|
|
/******************************Module*Header*******************************\
* Module Name: enable.c * * This module contains the functions that enable and disable the * driver, the pdev, and the surface. * * Copyright (c) 1992-1995 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
#if defined(ALPHA)
/**************************************************************************\
* BOOL isDense * * This global is used to distinguish dense space from sparse space on the * DEC Alpha in order to use the appropriate method of register access. * \**************************************************************************/
BOOL isDense = TRUE;
#endif
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault * * This contains the default GDIINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
GDIINFO ggdiDefault = { GDI_DRIVER_VERSION, // ulVersion
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
// to scroll by repainting the entire window,
// instead of doing a screen-to-screen blt, we
// would have set TC_SCROLLBLT (yes, the flag is
// bass-ackwards).
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulPanningHorzRes
0, // ulPanningVertRes
0, // ulBltAlignment
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault * * This contains the default DEVINFO fields that are passed back to GDI * during DrvEnablePDEV. * * NOTE: This structure defaults to values for an 8bpp palette device. * Some fields are overwritten for different colour depths. \**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"System"} #define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"} #define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\ FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = { (GCAPS_OPAQUERECT | GCAPS_DITHERONREALIZE | GCAPS_PALMANAGED | GCAPS_ALTERNATEFILL | GCAPS_WINDINGFILL | #if TARGET_BUILD > 351
GCAPS_DIRECTDRAW | #endif
GCAPS_MONO_DITHER | GCAPS_COLOR_DITHER | GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0 // hpalDefault (filled in later)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[] * * Build the driver function table gadrvfn with function index/address * pairs. This table tells GDI which DDI calls we support, and their * location (GDI does an indirect call through this table to call us). * * Why haven't we implemented DrvSaveScreenBits? To save code. * * When the driver doesn't hook DrvSaveScreenBits, USER simulates on- * the-fly by creating a temporary device-format-bitmap, and explicitly * calling DrvCopyBits to save/restore the bits. Since we already hook * DrvCreateDeviceBitmap, we'll end up using off-screen memory to store * the bits anyway (which would have been the main reason for implementing * DrvSaveScreenBits). So we may as well save some working set. \**************************************************************************/
#if MULTI_BOARDS
// Multi-board support has its own thunks...
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) MulEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) MulCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) MulDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) MulEnableSurface }, { INDEX_DrvDisableSurface, (PFN) MulDisableSurface }, { INDEX_DrvAssertMode, (PFN) MulAssertMode }, { INDEX_DrvMovePointer, (PFN) MulMovePointer }, { INDEX_DrvSetPointerShape, (PFN) MulSetPointerShape }, { INDEX_DrvDitherColor, (PFN) MulDitherColor }, { INDEX_DrvSetPalette, (PFN) MulSetPalette }, { INDEX_DrvCopyBits, (PFN) MulCopyBits }, { INDEX_DrvBitBlt, (PFN) MulBitBlt }, { INDEX_DrvTextOut, (PFN) MulTextOut }, { INDEX_DrvGetModes, (PFN) MulGetModes }, { INDEX_DrvStrokePath, (PFN) MulStrokePath }, { INDEX_DrvFillPath, (PFN) MulFillPath }, { INDEX_DrvPaint, (PFN) MulPaint }, { INDEX_DrvRealizeBrush, (PFN) MulRealizeBrush }, { INDEX_DrvDestroyFont, (PFN) MulDestroyFont }, #if TARGET_BUILD > 351
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif
// Note that we don't support DrvCreateDeviceBitmap for multi-boards
// Note that we don't support DrvDeleteDeviceBitmap for multi-boards
// Note that we don't support DrvStretchBlt for multi-boards
// Note that we don't support DrvLineTo for multi-boards
// Note that we don't support DrvEscape for multi-boards
};
#elif DBG
// On Checked builds, thunk everything through Dbg calls...
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DbgEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DbgDisableSurface }, { INDEX_DrvAssertMode, (PFN) DbgAssertMode }, { INDEX_DrvMovePointer, (PFN) DbgMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape }, { INDEX_DrvDitherColor, (PFN) DbgDitherColor }, { INDEX_DrvSetPalette, (PFN) DbgSetPalette }, { INDEX_DrvCopyBits, (PFN) DbgCopyBits }, { INDEX_DrvBitBlt, (PFN) DbgBitBlt }, { INDEX_DrvTextOut, (PFN) DbgTextOut }, { INDEX_DrvGetModes, (PFN) DbgGetModes }, { INDEX_DrvStrokePath, (PFN) DbgStrokePath }, #if TARGET_BUILD > 351
{ INDEX_DrvLineTo, (PFN) DbgLineTo }, #endif
{ INDEX_DrvFillPath, (PFN) DbgFillPath }, { INDEX_DrvPaint, (PFN) DbgPaint }, { INDEX_DrvStretchBlt, (PFN) DbgStretchBlt }, { INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap }, { INDEX_DrvDestroyFont, (PFN) DbgDestroyFont }, { INDEX_DrvEscape, (PFN) DbgEscape }, #if TARGET_BUILD > 351
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif
};
#else
// On Free builds, directly call the appropriate functions...
DRVFN gadrvfn[] = { { INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV }, { INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV }, { INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV }, { INDEX_DrvEnableSurface, (PFN) DrvEnableSurface }, { INDEX_DrvDisableSurface, (PFN) DrvDisableSurface }, { INDEX_DrvAssertMode, (PFN) DrvAssertMode }, { INDEX_DrvMovePointer, (PFN) DrvMovePointer }, { INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape }, { INDEX_DrvDitherColor, (PFN) DrvDitherColor }, { INDEX_DrvSetPalette, (PFN) DrvSetPalette }, { INDEX_DrvCopyBits, (PFN) DrvCopyBits }, { INDEX_DrvBitBlt, (PFN) DrvBitBlt }, { INDEX_DrvTextOut, (PFN) DrvTextOut }, { INDEX_DrvGetModes, (PFN) DrvGetModes }, { INDEX_DrvStrokePath, (PFN) DrvStrokePath }, #if TARGET_BUILD > 351
{ INDEX_DrvLineTo, (PFN) DrvLineTo }, #endif
{ INDEX_DrvFillPath, (PFN) DrvFillPath }, { INDEX_DrvPaint, (PFN) DrvPaint }, { INDEX_DrvStretchBlt, (PFN) DrvStretchBlt }, { INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush }, { INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap }, { INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap }, { INDEX_DrvDestroyFont, (PFN) DrvDestroyFont }, { INDEX_DrvEscape, (PFN) DrvEscape }, #if TARGET_BUILD > 351
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo }, { INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw }, { INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw }, #endif
};
#endif
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver * * Enables the driver by retrieving the drivers function table and version. * \**************************************************************************/
BOOL DrvEnableDriver( ULONG iEngineVersion, ULONG cj, DRVENABLEDATA* pded) { // Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA)) pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2)) pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG)) pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE); }
/******************************Public*Routine******************************\
* VOID DrvDisableDriver * * Tells the driver it is being disabled. Release any resources allocated in * DrvEnableDriver. * \**************************************************************************/
VOID DrvDisableDriver(VOID) { return; }
/******************************Public*Routine******************************\
* BOOL bInitializeATI * * Initializes some private ATI info. * \**************************************************************************/
BOOL bInitializeATI(PDEV* ppdev) { ENH_VERSION_NT info; ULONG ReturnedDataLength;
info.FeatureFlags = 0; info.StructureVersion = 0; info.InterfaceVersion = 0; // Miniport needs these to be zero
// Get some adapter information via a private IOCTL call:
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_ATI_GET_VERSION, &info, sizeof(ENH_VERSION_NT), &info, sizeof(ENH_VERSION_NT), &ReturnedDataLength)) { DISPDBG((0, "bInitializeATI - Failed ATI_GET_VERSION")); goto ReturnFalse; }
ppdev->FeatureFlags = info.FeatureFlags;
ppdev->iAsic = info.ChipIndex; ppdev->iAperture = info.ApertureType; #if defined(ALPHA)
if (!(ppdev->FeatureFlags & EVN_DENSE_CAPABLE)) { // Can't use a sparse linear aperture.
// Banked aperture is always sparse.
// In either case, we execute no-aperture code...
ppdev->iAperture = APERTURE_NONE; isDense = FALSE; } #endif
if (info.ChipIndex == ASIC_88800GX) { ppdev->iMachType = MACH_MM_64; } else if (info.BusFlag & FL_MM_REGS) { ppdev->iMachType = MACH_MM_32; } else { ppdev->iMachType = MACH_IO_32; }
return(TRUE);
ReturnFalse:
return(FALSE); }
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV * * Initializes a bunch of fields for GDI, based on the mode we've been asked * to do. This is the first thing called after DrvEnableDriver, when GDI * wants to get some information about us. * * (This function mostly returns back information; DrvEnableSurface is used * for initializing the hardware and driver components.) * \**************************************************************************/
DHPDEV DrvEnablePDEV( DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
#if TARGET_BUILD > 351
HDEV hdev, // Used for callbacks
#else
PWSTR pwszDataFile, #endif
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{ PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO))) { DISPDBG((0, "DrvEnablePDEV - Buffer size too small")); goto ReturnFailure0; }
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = AtiAllocMem(LPTR, FL_ZERO_MEMORY, sizeof(PDEV)); if (ppdev == NULL) { DISPDBG((0, "DrvEnablePDEV - Failed AtiAllocMem")); goto ReturnFailure0; }
ppdev->hDriver = hDriver;
// Do some private ATI-specific initialization:
if (!bInitializeATI(ppdev)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializeATI")); goto ReturnFailure1; }
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields")); goto ReturnFailure1; }
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi)) { DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette")); goto ReturnFailure1; }
return((DHPDEV) ppdev);
ReturnFailure1: DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0: DISPDBG((0, "Failed DrvEnablePDEV"));
return(0); }
/******************************Public*Routine******************************\
* DrvDisablePDEV * * Release the resources allocated in DrvEnablePDEV. If a surface has been * enabled DrvDisableSurface will have already been called. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error, we may call this before DrvEnablePDEV is done. * \**************************************************************************/
VOID DrvDisablePDEV( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev); AtiFreeMem(ppdev); }
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV * * Store the HPDEV, the engines handle for this PDEV, in the DHPDEV. * \**************************************************************************/
VOID DrvCompletePDEV( DHPDEV dhpdev, HDEV hdev) { ((PDEV*) dhpdev)->hdevEng = hdev; }
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface * * Creates the drawing surface, initializes the hardware, and initializes * driver components. This function is called after DrvEnablePDEV, and * performs the final device initialization. * \**************************************************************************/
HSURF DrvEnableSurface( DHPDEV dhpdev) { PDEV* ppdev; HSURF hsurf; SIZEL sizl; DSURF* pdsurf; VOID* pvTmpBuffer;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev)) goto ReturnFailure;
if (!bEnableBanking(ppdev)) goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev)) goto ReturnFailure;
if (!bEnablePointer(ppdev)) goto ReturnFailure;
if (!bEnableText(ppdev)) goto ReturnFailure;
if (!bEnableBrushCache(ppdev)) goto ReturnFailure;
if (!bEnablePalette(ppdev)) goto ReturnFailure;
if (!bEnableDirectDraw(ppdev)) goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = AtiAllocMem(LPTR, FL_ZERO_MEMORY, sizeof(DSURF)); if (pdsurf == NULL) { DISPDBG((0, "DrvEnableSurface - Failed pdsurf AtiAllocMem")); goto ReturnFailure; }
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too
pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB
pdsurf->sizl.cx = ppdev->cxScreen; pdsurf->sizl.cy = ppdev->cyScreen; pdsurf->ppdev = ppdev;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual SURFOBJ.
//
// Our drawing surface is going to be 'device-managed', meaning that
// GDI cannot draw on the framebuffer bits directly, and as such we
// create the surface via EngCreateDeviceSurface. By doing this, we ensure
// that GDI will only ever access the bitmaps bits via the Drv calls
// that we've HOOKed.
//
// If we could map the entire framebuffer linearly into main memory
// (i.e., we didn't have to go through a 64k aperture), it would be
// beneficial to create the surface via EngCreateBitmap, giving GDI a
// pointer to the framebuffer bits. When we pass a call on to GDI
// where it can't directly read/write to the surface bits because the
// surface is device managed, it has to create a temporary bitmap and
// call our DrvCopyBits routine to get/set a copy of the affected bits.
// Fer example, the OpenGL component prefers to be able to write on the
// framebuffer bits directly.
sizl.cx = ppdev->cxScreen; sizl.cy = ppdev->cyScreen;
// Let GDI manage 24bpp mach32 with linear aperture.
if (ppdev->iBitmapFormat == BMF_24BPP && ppdev->iAsic != ASIC_88800GX && ppdev->iAperture == APERTURE_FULL) { hsurf= ppdev->hsurfPunt;
//
// Also tell GDI that we don't want to be called back.
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, 0)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface")); goto ReturnFailure; } } else { hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat); if (hsurf == 0) { DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface")); goto ReturnFailure; }
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks)) { DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface")); goto ReturnFailure; } }
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = AtiAllocMem(LMEM_FIXED, 0, TMP_BUFFER_SIZE); if (pvTmpBuffer == NULL) { DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc")); goto ReturnFailure; }
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure: DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0); }
/******************************Public*Routine******************************\
* VOID DrvDisableSurface * * Free resources allocated by DrvEnableSurface. Release the surface. * * Note that this function will be called when previewing modes in the * Display Applet, but not at system shutdown. If you need to reset the * hardware at shutdown, you can do it in the miniport by providing a * 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure. * * Note: In an error case, we may call this before DrvEnableSurface is * completely done. * \**************************************************************************/
VOID DrvDisableSurface( DHPDEV dhpdev) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
vDisableDirectDraw(ppdev); vDisablePalette(ppdev); vDisableBrushCache(ppdev); vDisableText(ppdev); vDisablePointer(ppdev); vDisableOffscreenHeap(ppdev); vDisableBanking(ppdev); vDisableHardware(ppdev);
AtiFreeMem(ppdev->pvTmpBuffer); EngDeleteSurface(ppdev->hsurfScreen); AtiFreeMem(ppdev->pdsurfScreen); }
/******************************Public*Routine******************************\
* VOID DrvAssertMode * * This asks the device to reset itself to the mode of the pdev passed in. * \**************************************************************************/
#if TARGET_BUILD > 351
BOOL DrvAssertMode( #else
VOID DrvAssertMode( #endif
DHPDEV dhpdev, BOOL bEnable) { PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable) { //////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE)) { vAssertModeBanking(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE)) { ppdev->bEnabled = FALSE;
#if TARGET_BUILD > 351
return(TRUE); #else
return; #endif
}
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE); } else { //////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
#if TARGET_BUILD > 351
if (!bAssertModeHardware(ppdev, TRUE)) { return FALSE; } #else
bAssertModeHardware(ppdev, TRUE); #endif
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // don't need the return
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
ppdev->bEnabled = TRUE;
#if TARGET_BUILD > 351
return TRUE; #endif
}
#if TARGET_BUILD > 351
return FALSE; // If we get here, we've failed!
#endif
}
/******************************Public*Routine******************************\
* ULONG DrvGetModes * * Returns the list of available modes for the device. * \**************************************************************************/
ULONG DrvGetModes( HANDLE hDriver, ULONG cjSize, DEVMODEW* pdm) {
DWORD cModes; DWORD cbOutputSize; PVIDEO_MODE_INFORMATION pVideoModeInformation; PVIDEO_MODE_INFORMATION pVideoTemp; DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); DWORD cbModeSize;
cModes = getAvailableModes(hDriver, (PVIDEO_MODE_INFORMATION *) &pVideoModeInformation, &cbModeSize); if (cModes == 0) { DISPDBG((0, "DrvGetModes failed to get mode information")); return(0); }
if (pdm == NULL) { cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE); } else { //
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do { if (pVideoTemp->Length != 0) { if (cOutputModes == 0) { break; }
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION; pdm->dmDriverVersion = DM_SPECVERSION;
//
// We currently do not support Extra information in the driver
//
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmSize = sizeof(DEVMODEW); pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes * pVideoTemp->BitsPerPlane; pdm->dmPelsWidth = pVideoTemp->VisScreenWidth; pdm->dmPelsHeight = pVideoTemp->VisScreenHeight; pdm->dmDisplayFrequency = pVideoTemp->Frequency;
#if TARGET_BUILD > 351
pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFREQUENCY | DM_DISPLAYFLAGS ; #else
if (pVideoTemp->AttributeFlags & VIDEO_MODE_INTERLACED) { pdm->dmDisplayFlags |= DM_INTERLACED; } #endif
//DISPDBG((0, "pdm: %4li bpp, %4li x %4li, %4li Hz",
//pdm->dmBitsPerPel, pdm->dmPelsWidth, pdm->dmPelsHeight, pdm->dmDisplayFrequency ));
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes); }
AtiFreeMem(pVideoModeInformation);
return(cbOutputSize); }
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware * * Sets the appropriate hardware state for graphics mode or full-screen. * \**************************************************************************/
BOOL bAssertModeHardware( PDEV* ppdev, BOOL bEnable) { DWORD ReturnedDataLength; ULONG ulReturn;
if (bEnable) { // Call the miniport via an IOCTL to set the graphics mode.
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bAssertModeHardware - Failed set IOCTL")); return(FALSE); }
vResetClipping(ppdev);
// Set some Mach64 defaults:
if (ppdev->iMachType == MACH_MM_64) { BYTE* pjMmBase;
pjMmBase = ppdev->pjMmBase;
M64_CHECK_FIFO_SPACE(ppdev, pjMmBase, 1); M64_OD(pjMmBase, DP_PIX_WIDTH, ppdev->ulMonoPixelWidth);
vSetDefaultContext(ppdev); } } else { // Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_RESET_DEVICE, NULL, 0, NULL, 0, &ulReturn)) { DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL")); return(FALSE); } }
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE); }
/******************************Public*Routine******************************\
* BOOL bEnableHardware * * Puts the hardware in the requested mode and initializes it. * * Note: Should be called before any access is done to the hardware from * the display driver. * \**************************************************************************/
BOOL bEnableHardware( PDEV* ppdev) { BYTE* pjIoBase; VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[2]; VIDEO_MEMORY VideoMemory; VIDEO_MEMORY_INFORMATION VideoMemoryInfo; DWORD ReturnedDataLength;
ppdev->pjIoBase = NULL; ppdev->pjMmBase = NULL;
// Map io ports into virtual memory:
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES, NULL, // input buffer
0, &VideoAccessRange, // output buffer
sizeof(VideoAccessRange), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Initialization error mapping IO port base")); goto ReturnFalse; }
ppdev->pjIoBase = (UCHAR*) VideoAccessRange[0].VirtualAddress;
ppdev->pjMmBase_Ext = (BYTE*) VideoAccessRange[1].VirtualAddress;
// ------------------------- ATI-specific ----------------------------
// Call the miniport via an IOCTL to set the graphics mode.
// Because of a hardware quirk, 4 BPP causes the mach64 to alter its
// video memory size when you do a SET_CURRENT_MODE, so we do it here
// first so that MAP_VIDEO_MEMORY maps the correct amount of memory.
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SET_CURRENT_MODE, &ppdev->ulMode, // input buffer
sizeof(DWORD), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Failed set IOCTL")); goto ReturnFalse; }
ppdev->pModeInfo = AtiAllocMem( LPTR, FL_ZERO_MEMORY, sizeof (ATI_MODE_INFO) ); if( ppdev->pModeInfo == NULL ) { DISPDBG((0, "bEnableHardware - Failed memory allocation" )); goto ReturnFalse; }
if( !AtiDeviceIoControl( ppdev->hDriver, IOCTL_VIDEO_ATI_GET_MODE_INFORMATION, ppdev->pModeInfo, sizeof (ATI_MODE_INFO), ppdev->pModeInfo, sizeof (ATI_MODE_INFO), &ReturnedDataLength ) ) { DISPDBG((0, "bEnableHardware - Failed to get ATI-specific mode information" )); goto ReturnFalse; }
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL;
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_MAP_VIDEO_MEMORY, &VideoMemory, // input buffer
sizeof(VIDEO_MEMORY), &VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo), &ReturnedDataLength)) { DISPDBG((0, "bEnableHardware - Error mapping buffer address")); goto ReturnFalse; }
// Record the Frame Buffer Linear Address.
ppdev->cjBank = VideoMemoryInfo.FrameBufferLength; // 128K VGA Aperture?
if (ppdev->cjBank == 0x20000) { ppdev->cjBank = 0x10000; // true banksize is 64K
}
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase; // So we can free it later in vDisableHardware...
ppdev->VideoRamBase = (BYTE*) VideoMemoryInfo.VideoRamBase;
if (ppdev->iMachType == MACH_MM_64) { ppdev->pjMmBase = (BYTE*) VideoMemoryInfo.VideoRamBase + VideoMemoryInfo.FrameBufferLength - 0x400; } else { ppdev->pjMmBase = (BYTE*) VideoMemoryInfo.FrameBufferBase; }
pjIoBase = ppdev->pjIoBase;
// We finally have enough information to calculate the dimensions
// of on-screen and off-screen memory:
ppdev->cxMemory = ppdev->lDelta / ppdev->cjPelSize; ppdev->cyMemory = VideoMemoryInfo.VideoRamLength / ppdev->lDelta;
if (VideoMemoryInfo.VideoRamLength <= VideoMemoryInfo.FrameBufferLength) { ppdev->flCaps |= CAPS_LINEAR_FRAMEBUFFER; }
ppdev->ulTearOffset = (ULONG)(ppdev->pjScreen - ppdev->VideoRamBase); ppdev->ulVramOffset = ppdev->ulTearOffset/8;
if (ppdev->iBitmapFormat != BMF_24BPP) ppdev->ulScreenOffsetAndPitch = PACKPAIR(ppdev->ulVramOffset, ppdev->cxMemory * 8); else ppdev->ulScreenOffsetAndPitch = PACKPAIR(ppdev->ulVramOffset, (ppdev->cxMemory * 3) * 8);
// The default pixel width is setup to have monochrome as the
// host data path pixel width:
switch (ppdev->iBitmapFormat) { case BMF_4BPP: ppdev->ulMonoPixelWidth = 0x00000101; break; case BMF_8BPP: ppdev->ulMonoPixelWidth = 0x00000202; break; case BMF_16BPP: ppdev->ulMonoPixelWidth = 0x00000404; break; case BMF_24BPP: ppdev->ulMonoPixelWidth = 0x01000202; break; case BMF_32BPP: ppdev->ulMonoPixelWidth = 0x00000606; break; }
DISPDBG((1, "RamLength = %lxH, lDelta = %li", VideoMemoryInfo.VideoRamLength, ppdev->lDelta));
if ((ppdev->iMachType == MACH_IO_32) || (ppdev->iMachType == MACH_MM_32)) { // The Mach32 and Mach8 can't handle coordinates larger than 1535:
ppdev->cyMemory = min(ppdev->cyMemory, 1535); }
if (ppdev->iMachType == MACH_MM_32) { // Can do memory-mapped IO:
ppdev->pfnFillSolid = vM32FillSolid; ppdev->pfnFillPatColor = vM32FillPatColor; ppdev->pfnFillPatMonochrome = vM32FillPatMonochrome; ppdev->pfnXfer1bpp = vM32Xfer1bpp; ppdev->pfnXfer4bpp = vM32Xfer4bpp; ppdev->pfnXfer8bpp = vM32Xfer8bpp; ppdev->pfnXferNative = vM32XferNative; ppdev->pfnCopyBlt = vM32CopyBlt; ppdev->pfnLineToTrivial = vM32LineToTrivial; if (ppdev->iAsic == ASIC_68800AX) // Timing problem.
ppdev->pfnTextOut = bI32TextOut; else ppdev->pfnTextOut = bM32TextOut; ppdev->pfnStretchDIB = bM32StretchDIB; } else if (ppdev->iMachType == MACH_IO_32) { ppdev->pfnFillSolid = vI32FillSolid; ppdev->pfnFillPatColor = vI32FillPatColor; ppdev->pfnFillPatMonochrome = vI32FillPatMonochrome; ppdev->pfnXfer1bpp = vI32Xfer1bpp; ppdev->pfnXfer4bpp = vI32Xfer4bpp; ppdev->pfnXfer8bpp = vI32Xfer8bpp; ppdev->pfnXferNative = vI32XferNative; ppdev->pfnCopyBlt = vI32CopyBlt; ppdev->pfnLineToTrivial = vI32LineToTrivial; ppdev->pfnTextOut = bI32TextOut; ppdev->pfnStretchDIB = bI32StretchDIB; } else { // ppdev->iMachType == MACH_MM_64
ppdev->pfnFillSolid = vM64FillSolid; ppdev->pfnFillPatColor = vM64FillPatColor; ppdev->pfnFillPatMonochrome = vM64FillPatMonochrome; ppdev->pfnXfer1bpp = vM64Xfer1bpp; ppdev->pfnXfer4bpp = vM64Xfer4bpp; ppdev->pfnXfer8bpp = vM64Xfer8bpp; ppdev->pfnXferNative = vM64XferNative; if (!(ppdev->FeatureFlags & EVN_SDRAM_1M)) { ppdev->pfnCopyBlt = vM64CopyBlt; } else { // Special version to fix screen source FIFO bug in VT-A4
// with 1 MB of SDRAM.
ppdev->pfnCopyBlt = vM64CopyBlt_VTA4; } ppdev->pfnLineToTrivial = vM64LineToTrivial; ppdev->pfnTextOut = bM64TextOut; ppdev->pfnStretchDIB = bM64StretchDIB;
if (ppdev->iBitmapFormat == BMF_24BPP) { ppdev->pfnFillSolid = vM64FillSolid24; ppdev->pfnFillPatColor = vM64FillPatColor24; ppdev->pfnFillPatMonochrome = vM64FillPatMonochrome24; ppdev->pfnXferNative = vM64XferNative24; if (!(ppdev->FeatureFlags & EVN_SDRAM_1M)) { ppdev->pfnCopyBlt = vM64CopyBlt24; } else { // Special version to fix screen source FIFO bug in VT-A4
// with 1 MB of SDRAM.
ppdev->pfnCopyBlt = vM64CopyBlt24_VTA4; } ppdev->pfnLineToTrivial = vM64LineToTrivial24; ppdev->pfnTextOut = bM64TextOut24; }
vEnableContexts(ppdev); }
if ((ppdev->iAsic != ASIC_38800_1) && ((ppdev->iAperture != APERTURE_NONE)||(ppdev->iMachType == MACH_MM_64))) { ppdev->pfnGetBits = vGetBits; ppdev->pfnPutBits = vPutBits; } else { ppdev->pfnGetBits = vI32GetBits; ppdev->pfnPutBits = vI32PutBits; }
// Now we can set the mode, unlock the accelerator, and reset the
// clipping:
if (!bAssertModeHardware(ppdev, TRUE)) goto ReturnFalse;
DISPDBG((0, "%li bpp, %li x %li, pjScreen = %lx, cjBank = %lxH, pjMmBase = %lx", ppdev->cBitsPerPel, ppdev->cxMemory, ppdev->cyMemory, ppdev->pjScreen, ppdev->cjBank, ppdev->pjMmBase));
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE); }
/******************************Public*Routine******************************\
* VOID vDisableHardware * * Undoes anything done in bEnableHardware. * * Note: In an error case, we may call this before bEnableHardware is * completely done. * \**************************************************************************/
VOID vDisableHardware( PDEV* ppdev) { DWORD ReturnedDataLength; VIDEO_MEMORY VideoMemory[2];
VideoMemory[0].RequestedVirtualAddress = ppdev->VideoRamBase;
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNMAP_VIDEO_MEMORY, VideoMemory, sizeof(VIDEO_MEMORY), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO")); }
VideoMemory[0].RequestedVirtualAddress = ppdev->pjIoBase; VideoMemory[1].RequestedVirtualAddress = ppdev->VideoRamBase;
if (!AtiDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES, VideoMemory, sizeof(VideoMemory), NULL, 0, &ReturnedDataLength)) { DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS")); } }
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields * * Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and * devinfo based on the requested mode. * \**************************************************************************/
BOOL bInitializeModeFields( PDEV* ppdev, GDIINFO* pgdi, DEVINFO* pdi, DEVMODEW* pdm) { ULONG cModes; PVIDEO_MODE_INFORMATION pVideoBuffer; PVIDEO_MODE_INFORMATION pVideoModeSelected; PVIDEO_MODE_INFORMATION pVideoTemp; BOOL bSelectDefault; VIDEO_MODE_INFORMATION VideoModeInformation; ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize); if (cModes == 0) goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL; pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) && (pdm->dmPelsHeight == 0) && (pdm->dmBitsPerPel == 0) && (pdm->dmDisplayFrequency == 0)) { DISPDBG((1, "Default mode requested")); bSelectDefault = TRUE; } else { DISPDBG((1, "Requested mode...")); DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth)); DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight)); DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel)); DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE; }
while (cModes--) { if (pVideoTemp->Length != 0) { DISPDBG((8, " Checking against miniport mode:")); DISPDBG((8, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((8, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((8, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((8, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault || ((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) && (pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) && (pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) && (pVideoTemp->Frequency == pdm->dmDisplayFrequency))) { pVideoModeSelected = pVideoTemp; DISPDBG((1, "...Found a mode match!")); break; } }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL) { DISPDBG((1, "...Couldn't find a mode match!")); AtiFreeMem(pVideoBuffer); goto ReturnFalse; }
// Punt all rev 3 VLB cards in 8bpp to the 8514/A driver.
// Timing problems on "MIO" cards are impossible to deal with.
// They only show up on 5% of all mach32 cards.
if ((ppdev->FeatureFlags & EVN_MIO_BUG) && pVideoModeSelected->BitsPerPlane == 8) { AtiFreeMem(pVideoBuffer); goto ReturnFalse; }
// We won't support 24bpp without a linear frame buffer.
if (pVideoModeSelected->BitsPerPlane == 24 && ppdev->iAperture != APERTURE_FULL) { AtiFreeMem(pVideoBuffer); goto ReturnFalse; }
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected; AtiFreeMem(pVideoBuffer);
#if DEBUG_HEAP
VideoModeInformation.VisScreenWidth = 640; VideoModeInformation.VisScreenHeight = 480; #endif
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex; ppdev->cxScreen = VideoModeInformation.VisScreenWidth; ppdev->cyScreen = VideoModeInformation.VisScreenHeight; ppdev->lDelta = VideoModeInformation.ScreenStride; ppdev->cBitsPerPel = VideoModeInformation.BitsPerPlane;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
ppdev->flHooks = (HOOK_BITBLT | HOOK_TEXTOUT | HOOK_FILLPATH | HOOK_COPYBITS | HOOK_STROKEPATH | HOOK_STRETCHBLT | #if TARGET_BUILD > 351
HOOK_LINETO | #endif
HOOK_PAINT);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter; pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulVertRes = VideoModeInformation.VisScreenHeight; #if TARGET_BUILD > 351
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight; #else
pgdi->ulDesktopHorzRes = VideoModeInformation.VisScreenWidth; pgdi->ulDesktopVertRes = VideoModeInformation.VisScreenHeight; #endif
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane; pgdi->cPlanes = VideoModeInformation.NumberOfPlanes; pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits; pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits; pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels; pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8) { ppdev->cPelSize = 0; ppdev->cjPelSize = 1; ppdev->iBitmapFormat = BMF_8BPP; ppdev->ulWhite = 0xff;
// Assuming palette is orthogonal - all colors are same size.
ppdev->cPaletteShift = 8 - pgdi->ulDACRed; DISPDBG((3, "palette shift = %d\n", ppdev->cPaletteShift)); } else if ((VideoModeInformation.BitsPerPlane == 16) || (VideoModeInformation.BitsPerPlane == 15)) { ppdev->cPelSize = 1; ppdev->cjPelSize = 2; ppdev->iBitmapFormat = BMF_16BPP; ppdev->ulWhite = 0xffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else if (VideoModeInformation.BitsPerPlane == 24) { ppdev->cPelSize = 0; // not used?!
ppdev->cjPelSize = 3; ppdev->iBitmapFormat = BMF_24BPP; ppdev->ulWhite = 0xffffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); } else { ASSERTDD(VideoModeInformation.BitsPerPlane == 32, "This driver supports only 8, 16, 24 and 32bpp");
ppdev->cPelSize = 2; ppdev->cjPelSize = 4; ppdev->iBitmapFormat = BMF_32BPP; ppdev->ulWhite = 0xffffffff; ppdev->flRed = VideoModeInformation.RedMask; ppdev->flGreen = VideoModeInformation.GreenMask; ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1; pgdi->ulNumPalReg = 0; pgdi->ulHTOutputFormat = HT_FORMAT_32BPP;
pdi->iDitherFormat = BMF_32BPP; pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER); }
DISPDBG((5, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE); }
/******************************Public*Routine******************************\
* DWORD getAvailableModes * * Calls the miniport to get the list of modes supported by the kernel driver, * and returns the list of modes supported by the diplay driver among those * * returns the number of entries in the videomode buffer. * 0 means no modes are supported by the miniport or that an error occured. * * NOTE: the buffer must be freed up by the caller. * \**************************************************************************/
DWORD getAvailableModes( HANDLE hDriver, PVIDEO_MODE_INFORMATION* modeInformation, // Must be freed by caller
DWORD* cbModeSize) { ULONG ulTemp; VIDEO_NUM_MODES modes; PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (!AtiDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES, NULL, 0, &modes, sizeof(VIDEO_NUM_MODES), &ulTemp)) { DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES")); return(0); }
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = AtiAllocMem(LPTR, FL_ZERO_MEMORY, modes.NumModes * modes.ModeInformationLength, );
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL) { DISPDBG((0, "getAvailableModes - Failed AtiAllocMem")); return 0; }
//
// Ask the mini-port to fill in the available modes.
//
if (!AtiDeviceIoControl(hDriver, IOCTL_VIDEO_QUERY_AVAIL_MODES, NULL, 0, *modeInformation, modes.NumModes * modes.ModeInformationLength, &ulTemp)) {
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
AtiFreeMem(*modeInformation); *modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0); }
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes; pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16, 24 or 32 bits per pel.
//
while (ulTemp--) { //DISPDBG((0, "pVideoTemp: %4li bpp, %4li x %4li, %4li Hz",
//pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes,
//pVideoTemp->VisScreenWidth, pVideoTemp->VisScreenHeight,
//pVideoTemp->Frequency ));
if ((pVideoTemp->NumberOfPlanes != 1 ) || !(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) || ((pVideoTemp->BitsPerPlane != 8) && (pVideoTemp->BitsPerPlane != 15) && (pVideoTemp->BitsPerPlane != 16) && (pVideoTemp->BitsPerPlane != 24) && (pVideoTemp->BitsPerPlane != 32))) { DISPDBG((2, "Rejecting miniport mode:")); DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth)); DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight)); DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes)); DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0; }
pVideoTemp = (PVIDEO_MODE_INFORMATION) (((PUCHAR)pVideoTemp) + modes.ModeInformationLength); }
return(modes.NumModes); }
|