|
|
/******************************Module*Header*******************************\
* Module Name: Brush.c * * Handles all brush/pattern initialization and realization. * * Copyright (c) 1992-1995 Microsoft Corporation * \**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* VOID vRealizeDitherPattern * * Generates an 8x8 dither pattern, in our internal realization format, for * the colour ulRGBToDither. Note that the high byte of ulRGBToDither does * not need to be set to zero, because vComputeSubspaces ignores it. \**************************************************************************/
VOID vRealizeDitherPattern( RBRUSH* prb, ULONG ulRGBToDither) { ULONG ulNumVertices; VERTEX_DATA vVertexData[4]; VERTEX_DATA* pvVertexData; LONG i;
// Calculate what colour subspaces are involved in the dither:
pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData);
// Now that we have found the bounding vertices and the number of
// pixels to dither for each vertex, we can create the dither pattern
ulNumVertices = (ULONG)(pvVertexData - vVertexData); // # of vertices with more than zero pixels in the dither
// Do the actual dithering:
vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices);
// Initialize the fields we need:
prb->fl = 0;
for (i = 0; i < MAX_BOARDS; i++) { prb->apbe[i] = NULL; } }
/******************************Public*Routine******************************\
* BOOL DrvRealizeBrush * * This function allows us to convert GDI brushes into an internal form * we can use. It may be called directly by GDI at SelectObject time, or * it may be called by GDI as a result of us calling BRUSHOBJ_pvGetRbrush * to create a realized brush in a function like DrvBitBlt. * * Note that we have no way of determining what the current Rop or brush * alignment are at this point. * \**************************************************************************/
BOOL DrvRealizeBrush( BRUSHOBJ* pbo, SURFOBJ* psoDst, SURFOBJ* psoPattern, SURFOBJ* psoMask, XLATEOBJ* pxlo, ULONG iHatch) { PDEV* ppdev; ULONG iPatternFormat; BYTE* pjSrc; BYTE* pjDst; BYTE jSrc; LONG lSrcDelta; LONG cj; LONG i; LONG j; RBRUSH* prb; ULONG* pulXlate; ULONG ulColor;
ppdev = (PDEV*) psoDst->dhpdev;
// We don't do brushes in high-colour modes on the P9000:
if (ppdev->flStat & STAT_UNACCELERATED) goto ReturnFalse;
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
if (iHatch & RB_DITHERCOLOR) { // Implementing DITHERONREALIZE increased our score on a certain
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
// this didn't work in the first version of NT.
prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE * ppdev->cjPel)); if (prb == NULL) goto ReturnFalse;
if (!P9000(ppdev)) { ASSERTDD(ppdev->iBitmapFormat == BMF_8BPP, "GCAPS_COLOR_DITHER shouldn't be set at higher than 8bpp");
// Oh goody, we get to use the P9100's 4-colour pattern
// support:
vRealize4ColorDither(prb, iHatch); goto ReturnTrue; } else { // We do coloured patterns on the P9000 only at 8bpp, and only
// if we've successfully managed to allocate an off-screen
// brush cache:
if (!(ppdev->flStat & STAT_BRUSH_CACHE)) goto ReturnFalse;
vRealizeDitherPattern(prb, iHatch); goto ReturnTrue; } }
// We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
// support patterns of any other size, it's a safe bet that 99.9%
// of the patterns we'll ever get will be 8x8:
if ((psoPattern->sizlBitmap.cx != 8) || (psoPattern->sizlBitmap.cy != 8)) goto ReturnFalse;
// At 8bpp, we handle patterns at 1bpp, 4bpp and 8bpp with/without an xlate.
// At 16bpp, we handle patterns at 1bpp on the P9100.
// At 32bpp, we handle patterns at 1bpp on the P9100.
iPatternFormat = psoPattern->iBitmapFormat;
// We only handle arbitrary color brushes if we have an off-screen
// brush cache available.
if ((iPatternFormat != BMF_1BPP) && !(ppdev->flStat & STAT_BRUSH_CACHE)) goto ReturnFalse;
if ((iPatternFormat == BMF_1BPP) || (iPatternFormat == ppdev->iBitmapFormat) || (iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP)) { prb = BRUSHOBJ_pvAllocRbrush(pbo, sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE * ppdev->cjPel)); if (prb == NULL) goto ReturnFalse;
// Initialize the fields we need:
prb->fl = 0;
for (i = 0; i < MAX_BOARDS; i++) { prb->apbe[i] = NULL; }
lSrcDelta = psoPattern->lDelta; pjSrc = (BYTE*) psoPattern->pvScan0; pjDst = (BYTE*) &prb->aulPattern[0];
if (ppdev->iBitmapFormat == iPatternFormat) { if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL)) { DISPDBG((1, "Realizing un-translated brush"));
// The pattern is the same colour depth as the screen, and
// there's no translation to be done:
cj = (8 * ppdev->cjPel); // Every pattern is 8 pels wide
for (i = 8; i != 0; i--) { RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc += lSrcDelta; pjDst += cj; } } else if (ppdev->iBitmapFormat == BMF_8BPP) { DISPDBG((1, "Realizing 8bpp translated brush"));
// The screen is 8bpp, and there's translation to be done:
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--) { for (j = 8; j != 0; j--) { *pjDst++ = (BYTE) pulXlate[*pjSrc++]; }
pjSrc += lSrcDelta - 8; } } else { // I don't feel like writing code to handle translations
// when our screen is 16bpp or higher (although I probably
// should; we could allocate a temporary buffer and use
// GDI to convert, like is done in the VGA driver).
goto ReturnFalse; } } else if (iPatternFormat == BMF_1BPP) { DISPDBG((1, "Realizing 1bpp brush"));
// We word align the monochrome bitmap so that every row starts
// on a new word (so that we can do word writes later to transfer
// the bitmap):
for (i = 4; i != 0; i--) { // The P9000 uses a monochrome 16x16 pattern, but we're
// given an 8x8 source pattern. So copy each source row
// horizontally.
//
// This works for the P9100 too, because although it supports
// only an 8x8 monochrome pattern, it ignores the high byte
// in every word.
jSrc = *pjSrc; pjSrc += lSrcDelta;
// The pattern register we use has little-endian byte ordering:
*(pjDst ) = jSrc; *(pjDst + 1) = jSrc;
jSrc = *pjSrc; pjSrc += lSrcDelta;
*(pjDst + 2) = jSrc; *(pjDst + 3) = jSrc;
pjDst += 4; }
pulXlate = pxlo->pulXlate; prb->fl = RBRUSH_2COLOR;
// The P9100 require that colours be 'packed' into a dword.
// We do it here rather than when we go to draw because
// we may draw using the same brush multiple times...
PACK_COLOR(ppdev, pulXlate[0], ulColor); prb->ulColor[0] = ulColor;
PACK_COLOR(ppdev, pulXlate[1], ulColor); prb->ulColor[1] = ulColor; } else { DISPDBG((1, "Realizing 4bpp brush"));
// The screen is 8bpp and the pattern is 4bpp:
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) && (iPatternFormat == BMF_4BPP), "Messed up brush logic");
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--) { // Inner loop is repeated only 4 times because each loop
// handles 2 pixels:
for (j = 4; j != 0; j--) { *pjDst++ = (BYTE) pulXlate[*pjSrc >> 4]; *pjDst++ = (BYTE) pulXlate[*pjSrc & 15]; pjSrc++; }
pjSrc += lSrcDelta - 4; } }
ReturnTrue:
// The last time I checked, GDI took some 500 odd instructions to
// get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'.
// We can at least use this time to get some overlap between the
// CPU and the display hardware: we'll initialize the 72x72 off-
// screen cache entry now, which will keep the accelerator busy for
// a while.
if (!prb->fl & (RBRUSH_2COLOR | RBRUSH_4COLOR)) { ASSERTDD(ppdev->bEnabled, "Realizing brush when in full-screen?");
vSlowPatRealize(ppdev, prb); }
return(TRUE); }
ReturnFalse:
if (psoPattern != NULL) { DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li", psoPattern->iType, psoPattern->iBitmapFormat, psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy)); }
return(FALSE); }
/******************************Public*Routine******************************\
* VOID vAssertModeBrushCache * * Resets the brush cache when we exit out of full-screen. \**************************************************************************/
VOID vAssertModeBrushCache( PDEV* ppdev, BOOL bEnable) { BRUSHENTRY* pbe; CIRCLEENTRY* pce; LONG i; BYTE* pjBase;
if (bEnable) { // Invalidate the brush cache:
pbe = &ppdev->abe[0];
for (i = ppdev->cBrushCache; i != 0; i--) { pbe->prbVerify = NULL; pbe++; }
// Invalidate the circle cache:
pce = &ppdev->ace[0];
for (i = TOTAL_CIRCLE_COUNT; i != 0; i--) { pce->rcfxCircle.xLeft = 0; pce->rcfxCircle.xRight = 0; pce++; }
// Download our favourite pattern for doing solid fills when
// running 16bpp on the P9000:
if ((ppdev->flStat & STAT_UNACCELERATED) && (ppdev->iBitmapFormat == BMF_16BPP)) { pjBase = ppdev->pjBase;
CP_WAIT(ppdev, pjBase); for (i = 0; i < 8; i++) { CP_PATTERN(ppdev, pjBase, i, 0xAAAAAAAA); }
// Anchor the pattern origin, too:
CP_PATTERN_ORGX(ppdev, pjBase, 0); CP_PATTERN_ORGY(ppdev, pjBase, 0); } } }
/******************************Public*Routine******************************\
* BOOL bEnableBrushCache * * Allocates off-screen memory for storing the brush cache. \**************************************************************************/
BOOL bEnableBrushCache( PDEV* ppdev) { OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
LONG i; LONG j; CIRCLEENTRY* pce;
// On the P9000, we draw coloured patterns using screen-to-screen
// copies. When a coloured pattern is used, we first expand the
// 8 x 8 pattern to a 64 x 64 pattern in off-screen memory; we
// then use this as the basis for our screen-to-screen blts to the
// target rectangle. The off-screen 64 x 64 pattern is cached for
// future use.
//
// Coloured patterns are used primarily at 8bpp, for dithers. The
// P9100 has direct support for 4-coloured patterns at 8bpp, which
// allows it to to draw any dithered colours using the hardware
// (our dithers are always a maximum of 4 colours). Consequently,
// we only use the off-screen brush cache on the P9000, and only
// at 8bpp.
if (P9000(ppdev) && (ppdev->flStat & STAT_8BPP)) { // Typically, we'll be running at 1024x768x256 on a 1meg board,
// giving us off-screen memory of the dimension 1024x253 (accounting
// for the space taken by the hardware pointer). If we allocate
// the brush cache as one long one-high row of brushes, the heap
// manager would shave that amount off the largest chunk of memory
// we could allocate (meaning the largest bitmap potentially stored
// in off-screen memory couldn't be larger than 253 - 64 = 189 pels
// high, but it could be 1024 wide).
//
// To make this more square, I want to shave off a left-side chunk
// for the brush cache, and I want at least 8 brushes cached.
// Since floor(253/64) = 3, we'll allocate a 3 x 3 cache:
poh = pohAllocatePermanent(ppdev, SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION, SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION);
if (poh == NULL) goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = SLOW_BRUSH_COUNT;
pbe = &ppdev->abe[0]; // Points to where we'll put the first brush
// cache entry
for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++) { for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++) { pbe->x = poh->x + (i * SLOW_BRUSH_ALLOCATION); pbe->y = poh->y + (j * SLOW_BRUSH_ALLOCATION); pbe++; } }
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it:
ppdev->flStat |= STAT_BRUSH_CACHE; }
// Now allocate our circle cache.
//
// Note that we don't have to initially mark the entries as invalid,
// as the ppdev was zero-filled, and so we are assured that every
// 'rcfxBound' will be {0, 0, 0, 0}, which will never match any
// circle when looking for a matching entry.
poh = pohAllocatePermanent(ppdev, CIRCLE_ALLOCATION_CX * TOTAL_CIRCLE_COUNT, CIRCLE_ALLOCATION_CY); if (poh == NULL) goto ReturnTrue;
pce = &ppdev->ace[0]; // Points to where we'll put the first circle
// cache entry
for (i = 0; i < TOTAL_CIRCLE_COUNT; i++) { pce->x = poh->x + (i * CIRCLE_ALLOCATION_CX); pce->y = poh->y; pce++; }
ppdev->flStat |= STAT_CIRCLE_CACHE;
ReturnTrue:
// Invalidate our caches and initialize our high-colour pattern:
vAssertModeBrushCache(ppdev, TRUE);
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bEnableBrushCache"));
return(TRUE); }
/******************************Public*Routine******************************\
* VOID vDisableBrushCache * * Cleans up anything done in bEnableBrushCache. \**************************************************************************/
VOID vDisableBrushCache(PDEV* ppdev) { // We ain't gotta do nothin'
}
|