|
|
/******************************Module*Header*******************************\
* Module Name: fastfill.c * * Draws fast unclipped, non-complex rectangles. * * Copyright (c) 1993-1995 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
#define RIGHT 0
#define LEFT 1
#define SWAP(a, b, tmp) { tmp = a; a = b; b = tmp; }
typedef struct _EDGEDATA { LONG x; // Current x position
LONG dx; // # pixels to advance x on each scan
LONG lError; // Current DDA error
LONG lErrorUp; // DDA error increment on each scan
LONG lErrorDown; // DDA error adjustment
POINTFIX* pptfx; // Points to start of current edge
LONG dptfx; // Delta (in bytes) from pptfx to next point
LONG cy; // Number of scans to go for this edge
} EDGEDATA; /* ed, ped */
/******************************Public*Routine******************************\
* BOOL bFastFill * * Draws a non-complex, unclipped polygon. 'Non-complex' is defined as * having only two edges that are monotonic increasing in 'y'. That is, * the polygon cannot have more than one disconnected segment on any given * scan. Note that the edges of the polygon can self-intersect, so hourglass * shapes are permissible. This restriction permits this routine to run two * simultaneous DDAs, and no sorting of the edges is required. * * Note that NT's fill convention is different from that of Win 3.1 or 4.0. * With the additional complication of fractional end-points, our convention * is the same as in 'X-Windows'. But a DDA is a DDA is a DDA, so once you * figure out how we compute the DDA terms for NT, you're golden. * * Returns TRUE if the polygon was drawn; FALSE if the polygon was complex. * \**************************************************************************/
BOOL bFastFill( PDEV* ppdev, LONG cEdges, // Includes close figure edge
POINTFIX* pptfxFirst, ULONG ulHwMix, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush) { BYTE* pjBase; ULONG ulStat; LONG yTrapezoid; // Top scan for next trapezoid
LONG cyTrapezoid; // Number of scans in current trapezoid
LONG yStart; // y-position of start point in current edge
LONG dM; // Edge delta in FIX units in x direction
LONG dN; // Edge delta in FIX units in y direction
LONG i; POINTFIX* pptfxLast; // Points to the last point in the polygon array
POINTFIX* pptfxTop; // Points to the top-most point in the polygon
POINTFIX* pptfxOld; // Start point in current edge
POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop
LONG cScanEdges; // Number of edges scanned to find pptfxTop
// (doesn't include the closefigure edge)
ULONG* pulPattern; ULONG ulPattern; LONG iEdge; LONG lQuotient; LONG lRemainder;
EDGEDATA aed[2]; // DDA terms and stuff
EDGEDATA* ped;
// Most polygons will be convex, and so
pjBase = ppdev->pjBase;
if (iSolidColor == -1) { /////////////////////////////////////////////////////////////////
// Setup for patterns
// Make sure accelerator is not buy for all types.
//
CP_WAIT(ppdev, pjBase);
if (P9000(ppdev)) { CP_PATTERN_ORGX(ppdev, pjBase, ppdev->xOffset + pptlBrush->x); CP_PATTERN_ORGY(ppdev, pjBase, ppdev->yOffset + pptlBrush->y); CP_BACKGROUND(ppdev, pjBase, prb->ulColor[0]); CP_FOREGROUND(ppdev, pjBase, prb->ulColor[1]); pulPattern = &prb->aulPattern[0]; for (i = 0; i < 4; i++) { ulPattern = *pulPattern++; CP_PATTERN(ppdev, pjBase, i, ulPattern); CP_PATTERN(ppdev, pjBase, i + 4, ulPattern); }
if (((ulHwMix >> 8) & 0xff) == (ulHwMix & 0xff)) { ulHwMix = gaulP9000OpaqueFromRop2[(ulHwMix & 0x3C) >> 2]; CP_RASTER(ppdev, pjBase, ulHwMix | P9000_ENABLE_PATTERN); } else { ulHwMix = gaulP9000TransparentFromRop2[(ulHwMix & 0x3C) >> 2]; CP_RASTER(ppdev, pjBase, ulHwMix | P9000_ENABLE_PATTERN); } } else { CP_PATTERN_ORGX(ppdev, pjBase, -(ppdev->xOffset + pptlBrush->x)); CP_PATTERN_ORGY(ppdev, pjBase, -(ppdev->yOffset + pptlBrush->y)); CP_COLOR0_FAST(ppdev, pjBase, prb->ulColor[0]); CP_COLOR1_FAST(ppdev, pjBase, prb->ulColor[1]); CP_PATTERN(ppdev, pjBase, 0, prb->aulPattern[0]); CP_PATTERN(ppdev, pjBase, 1, prb->aulPattern[1]); CP_PATTERN(ppdev, pjBase, 2, prb->aulPattern[2]); CP_PATTERN(ppdev, pjBase, 3, prb->aulPattern[3]); if (prb->fl & RBRUSH_2COLOR) { if (((ulHwMix >> 8) & 0xff) == (ulHwMix & 0xff)) { CP_RASTER(ppdev, pjBase, (ulHwMix & 0xff) | P9100_ENABLE_PATTERN); } else { CP_RASTER(ppdev, pjBase, (ulHwMix & 0xff) | P9100_ENABLE_PATTERN | P9100_TRANSPARENT_PATTERN); } } else { CP_COLOR2_FAST(ppdev, pjBase, prb->ulColor[2]); CP_COLOR3_FAST(ppdev, pjBase, prb->ulColor[3]); CP_RASTER(ppdev, pjBase, (ulHwMix & 0xff) | P9100_ENABLE_PATTERN | P9100_FOUR_COLOR_PATTERN); } } } else { /////////////////////////////////////////////////////////////////
// Setup the hardware for solid colours
CP_WAIT(ppdev, pjBase); if (P9000(ppdev)) { CP_BACKGROUND(ppdev, pjBase, iSolidColor); CP_RASTER(ppdev, pjBase, ulHwMix); } else { CP_COLOR0(ppdev, pjBase, iSolidColor); CP_RASTER(ppdev, pjBase, ulHwMix & 0xff); } }
// We can do all integer triangles and convex quadrilaterals directly
// with the hardware:
if (cEdges <= 4) { ASSERTDD(cEdges >= 3, "What's with the degenerate polygon?");
if ((((pptfxFirst)->x | (pptfxFirst)->y | (pptfxFirst+1)->x | (pptfxFirst+1)->y | (pptfxFirst+2)->x | (pptfxFirst+2)->y) & 0xF) == 0) { if (cEdges == 3) { CP_METATRI(ppdev, pjBase, (pptfxFirst)->x >> 4, (pptfxFirst)->y >> 4); CP_METATRI(ppdev, pjBase, (pptfxFirst+1)->x >> 4, (pptfxFirst+1)->y >> 4); CP_METATRI(ppdev, pjBase, (pptfxFirst+2)->x >> 4, (pptfxFirst+2)->y >> 4);
CP_START_QUAD(ppdev, pjBase); return(TRUE); } else { if ((((pptfxFirst+3)->x | (pptfxFirst+3)->y) & 0xF) == 0) { CP_METAQUAD(ppdev, pjBase, (pptfxFirst)->x >> 4, (pptfxFirst)->y >> 4); CP_METAQUAD(ppdev, pjBase, (pptfxFirst+1)->x >> 4, (pptfxFirst+1)->y >> 4); CP_METAQUAD(ppdev, pjBase, (pptfxFirst+2)->x >> 4, (pptfxFirst+2)->y >> 4); CP_METAQUAD(ppdev, pjBase, (pptfxFirst+3)->x >> 4, (pptfxFirst+3)->y >> 4);
CP_START_QUAD_STAT(ppdev, pjBase, ulStat); return(!(ulStat & QUADFAIL)); } } } }
/////////////////////////////////////////////////////////////////
// See if the polygon is 'non-complex'
pptfxScan = pptfxFirst; pptfxTop = pptfxFirst; // Assume for now that the first
// point in path is the topmost
pptfxLast = pptfxFirst + cEdges - 1;
// 'pptfxScan' will always point to the first point in the current
// edge, and 'cScanEdges' will the number of edges remaining, including
// the current one:
cScanEdges = cEdges - 1; // The number of edges, not counting close figure
if ((pptfxScan + 1)->y > pptfxScan->y) { // Collect all downs:
do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if (--cScanEdges == 0) goto SetUpForFillingCheck; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
// Collect all downs:
pptfxTop = pptfxScan;
do { if ((pptfxScan + 1)->y > pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
return(FALSE); } else { // Collect all ups:
do { pptfxTop++; // We increment this now because we
// want it to point to the very last
// point if we early out in the next
// statement...
if (--cScanEdges == 0) goto SetUpForFilling; } while ((pptfxTop + 1)->y <= pptfxTop->y);
// Collect all downs:
pptfxScan = pptfxTop; do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if ((pptfxScan + 1)->y < pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
return(FALSE); }
SetUpForFillingCheck:
// We check to see if the end of the current edge is higher
// than the top edge we've found so far:
if ((pptfxScan + 1)->y < pptfxTop->y) pptfxTop = pptfxScan + 1;
SetUpForFilling:
/////////////////////////////////////////////////////////////////
// Some Initialization
yTrapezoid = (pptfxTop->y + 15) >> 4;
// Make sure we initialize the DDAs appropriately:
aed[LEFT].cy = 0; aed[RIGHT].cy = 0;
// For now, guess as to which is the left and which is the right edge:
aed[LEFT].dptfx = -(LONG) sizeof(POINTFIX); aed[RIGHT].dptfx = sizeof(POINTFIX); aed[LEFT].pptfx = pptfxTop; aed[RIGHT].pptfx = pptfxTop;
NewTrapezoid:
/////////////////////////////////////////////////////////////////
// DDA initialization
for (iEdge = 1; iEdge >= 0; iEdge--) { ped = &aed[iEdge]; if (ped->cy == 0) { // Need a new DDA:
do { cEdges--; if (cEdges < 0) return(TRUE);
// Find the next left edge, accounting for wrapping:
pptfxOld = ped->pptfx; ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx);
if (ped->pptfx < pptfxFirst) ped->pptfx = pptfxLast; else if (ped->pptfx > pptfxLast) ped->pptfx = pptfxFirst;
// Have to find the edge that spans yTrapezoid:
ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid;
// With fractional coordinate end points, we may get edges
// that don't cross any scans, in which case we try the
// next one:
} while (ped->cy <= 0);
// 'pptfx' now points to the end point of the edge spanning
// the scan 'yTrapezoid'.
dN = ped->pptfx->y - pptfxOld->y; dM = ped->pptfx->x - pptfxOld->x;
ASSERTDD(dN > 0, "Should be going down only");
// Compute the DDA increment terms:
if (dM < 0) { dM = -dM; if (dM < dN) // Can't be '<='
{ ped->dx = -1; ped->lErrorUp = dN - dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = -lQuotient; // - dM / dN
ped->lErrorUp = lRemainder; // dM % dN
if (ped->lErrorUp > 0) { ped->dx--; ped->lErrorUp = dN - ped->lErrorUp; } } } else { if (dM < dN) // Can't be '<='
{ ped->dx = 0; ped->lErrorUp = dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = lQuotient; // dM / dN
ped->lErrorUp = lRemainder; // dM % dN
} }
ped->lErrorDown = dN; // DDA limit
ped->lError = -1; // Error is initially zero (add dN - 1 for
// the ceiling, but subtract off dN so that
// we can check the sign instead of comparing
// to dN)
ped->x = pptfxOld->x; yStart = pptfxOld->y;
if ((yStart & 15) != 0) { // Advance to the next integer y coordinate
for (i = 16 - (yStart & 15); i != 0; i--) { ped->x += ped->dx; ped->lError += ped->lErrorUp; if (ped->lError >= 0) { ped->lError -= ped->lErrorDown; ped->x++; } } }
if ((ped->x & 15) != 0) { ped->lError -= ped->lErrorDown * (16 - (ped->x & 15)); ped->x += 15; // We'll want the ceiling in just a bit...
}
// Chop off those fractional bits:
ped->x >>= 4; ped->lError >>= 4; } }
cyTrapezoid = min(aed[LEFT].cy, aed[RIGHT].cy); // # of scans in this trap
aed[LEFT].cy -= cyTrapezoid; aed[RIGHT].cy -= cyTrapezoid;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((aed[LEFT].lErrorUp | aed[RIGHT].lErrorUp) == 0) && ((aed[LEFT].dx | aed[RIGHT].dx) == 0)) { /////////////////////////////////////////////////////////////////
// Vertical-edge special case
ContinueVertical:
if (aed[LEFT].x < aed[RIGHT].x) { CP_METARECT(ppdev, pjBase, aed[LEFT].x, yTrapezoid); yTrapezoid += cyTrapezoid; CP_METARECT(ppdev, pjBase, aed[RIGHT].x, yTrapezoid);
CP_START_QUAD_WAIT(ppdev, pjBase); } else if (aed[LEFT].x == aed[RIGHT].x) { // If the rectangle was too thin to light any pels, we still
// have to advance the y current position:
yTrapezoid += cyTrapezoid; } else { LONG lTmp; POINTFIX* pptfxTmp;
SWAP(aed[LEFT].x, aed[RIGHT].x, lTmp); SWAP(aed[LEFT].cy, aed[RIGHT].cy, lTmp); SWAP(aed[LEFT].dptfx, aed[RIGHT].dptfx, lTmp); SWAP(aed[LEFT].pptfx, aed[RIGHT].pptfx, pptfxTmp); goto ContinueVertical; }
goto NewTrapezoid; }
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (aed[LEFT].x < aed[RIGHT].x) { CP_METARECT(ppdev, pjBase, aed[LEFT].x, yTrapezoid); yTrapezoid++; CP_METARECT(ppdev, pjBase, aed[RIGHT].x, yTrapezoid);
CP_START_QUAD_WAIT(ppdev, pjBase);
ContinueAfterZero:
// Advance the right wall:
aed[RIGHT].x += aed[RIGHT].dx; aed[RIGHT].lError += aed[RIGHT].lErrorUp;
if (aed[RIGHT].lError >= 0) { aed[RIGHT].lError -= aed[RIGHT].lErrorDown; aed[RIGHT].x++; }
// Advance the left wall:
aed[LEFT].x += aed[LEFT].dx; aed[LEFT].lError += aed[LEFT].lErrorUp;
if (aed[LEFT].lError >= 0) { aed[LEFT].lError -= aed[LEFT].lErrorDown; aed[LEFT].x++; }
cyTrapezoid--; if (cyTrapezoid == 0) goto NewTrapezoid; } else if (aed[LEFT].x == aed[RIGHT].x) { yTrapezoid++; goto ContinueAfterZero; } else { // We certainly don't want to optimize for this case because we
// should rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves):
LONG lTmp; POINTFIX* pptfxTmp;
SWAP(aed[LEFT].x, aed[RIGHT].x, lTmp); SWAP(aed[LEFT].dx, aed[RIGHT].dx, lTmp); SWAP(aed[LEFT].lError, aed[RIGHT].lError, lTmp); SWAP(aed[LEFT].lErrorUp, aed[RIGHT].lErrorUp, lTmp); SWAP(aed[LEFT].lErrorDown, aed[RIGHT].lErrorDown, lTmp); SWAP(aed[LEFT].cy, aed[RIGHT].cy, lTmp); SWAP(aed[LEFT].dptfx, aed[RIGHT].dptfx, lTmp); SWAP(aed[LEFT].pptfx, aed[RIGHT].pptfx, pptfxTmp);
continue; } } }
|