|
|
/******************************Module*Header*******************************\
* Module Name: fastfill.c * * Draws fast convex rectangles. * * Copyright (c) 1993-1996 Microsoft Corporation * Copyright (c) 1993-1996 Matrox Electronic Systems, Ltd. \**************************************************************************/
#include "precomp.h"
#define RIGHT 0
#define LEFT 1
typedef struct _TRAPEZOIDDATA TRAPEZOIDDATA; // Handy forward declaration
typedef VOID (FNTRAPEZOID)(TRAPEZOIDDATA*, LONG, LONG); // Prototype for trapezoid
// drawing routines
typedef struct _EDGEDATA { LONG x; // Current x position
LONG dx; // # pixels to advance x on each scan
LONG lError; // Current DDA error
LONG lErrorUp; // DDA error increment on each scan
LONG dN; // Signed delta-y in fixed point form (also known
// as the DDA error adjustment, and used to be
// called 'lErrorDown')
LONG dM; // Signed delta-x in fixed point form
POINTFIX* pptfx; // Points to start of current edge
LONG dptfx; // Delta (in bytes) from pptfx to next point
LONG cy; // Number of scans to go for this edge
LONG bNew; // Set to TRUE when a new DDA must be started
// for the edge.
} EDGEDATA; /* ed, ped */
typedef struct _TRAPEZOIDDATA { FNTRAPEZOID* pfnTrap; // Pointer to appropriate trapezoid drawing routine,
// or trapezoid clip routine
FNTRAPEZOID* pfnTrapClip;// Pointer to appropriate trapezoid drawing routine
// if doing clipping
PDEV* ppdev; // Pointer to PDEV
EDGEDATA aed[2]; // DDA information for both edges
POINTL ptlBrush; // Brush alignment
LONG yClipTop; // Top of clip rectangle
LONG yClipBottom;// Bottom of clip rectangle
// MGA specific stuff below here:
ULONG ulMgaSgn; // Current sign register, MGA specific
ULONG ulLinear; // Linear offset to brush in off-screen memory
} TRAPEZOIDDATA; /* td, ptd */
/******************************Public*Routine******************************\
* VOID vClipTrapezoid * * Clips a trapezoid. * * NOTE: This routine assumes that the polygon's dimensions are small * enough that its QUOTIENT_REMAINDER calculations won't overflow. * This means that large polygons must never make it here. * \**************************************************************************/
VOID vClipTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapTop, LONG cyTrapezoid) { LONG yTrapBottom; LONG dN; LONG lNum; LONG xDelta; LONG lError;
yTrapBottom = yTrapTop + cyTrapezoid;
if (yTrapTop < ptd->yClipTop) { if ((ptd->aed[LEFT].bNew) && (yTrapBottom + ptd->aed[LEFT].cy > ptd->yClipTop)) { dN = ptd->aed[LEFT].dN; lNum = ptd->aed[LEFT].dM * (ptd->yClipTop - yTrapTop) + (ptd->aed[LEFT].lError + dN);
if (lNum >= 0) { QUOTIENT_REMAINDER(lNum, dN, xDelta, lError); } else { lNum = -lNum;
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
xDelta = -xDelta; if (lError != 0) { xDelta--; lError = dN - lError; } }
ptd->aed[LEFT].x += xDelta; ptd->aed[LEFT].lError = lError - dN; }
if ((ptd->aed[RIGHT].bNew) && (yTrapBottom + ptd->aed[RIGHT].cy > ptd->yClipTop)) { dN = ptd->aed[RIGHT].dN; lNum = ptd->aed[RIGHT].dM * (ptd->yClipTop - yTrapTop) + (ptd->aed[RIGHT].lError + dN);
if (lNum >= 0) { QUOTIENT_REMAINDER(lNum, dN, xDelta, lError); } else { lNum = -lNum;
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
xDelta = -xDelta; if (lError != 0) { xDelta--; lError = dN - lError; } }
ptd->aed[RIGHT].x += xDelta; ptd->aed[RIGHT].lError = lError - dN; } }
// If this trapezoid vertically intersects our clip rectangle, draw it:
if ((yTrapBottom > ptd->yClipTop) && (yTrapTop < ptd->yClipBottom)) { if (yTrapTop <= ptd->yClipTop) { yTrapTop = ptd->yClipTop;
// Have to let trapezoid drawer know that it has to load
// its DDAs for very first trapezoid drawn:
ptd->aed[RIGHT].bNew = TRUE; ptd->aed[LEFT].bNew = TRUE; }
if (yTrapBottom >= ptd->yClipBottom) { yTrapBottom = ptd->yClipBottom; }
ptd->pfnTrapClip(ptd, yTrapTop, yTrapBottom - yTrapTop); } }
/******************************Public*Routine******************************\
* VOID vHardwareTrapezoid * * Uses the MGA's hardware trapezoid capability to draw solid or two-colour * pattern trapezoids. * \**************************************************************************/
VOID vHardwareTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; LONG dM; LONG lError; BYTE* pjBase;
ppdev = ptd->ppdev; pjBase = ppdev->pjBase;
if (ptd->aed[LEFT].bNew) { dM = ptd->aed[LEFT].dM; if (dM >= 0) { ptd->ulMgaSgn &= ~sdxl_SUB; lError = -dM - ptd->aed[LEFT].lError - 1; dM = -dM; } else { ptd->ulMgaSgn |= sdxl_SUB; lError = dM + ptd->aed[LEFT].dN + ptd->aed[LEFT].lError; }
CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_AR2, dM); CP_WRITE(pjBase, DWG_AR1, lError); CP_WRITE(pjBase, DWG_AR0, ptd->aed[LEFT].dN); CP_WRITE(pjBase, DWG_FXLEFT, ptd->aed[LEFT].x + ppdev->xOffset); }
if (ptd->aed[RIGHT].bNew) { dM = ptd->aed[RIGHT].dM; if (dM >= 0) { ptd->ulMgaSgn &= ~sdxr_DEC; lError = -dM - ptd->aed[RIGHT].lError - 1; dM = -dM; } else { ptd->ulMgaSgn |= sdxr_DEC; lError = dM + ptd->aed[RIGHT].dN + ptd->aed[RIGHT].lError; }
CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_AR5, dM); CP_WRITE(pjBase, DWG_AR4, lError); CP_WRITE(pjBase, DWG_AR6, ptd->aed[RIGHT].dN); CP_WRITE(pjBase, DWG_FXRIGHT, ptd->aed[RIGHT].x + ppdev->xOffset); }
CP_WRITE(pjBase, DWG_SGN, ptd->ulMgaSgn); CP_START(pjBase, DWG_LEN, cyTrapezoid); }
/******************************Public*Routine******************************\
* VOID vMilSoftwareTrapezoid * * Draws a trapezoid using a software DDA. * \**************************************************************************/
VOID vMilSoftwareTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; LONG xOffset; LONG xBrush; ULONG ulOffset; ULONG ulLinear; ULONG ulScan; CHAR cFifo; LONG lLeftError; LONG xLeft; LONG lRightError; LONG xRight; ULONG ulAr0Adj; BYTE* pjBase;
ppdev = ptd->ppdev; pjBase = ppdev->pjBase;
xBrush = ptd->ptlBrush.x;
ulOffset = ((yTrapezoid - ptd->ptlBrush.y) & 7) << PATTERN_PITCH_SHIFT; ulLinear = ptd->ulLinear;
// For cjPelSize = 1, 2, 3, or 4,
// ulAr0Adj = 2, 4, 0, or 6.
if (ppdev->cjPelSize == 3) { ulAr0Adj = 0; } else { ulAr0Adj = (ppdev->cjPelSize + 2) & 0xfffffffe; }
xOffset = ppdev->xOffset; yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle.
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0)) { xLeft = ptd->aed[LEFT].x + xOffset; xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
if (xLeft <= xRight) { CHECK_FIFO_SPACE(pjBase, 4);
ulScan = ulLinear + ulOffset + ((xLeft - xBrush) & 7); CP_WRITE(pjBase, DWG_AR3, ulScan);
if (ulAr0Adj) { CP_WRITE(pjBase, DWG_AR0, ((ulScan & 0xfffffff8) | ((ulScan + ulAr0Adj) & 7))); } else { CP_WRITE(pjBase, DWG_AR0, (ulScan + 7)); } CP_WRITE(pjBase, DWG_FXBNDRY, (xRight << bfxright_SHIFT) | (xLeft & bfxleft_MASK));
CP_START(pjBase, DWG_YDSTLEN, (yTrapezoid << yval_SHIFT) | (cyTrapezoid & ylength_MASK)); } } else { cFifo = 0; lLeftError = ptd->aed[LEFT].lError; xLeft = ptd->aed[LEFT].x + xOffset; lRightError = ptd->aed[RIGHT].lError; xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft <= xRight) { // We get a little tricky here and try to amortize the cost of
// the read for checking the FIFO count on the MGA. Doing
// so got us a 25% win on large triangles on a P90.
cFifo -= 4; if (cFifo < 0) { do { cFifo = GET_FIFO_SPACE(pjBase) - 4; } while (cFifo < 0); }
ulScan = ulLinear + ulOffset + ((xLeft - xBrush) & 7); CP_WRITE(pjBase, DWG_AR3, ulScan); if (ulAr0Adj) { CP_WRITE(pjBase, DWG_AR0, ((ulScan & 0xfffffff8) | ((ulScan + ulAr0Adj) & 7))); } else { CP_WRITE(pjBase, DWG_AR0, (ulScan + 7)); } CP_WRITE(pjBase, DWG_FXBNDRY, (xRight << bfxright_SHIFT) | (xLeft & bfxleft_MASK));
CP_START(pjBase, DWG_YDSTLEN, (yTrapezoid << yval_SHIFT) | (1 & ylength_MASK)); }
ulOffset = (ulOffset + (1 << PATTERN_PITCH_SHIFT)) & (7 << PATTERN_PITCH_SHIFT); yTrapezoid++;
// Advance the right wall.
xRight += ptd->aed[RIGHT].dx; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].dN; xRight++; }
// Advance the left wall.
xLeft += ptd->aed[LEFT].dx; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].dN; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].x = xLeft - xOffset; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].x = xRight - xOffset + 1; } }
/******************************Public*Routine******************************\
* VOID vMilTrapezoidSetup * * Initialize the hardware and some state for doing trapezoids. * \**************************************************************************/
VOID vMilTrapezoidSetup( PDEV* ppdev, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, TRAPEZOIDDATA* ptd, LONG yStart, // First scan for drawing
RECTL* prclClip) // NULL if no clipping
{ ULONG ulHwMix; ULONG ulDwg; LONG xOffset; LONG yOffset; BRUSHENTRY* pbe; BYTE* pjBase;
pjBase = ppdev->pjBase; ptd->ppdev = ppdev; ptd->ulMgaSgn = 0;
xOffset = ppdev->xOffset; yOffset = ppdev->yOffset;
if ((prclClip != NULL) && (prclClip->top > yStart)) yStart = prclClip->top;
if (iSolidColor != -1) { // Solid fill.
ptd->pfnTrap = vHardwareTrapezoid;
CHECK_FIFO_SPACE(pjBase, 3);
if (rop4 == 0xf0f0) { CP_WRITE(pjBase, DWG_DWGCTL, (opcode_TRAP + atype_RPL + solid_SOLID + bop_SRCCOPY + transc_BG_OPAQUE)); } else { ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2); CP_WRITE(pjBase, DWG_DWGCTL, (opcode_TRAP + atype_RSTR + solid_SOLID + (ulHwMix << 16) + transc_BG_OPAQUE)); }
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, iSolidColor)); CP_WRITE(pjBase, DWG_YDST, yStart + yOffset);
ppdev->HopeFlags = PATTERN_CACHE; } else { // Pattern fill.
if (prb->fl & RBRUSH_2COLOR) { // Monochrome brush.
ptd->pfnTrap = vHardwareTrapezoid;
if ((rop4 & 0xff) == 0xf0) { ulDwg = opcode_TRAP + atype_RPL + bop_SRCCOPY; } else { ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2); ulDwg = opcode_TRAP + atype_RSTR + (ulHwMix << 16); }
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Normal opaque mode.
ulDwg |= transc_BG_OPAQUE; } else { // GDI guarantees us that if the foreground and background
// ROPs are different, the background rop is LEAVEALONE.
ulDwg |= transc_BG_TRANSP; }
CHECK_FIFO_SPACE(pjBase, 9); CP_WRITE(pjBase, DWG_DWGCTL, ulDwg); CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, prb->ulColor[1])); CP_WRITE(pjBase, DWG_BCOL, COLOR_REPLICATE(ppdev, prb->ulColor[0])); CP_WRITE(pjBase, DWG_SRC0, prb->aulPattern[0]); CP_WRITE(pjBase, DWG_SRC1, prb->aulPattern[1]); CP_WRITE(pjBase, DWG_SRC2, prb->aulPattern[2]); CP_WRITE(pjBase, DWG_SRC3, prb->aulPattern[3]);
CP_WRITE(pjBase, DWG_YDST, yStart + yOffset); CP_WRITE(pjBase, DWG_SHIFT, ((-(pptlBrush->y + ppdev->yOffset) & 7) << 4) | (-(pptlBrush->x + ppdev->xOffset) & 7)); } else { // Color brush.
// We have to ensure that no other brush took our spot in
// off-screen memory.
pbe = prb->apbe[IBOARD(ppdev)]; if (pbe->prbVerify != prb) { // Download the brush into the cache.
if (ppdev->cjPelSize != 3) { vMilPatRealize(ppdev, prb); } else { vMilPatRealize24bpp(ppdev, prb); } pbe = prb->apbe[IBOARD(ppdev)]; }
ptd->pfnTrap = vMilSoftwareTrapezoid; ptd->ulLinear = pbe->ulLinear; ptd->ptlBrush = *pptlBrush;
CHECK_FIFO_SPACE(pjBase, 2);
if (rop4 == 0xf0f0) // PATCOPY
{ CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RPL + sgnzero_ZERO + shftzero_ZERO + bop_SRCCOPY + bltmod_BFCOL + pattern_ON + transc_BG_OPAQUE)); } else { ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2); CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RSTR + sgnzero_ZERO + shftzero_ZERO + (ulHwMix << 16) + bltmod_BFCOL + pattern_ON + transc_BG_OPAQUE)); } CP_WRITE(pjBase, DWG_AR5, PATTERN_PITCH); }
ppdev->HopeFlags = 0; }
if (prclClip != NULL) { ptd->pfnTrapClip = ptd->pfnTrap; ptd->pfnTrap = vClipTrapezoid; ptd->yClipTop = prclClip->top; ptd->yClipBottom = prclClip->bottom;
CHECK_FIFO_SPACE(pjBase, 2); CP_WRITE(pjBase, DWG_CXLEFT, prclClip->left + xOffset); CP_WRITE(pjBase, DWG_CXRIGHT, prclClip->right + xOffset - 1); } }
/******************************Public*Routine******************************\
* VOID vMgaSoftwareTrapezoid * * Draws a trapezoid using a software DDA. * \**************************************************************************/
VOID vMgaSoftwareTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; BYTE* pjBase; LONG xOffset; LONG xBrush; ULONG ulOffset; ULONG ulLinear; ULONG ulScan; CHAR cFifo; LONG lLeftError; LONG xLeft; LONG lRightError; LONG xRight;
ppdev = ptd->ppdev; pjBase = ppdev->pjBase; xBrush = ptd->ptlBrush.x;
ulOffset = ((yTrapezoid - ptd->ptlBrush.y) & 7) << 5; ulLinear = ptd->ulLinear;
xOffset = ppdev->xOffset; yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0)) { xLeft = ptd->aed[LEFT].x + xOffset; xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
if (xLeft <= xRight) { CHECK_FIFO_SPACE(pjBase, 6);
CP_WRITE(pjBase, DWG_FXLEFT, xLeft); // xOffset already added in
CP_WRITE(pjBase, DWG_FXRIGHT, xRight);
ulScan = ulLinear + ulOffset; CP_WRITE(pjBase, DWG_AR3, ulScan + ((xLeft - xBrush) & 7)); CP_WRITE(pjBase, DWG_AR0, ulScan + 15); CP_WRITE(pjBase, DWG_LEN, cyTrapezoid); CP_START(pjBase, DWG_YDST, yTrapezoid); } } else { cFifo = 0; lLeftError = ptd->aed[LEFT].lError; xLeft = ptd->aed[LEFT].x + xOffset; lRightError = ptd->aed[RIGHT].lError; xRight = ptd->aed[RIGHT].x + xOffset - 1; // Inclusive of edge
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft <= xRight) { // We get a little tricky here and try to amortize the cost of
// the read for checking the FIFO count on the MGA. Doing
// so got us a 25% win on large triangles on a P90:
cFifo -= 6; if (cFifo < 0) { do { cFifo = GET_FIFO_SPACE(pjBase) - 6; } while (cFifo < 0); }
CP_WRITE(pjBase, DWG_FXLEFT, xLeft); CP_WRITE(pjBase, DWG_FXRIGHT, xRight);
ulScan = ulLinear + ulOffset; CP_WRITE(pjBase, DWG_AR0, ulScan + 15); CP_WRITE(pjBase, DWG_AR3, ulScan + ((xLeft - xBrush) & 7)); CP_WRITE(pjBase, DWG_LEN, 1); CP_START(pjBase, DWG_YDST, yTrapezoid); }
ulOffset = (ulOffset + (1 << 5)) & (7 << 5); yTrapezoid++;
// Advance the right wall:
xRight += ptd->aed[RIGHT].dx; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].dN; xRight++; }
// Advance the left wall:
xLeft += ptd->aed[LEFT].dx; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].dN; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].x = xLeft - xOffset; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].x = xRight - xOffset + 1; } }
/******************************Public*Routine******************************\
* VOID vMgaTrapezoidSetup * * Initialize the hardware and some state for doing trapezoids. * \**************************************************************************/
VOID vMgaTrapezoidSetup( PDEV* ppdev, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, TRAPEZOIDDATA* ptd, LONG yStart, // First scan for drawing
RECTL* prclClip) // NULL if no clipping
{ BYTE* pjBase; ULONG ulHwMix; ULONG ulDwg; BRUSHENTRY* pbe;
ptd->ppdev = ppdev; ptd->ulMgaSgn = 0; pjBase = ppdev->pjBase;
if ((prclClip != NULL) && (prclClip->top > yStart)) yStart = prclClip->top;
if (iSolidColor != -1) { ptd->pfnTrap = vHardwareTrapezoid;
CHECK_FIFO_SPACE(pjBase, 7);
if (rop4 == 0xf0f0) { CP_WRITE(pjBase, DWG_DWGCTL, opcode_TRAP + transc_BG_OPAQUE + blockm_ON + atype_RPL + bop_SRCCOPY); } else { ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
CP_WRITE(pjBase, DWG_DWGCTL, opcode_TRAP + transc_BG_OPAQUE + blockm_OFF + atype_RSTR + (ulHwMix << 16)); }
CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, iSolidColor)); CP_WRITE(pjBase, DWG_YDST, yStart + ppdev->yOffset);
if (!(GET_CACHE_FLAGS(ppdev, PATTERN_CACHE))) { CP_WRITE(pjBase, DWG_SRC0, 0xFFFFFFFF); CP_WRITE(pjBase, DWG_SRC1, 0xFFFFFFFF); CP_WRITE(pjBase, DWG_SRC2, 0xFFFFFFFF); CP_WRITE(pjBase, DWG_SRC3, 0xFFFFFFFF); }
ppdev->HopeFlags = PATTERN_CACHE; } else { if (prb->fl & RBRUSH_2COLOR) { ptd->pfnTrap = vHardwareTrapezoid;
if ((rop4 & 0xff) == 0xf0) { ulDwg = opcode_TRAP + blockm_OFF + atype_RPL + bop_SRCCOPY; } else { ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
ulDwg = opcode_TRAP + blockm_OFF + atype_RSTR + (ulHwMix << 16); }
if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Normal opaque mode:
ulDwg |= transc_BG_OPAQUE; } else { // GDI guarantees us that if the foreground and background
// ROPs are different, the background rop is LEAVEALONE:
ulDwg |= transc_BG_TRANSP; }
CHECK_FIFO_SPACE(pjBase, 9); CP_WRITE(pjBase, DWG_DWGCTL, ulDwg); CP_WRITE(pjBase, DWG_FCOL, COLOR_REPLICATE(ppdev, prb->ulColor[1])); CP_WRITE(pjBase, DWG_BCOL, COLOR_REPLICATE(ppdev, prb->ulColor[0])); CP_WRITE(pjBase, DWG_SRC0, prb->aulPattern[0]); CP_WRITE(pjBase, DWG_SRC1, prb->aulPattern[1]); CP_WRITE(pjBase, DWG_SRC2, prb->aulPattern[2]); CP_WRITE(pjBase, DWG_SRC3, prb->aulPattern[3]); CP_WRITE(pjBase, DWG_YDST, yStart + ppdev->yOffset); CP_WRITE(pjBase, DWG_SHIFT, ((-(pptlBrush->y + ppdev->yOffset) & 7) << 4) | (-(pptlBrush->x + ppdev->xOffset) & 7));
ppdev->HopeFlags = 0; } else { // We have to ensure that no other brush took our spot in off-screen
// memory:
ASSERTDD(ppdev->iBitmapFormat == BMF_8BPP, "Can only do 8bpp patterned fastfills");
if (prb->apbe[IBOARD(ppdev)]->prbVerify != prb) { vMgaPatRealize8bpp(ppdev, prb); }
pjBase = ppdev->pjBase; pbe = prb->apbe[IBOARD(ppdev)];
ptd->pfnTrap = vMgaSoftwareTrapezoid; ptd->ulLinear = pbe->ulLinear; ptd->ptlBrush = *pptlBrush;
CHECK_FIFO_SPACE(pjBase, 4);
if (rop4 == 0xf0f0) // PATCOPY
{ CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RPL + blockm_OFF + trans_0 + bltmod_BFCOL + pattern_ON + transc_BG_OPAQUE + bop_SRCCOPY)); } else { RIP("Shouldn't allow ROPs for now, because of h/w bug!");
ulHwMix = (rop4 & 0x03) + ((rop4 & 0x30) >> 2);
CP_WRITE(pjBase, DWG_DWGCTL, (opcode_BITBLT + atype_RSTR + blockm_OFF + trans_0 + bltmod_BFCOL + pattern_ON + transc_BG_OPAQUE + (ulHwMix << 16))); }
if (!(GET_CACHE_FLAGS(ppdev, SIGN_CACHE))) { CP_WRITE(pjBase, DWG_SGN, 0); }
ppdev->HopeFlags = SIGN_CACHE;
CP_WRITE(pjBase, DWG_SHIFT, 0); CP_WRITE(pjBase, DWG_AR5, 32); } }
if (prclClip != NULL) { ptd->pfnTrapClip = ptd->pfnTrap; ptd->pfnTrap = vClipTrapezoid; ptd->yClipTop = prclClip->top; ptd->yClipBottom = prclClip->bottom;
CHECK_FIFO_SPACE(pjBase, 2); CP_WRITE(pjBase, DWG_CXLEFT, ppdev->xOffset + prclClip->left); CP_WRITE(pjBase, DWG_CXRIGHT, ppdev->xOffset + prclClip->right - 1); } }
/******************************Public*Routine******************************\
* BOOL bFastFill * * Draws a non-complex, unclipped polygon. 'Non-complex' is defined as * having only two edges that are monotonic increasing in 'y'. That is, * the polygon cannot have more than one disconnected segment on any given * scan. Note that the edges of the polygon can self-intersect, so hourglass * shapes are permissible. This restriction permits this routine to run two * simultaneous DDAs, and no sorting of the edges is required. * * Note that NT's fill convention is different from that of Win 3.1 or Win95. * With the additional complication of fractional end-points, our convention * is the same as in 'X-Windows'. But a DDA is a DDA is a DDA, so once you * figure out how we compute the DDA terms for NT, you're golden. * * Returns TRUE if the polygon was drawn; FALSE if the polygon was complex. * \**************************************************************************/
BOOL bFastFill( PDEV* ppdev, LONG cEdges, // Includes close figure edge
POINTFIX* pptfxFirst, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, RECTL* prclClip) // NULL if no clipping
{ LONG yTrapezoid; // Top scan for next trapezoid
LONG cyTrapezoid; // Number of scans in current trapezoid
LONG yStart; // y-position of start point in current edge
LONG dM; // Edge delta in FIX units in x direction
LONG dN; // Edge delta in FIX units in y direction
LONG i; LONG lCross; // Cross-product result
POINTFIX* pptfxLast; // Points to the last point in the polygon array
POINTFIX* pptfxTop; // Points to the top-most point in the polygon
POINTFIX* pptfxOld; // Start point in current edge
POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop
LONG cScanEdges; // Number of edges scanned to find pptfxTop
// (doesn't include the closefigure edge)
LONG iEdge; LONG lQuotient; LONG lRemainder; BYTE* pjBase;
TRAPEZOIDDATA td; // Edge data and stuff
EDGEDATA* ped; // Points to current edge being processed
/////////////////////////////////////////////////////////////////
// See if the polygon is convex
pptfxScan = pptfxFirst; pptfxTop = pptfxFirst; // Assume for now that the first
// point in path is the topmost
pptfxLast = pptfxFirst + cEdges - 1;
// Watch for close figure points, because we have the later restriction
// that we won't allow coincident vertices:
if ((pptfxLast->x == pptfxFirst->x) && (pptfxLast->y == pptfxFirst->y)) { pptfxLast--; cEdges--; }
if (cEdges <= 2) goto ReturnTrue;
// 'pptfxScan' will always point to the first point in the current
// edge, and 'cScanEdges' will the number of edges remaining, including
// the current one:
cScanEdges = cEdges - 1; // The number of edges, not counting close figure
if ((pptfxScan + 1)->y > pptfxScan->y) { // Collect all downs:
do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if (--cScanEdges == 0) goto SetUpForFillingCheck; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
// Collect all downs:
pptfxTop = pptfxScan;
do { if ((pptfxScan + 1)->y > pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
goto ReturnFalse; } else { // Collect all ups:
do { pptfxTop++; // We increment this now because we
// want it to point to the very last
// point if we early out in the next
// statement...
if (--cScanEdges == 0) goto SetUpForFilling; } while ((pptfxTop + 1)->y <= pptfxTop->y);
// Collect all downs:
pptfxScan = pptfxTop; do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if ((pptfxScan + 1)->y < pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
goto ReturnFalse; }
SetUpForFillingCheck:
// We check to see if the end of the current edge is higher
// than the top edge we've found so far:
if ((pptfxScan + 1)->y < pptfxTop->y) pptfxTop = pptfxScan + 1;
SetUpForFilling:
pptfxScan = pptfxFirst; cScanEdges = cEdges - 2;
// NOTE: For a bit of speed and simplicity, we will assume that
// our cross product calculations will not overflow. A
// consequence of this is that the caller MUST ensure that
// the bounds of the polygon are small enough that there
// will be no overflow.
lCross = (((pptfxScan + 1)->x - (pptfxScan + 0)->x) * ((pptfxScan + 2)->y - (pptfxScan + 1)->y) - ((pptfxScan + 1)->y - (pptfxScan + 0)->y) * ((pptfxScan + 2)->x - (pptfxScan + 1)->x));
if (lCross == 0) { // We don't allow any colinear points into FastFill. We do this
// here because we would need a non-zero cross product to determine
// which direction the rest of the edges should go. We do this
// later so that coincident vertices will never mess us up by
// hiding a cross product sign change.
goto ReturnFalse; } else if (lCross > 0) { // Make sure all cross products are positive:
pptfxScan++; while (--cScanEdges != 0) { if (((pptfxScan + 1)->x - (pptfxScan + 0)->x) * ((pptfxScan + 2)->y - (pptfxScan + 1)->y) - ((pptfxScan + 1)->y - (pptfxScan + 0)->y) * ((pptfxScan + 2)->x - (pptfxScan + 1)->x) <= 0) { goto ReturnFalse; } pptfxScan++; }
// Check the angles formed by the closefigure edge:
if (((pptfxScan + 1)->x - (pptfxScan + 0)->x) * ((pptfxFirst )->y - (pptfxScan + 1)->y) - ((pptfxScan + 1)->y - (pptfxScan + 0)->y) * ((pptfxFirst )->x - (pptfxScan + 1)->x) <= 0) { goto ReturnFalse; }
if (((pptfxFirst )->x - (pptfxScan + 1)->x) * ((pptfxFirst + 1)->y - (pptfxFirst )->y) - ((pptfxFirst )->y - (pptfxScan + 1)->y) * ((pptfxFirst + 1)->x - (pptfxFirst )->x) <= 0) { goto ReturnFalse; }
// The figure has its points ordered in a clockwise direction:
td.aed[LEFT].dptfx = -(LONG) sizeof(POINTFIX); td.aed[RIGHT].dptfx = sizeof(POINTFIX); } else { // Make sure all cross products are negative:
pptfxScan++; while (--cScanEdges != 0) { if (((pptfxScan + 1)->x - (pptfxScan + 0)->x) * ((pptfxScan + 2)->y - (pptfxScan + 1)->y) - ((pptfxScan + 1)->y - (pptfxScan + 0)->y) * ((pptfxScan + 2)->x - (pptfxScan + 1)->x) >= 0) { goto ReturnFalse; } pptfxScan++; }
// Check the angles formed by the closefigure edge:
if (((pptfxScan + 1)->x - (pptfxScan + 0)->x) * ((pptfxFirst )->y - (pptfxScan + 1)->y) - ((pptfxScan + 1)->y - (pptfxScan + 0)->y) * ((pptfxFirst )->x - (pptfxScan + 1)->x) >= 0) { goto ReturnFalse; }
if (((pptfxFirst )->x - (pptfxScan + 1)->x) * ((pptfxFirst + 1)->y - (pptfxFirst )->y) - ((pptfxFirst )->y - (pptfxScan + 1)->y) * ((pptfxFirst + 1)->x - (pptfxFirst )->x) >= 0) { goto ReturnFalse; }
// The figure has its points ordered in a counter-clockwise direction:
td.aed[LEFT].dptfx = sizeof(POINTFIX); td.aed[RIGHT].dptfx = -(LONG) sizeof(POINTFIX); }
/////////////////////////////////////////////////////////////////
// Some Initialization
td.aed[LEFT].pptfx = pptfxTop; td.aed[RIGHT].pptfx = pptfxTop;
yTrapezoid = (pptfxTop->y + 15) >> 4;
// Make sure we initialize the DDAs appropriately:
td.aed[LEFT].cy = 0; td.aed[RIGHT].cy = 0;
if (ppdev->ulBoardId == MGA_STORM) { vMilTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td, yTrapezoid, prclClip); } else { vMgaTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td, yTrapezoid, prclClip); }
NewTrapezoid:
/////////////////////////////////////////////////////////////////
// DDA initialization
for (iEdge = 1; iEdge >= 0; iEdge--) { ped = &td.aed[iEdge]; ped->bNew = FALSE; if (ped->cy == 0) { // Our trapezoid drawing routine may want to be notified when
// it will have to reset its DDA to start a new edge:
ped->bNew = TRUE;
// Need a new DDA:
do { cEdges--; if (cEdges < 0) goto ResetClippingAndReturnTrue;
// Find the next left edge, accounting for wrapping:
pptfxOld = ped->pptfx; ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx);
if (ped->pptfx < pptfxFirst) ped->pptfx = pptfxLast; else if (ped->pptfx > pptfxLast) ped->pptfx = pptfxFirst;
// Have to find the edge that spans yTrapezoid:
ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid;
// With fractional coordinate end points, we may get edges
// that don't cross any scans, in which case we try the
// next one:
} while (ped->cy <= 0);
// 'pptfx' now points to the end point of the edge spanning
// the scan 'yTrapezoid'.
dN = ped->pptfx->y - pptfxOld->y; dM = ped->pptfx->x - pptfxOld->x;
ASSERTDD(dN > 0, "Should be going down only");
// Compute the DDA increment terms:
ped->dM = dM; // Not used for software trapezoid
if (dM < 0) { dM = -dM; if (dM < dN) // Can't be '<='
{ ped->dx = -1; ped->lErrorUp = dN - dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = -lQuotient; // - dM / dN
ped->lErrorUp = lRemainder; // dM % dN
if (ped->lErrorUp > 0) { ped->dx--; ped->lErrorUp = dN - ped->lErrorUp; } } } else { if (dM < dN) // Can't be '<='
{ ped->dx = 0; ped->lErrorUp = dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = lQuotient; // dM / dN
ped->lErrorUp = lRemainder; // dM % dN
} }
ped->dN = dN; // DDA limit
ped->lError = -1; // Error is initially zero (add dN - 1 for
// the ceiling, but subtract off dN so that
// we can check the sign instead of comparing
// to dN)
ped->x = pptfxOld->x; yStart = pptfxOld->y;
if ((yStart & 15) != 0) { // Advance to the next integer y coordinate
for (i = 16 - (yStart & 15); i != 0; i--) { ped->x += ped->dx; ped->lError += ped->lErrorUp; if (ped->lError >= 0) { ped->lError -= ped->dN; ped->x++; } } }
if ((ped->x & 15) != 0) { ped->lError -= ped->dN * (16 - (ped->x & 15)); ped->x += 15; // We'll want the ceiling in just a bit...
}
// Chop off those fractional bits:
ped->x >>= 4; ped->lError >>= 4; } }
cyTrapezoid = min(td.aed[LEFT].cy, td.aed[RIGHT].cy); // # of scans in this trap
td.aed[LEFT].cy -= cyTrapezoid; td.aed[RIGHT].cy -= cyTrapezoid;
td.pfnTrap(&td, yTrapezoid, cyTrapezoid);
yTrapezoid += cyTrapezoid;
goto NewTrapezoid;
ResetClippingAndReturnTrue:
if (prclClip != NULL) { pjBase = ppdev->pjBase;
CHECK_FIFO_SPACE(pjBase, 2); CP_WRITE(pjBase, DWG_CXLEFT, 0); CP_WRITE(pjBase, DWG_CXRIGHT, ppdev->cxMemory - 1); }
ReturnTrue:
return(TRUE);
ReturnFalse:
return(FALSE); }
|