|
|
/*
** Copyright 1992, Silicon Graphics, Inc. ** All Rights Reserved. ** ** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.; ** the contents of this file may not be disclosed to third parties, copied or ** duplicated in any form, in whole or in part, without the prior written ** permission of Silicon Graphics, Inc. ** ** RESTRICTED RIGHTS LEGEND: ** Use, duplication or disclosure by the Government is subject to restrictions ** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data ** and Computer Software clause at DFARS 252.227-7013, and/or in similar or ** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished - ** rights reserved under the Copyright Laws of the United States. ** ** $Revision: 1.2 $ ** $Date: 1995/06/23 21:27:54 $ */ #ifdef NT
#include <glos.h>
#endif
#include <math.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include "gluint.h"
/*
** Make m an identity matrix */ void __gluMakeIdentityd(GLdouble m[16]) { m[0+4*0] = 1; m[0+4*1] = 0; m[0+4*2] = 0; m[0+4*3] = 0; m[1+4*0] = 0; m[1+4*1] = 1; m[1+4*2] = 0; m[1+4*3] = 0; m[2+4*0] = 0; m[2+4*1] = 0; m[2+4*2] = 1; m[2+4*3] = 0; m[3+4*0] = 0; m[3+4*1] = 0; m[3+4*2] = 0; m[3+4*3] = 1; }
void __gluMakeIdentityf(GLfloat m[16]) { m[0+4*0] = 1; m[0+4*1] = 0; m[0+4*2] = 0; m[0+4*3] = 0; m[1+4*0] = 0; m[1+4*1] = 1; m[1+4*2] = 0; m[1+4*3] = 0; m[2+4*0] = 0; m[2+4*1] = 0; m[2+4*2] = 1; m[2+4*3] = 0; m[3+4*0] = 0; m[3+4*1] = 0; m[3+4*2] = 0; m[3+4*3] = 1; }
void APIENTRY gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top)
{ glOrtho(left, right, bottom, top, -1, 1); }
#define __glPi 3.14159265358979323846
void APIENTRY gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar) { GLdouble m[4][4]; double sine, cotangent, deltaZ; double radians = fovy / 2 * __glPi / 180;
deltaZ = zFar - zNear; sine = sin(radians); if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) { return; } cotangent = COS(radians) / sine;
__gluMakeIdentityd(&m[0][0]); m[0][0] = cotangent / aspect; m[1][1] = cotangent; m[2][2] = -(zFar + zNear) / deltaZ; m[2][3] = -1; m[3][2] = -2 * zNear * zFar / deltaZ; m[3][3] = 0; glMultMatrixd(&m[0][0]); }
static void normalize(float v[3]) { float r;
r = sqrt( v[0]*v[0] + v[1]*v[1] + v[2]*v[2] ); if (r == 0.0) return;
v[0] /= r; v[1] /= r; v[2] /= r; }
static void cross(float v1[3], float v2[3], float result[3]) { result[0] = v1[1]*v2[2] - v1[2]*v2[1]; result[1] = v1[2]*v2[0] - v1[0]*v2[2]; result[2] = v1[0]*v2[1] - v1[1]*v2[0]; }
void APIENTRY gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz) { int i; float forward[3], side[3], up[3]; GLfloat m[4][4];
forward[0] = centerx - eyex; forward[1] = centery - eyey; forward[2] = centerz - eyez;
up[0] = upx; up[1] = upy; up[2] = upz;
normalize(forward);
/* Side = forward x up */ cross(forward, up, side); normalize(side);
/* Recompute up as: up = side x forward */ cross(side, forward, up);
__gluMakeIdentityf(&m[0][0]); m[0][0] = side[0]; m[1][0] = side[1]; m[2][0] = side[2];
m[0][1] = up[0]; m[1][1] = up[1]; m[2][1] = up[2];
m[0][2] = -forward[0]; m[1][2] = -forward[1]; m[2][2] = -forward[2];
glMultMatrixf(&m[0][0]); glTranslated(-eyex, -eyey, -eyez); }
void __gluMultMatrixVecd(const GLdouble matrix[16], const GLdouble in[4], GLdouble out[4]) { int i;
for (i=0; i<4; i++) { out[i] = in[0] * matrix[0*4+i] + in[1] * matrix[1*4+i] + in[2] * matrix[2*4+i] + in[3] * matrix[3*4+i]; } }
/*
** inverse = invert(src) */ int __gluInvertMatrixd(const GLdouble src[16], GLdouble inverse[16]) { int i, j, k, swap; double t; GLdouble temp[4][4];
for (i=0; i<4; i++) { for (j=0; j<4; j++) { temp[i][j] = src[i*4+j]; } } __gluMakeIdentityd(inverse);
for (i = 0; i < 4; i++) { /*
** Look for largest element in column */ swap = i; for (j = i + 1; j < 4; j++) { if (fabs(temp[j][i]) > fabs(temp[i][i])) { swap = j; } }
if (swap != i) { /*
** Swap rows. */ for (k = 0; k < 4; k++) { t = temp[i][k]; temp[i][k] = temp[swap][k]; temp[swap][k] = t;
t = inverse[i*4+k]; inverse[i*4+k] = inverse[swap*4+k]; inverse[swap*4+k] = t; } }
if (temp[i][i] == 0) { /*
** No non-zero pivot. The matrix is singular, which shouldn't ** happen. This means the user gave us a bad matrix. */ return GL_FALSE; }
t = temp[i][i]; for (k = 0; k < 4; k++) { temp[i][k] /= t; inverse[i*4+k] /= t; } for (j = 0; j < 4; j++) { if (j != i) { t = temp[j][i]; for (k = 0; k < 4; k++) { temp[j][k] -= temp[i][k]*t; inverse[j*4+k] -= inverse[i*4+k]*t; } } } } return GL_TRUE; }
void __gluMultMatricesd(const GLdouble a[16], const GLdouble b[16], GLdouble r[16]) { int i, j;
for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { r[i*4+j] = a[i*4+0]*b[0*4+j] + a[i*4+1]*b[1*4+j] + a[i*4+2]*b[2*4+j] + a[i*4+3]*b[3*4+j]; } } }
GLint APIENTRY gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy, GLdouble *winz) { double in[4]; double out[4];
in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0; __gluMultMatrixVecd(modelMatrix, in, out); __gluMultMatrixVecd(projMatrix, out, in); if (in[3] == 0.0) return(GL_FALSE); in[0] /= in[3]; in[1] /= in[3]; in[2] /= in[3]; /* Map x, y and z to range 0-1 */ in[0] = in[0] * 0.5 + 0.5; in[1] = in[1] * 0.5 + 0.5; in[2] = in[2] * 0.5 + 0.5;
/* Map x,y to viewport */ in[0] = in[0] * viewport[2] + viewport[0]; in[1] = in[1] * viewport[3] + viewport[1];
*winx=in[0]; *winy=in[1]; *winz=in[2]; return(GL_TRUE); }
GLint APIENTRY gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble *objz) { double finalMatrix[16]; double in[4]; double out[4];
__gluMultMatricesd(modelMatrix, projMatrix, finalMatrix); if (!__gluInvertMatrixd(finalMatrix, finalMatrix)) return(GL_FALSE);
in[0]=winx; in[1]=winy; in[2]=winz; in[3]=1.0;
/* Map x and y from window coordinates */ in[0] = (in[0] - viewport[0]) / viewport[2]; in[1] = (in[1] - viewport[1]) / viewport[3];
/* Map to range -1 to 1 */ in[0] = in[0] * 2 - 1; in[1] = in[1] * 2 - 1; in[2] = in[2] * 2 - 1;
__gluMultMatrixVecd(finalMatrix, in, out); if (out[3] == 0.0) return(GL_FALSE); out[0] /= out[3]; out[1] /= out[3]; out[2] /= out[3]; *objx = out[0]; *objy = out[1]; *objz = out[2]; return(GL_TRUE); }
void APIENTRY gluPickMatrix(GLdouble x, GLdouble y, GLdouble deltax, GLdouble deltay, GLint viewport[4]) { if (deltax <= 0 || deltay <= 0) { return; }
/* Translate and scale the picked region to the entire window */ glTranslatef((viewport[2] - 2 * (x - viewport[0])) / deltax, (viewport[3] - 2 * (y - viewport[1])) / deltay, 0); glScalef(viewport[2] / deltax, viewport[3] / deltay, 1.0); }
|