(m_nMaxSize >= 0) ; ASSERT_BREAK(m_nSize <= m_nMaxSize) ; } } #endif //_DEBUG
|