|
|
/*++
Copyright (c) 1999-2000 Microsoft Corporation
Module Name:
fsbpool.c
Abstract:
This file contains the implementation of fixed-size block pool.
Author:
Shaun Cox (shaunco) 10-Dec-1999
--*/
#include "precomp.h"
#define FSB_SCAVENGE_PERIOD_IN_SECONDS 30
#define FSB_MINIMUM_PAGE_LIFETIME_IN_SECONDS 20
#if defined (_WIN64)
#define APPROX_L2_CACHE_LINE_SIZE 128
#else
#define APPROX_L2_CACHE_LINE_SIZE 64
#endif
// The following structures are used in the single allocation that
// a pool handle points to.
// PoolHandle ---> [FSB_POOL_HEADER + FSB_CPU_POOL_HEADER for cpu 0 +
// FSB_CPU_POOL_HEADER for cpu 1 + ...
// FSB_CPU_POOL_HEADER for cpu N]
//
// FSB_POOL_HEADER is the data common to all CPUs for a given pool.
//
typedef struct _FSB_POOL_HEADER { // cache-line -----
struct _FSB_POOL_HEADER_BASE { ULONG Tag; USHORT CallerBlockSize; // caller's requested block size
USHORT AlignedBlockSize; // ALIGN_UP(CallerBlockSize, PVOID)
USHORT BlocksPerPage; USHORT FreeBlockLinkOffset; NDIS_BLOCK_INITIALIZER BuildFunction; KSPIN_LOCK Interlock; }; UCHAR Alignment[APPROX_L2_CACHE_LINE_SIZE - (sizeof(struct _FSB_POOL_HEADER_BASE) % APPROX_L2_CACHE_LINE_SIZE)]; } FSB_POOL_HEADER, *PFSB_POOL_HEADER;
C_ASSERT(sizeof(FSB_POOL_HEADER) % APPROX_L2_CACHE_LINE_SIZE == 0);
// FSB_CPU_POOL_HEADER is the data specific to a CPU for a given pool.
//
typedef struct _FSB_CPU_POOL_HEADER { // cache-line -----
struct _FSB_CPU_POOL_HEADER_BASE { // The doubly-linked list of pages that make up this processor's pool.
// These pages have one or more free blocks available.
//
LIST_ENTRY PageList; // The doubly-linked list of pages that are fully in use. This list
// is separate from the above list so that we do not spend time walking
// a very long list during FsbAllocate when many pages are fully used.
//
LIST_ENTRY UsedPageList; // The next scheduled time (in units of KeQueryTickCount()) for
// scavenging this pool. The next scavenge will happen no earlier
// that this.
//
LARGE_INTEGER NextScavengeTick; // The number of the processor that owns this pool.
//
ULONG OwnerCpu; ULONG TotalBlocksAllocated; ULONG TotalBlocksFreed; ULONG PeakBlocksInUse; ULONG TotalPagesAllocated; ULONG TotalPagesFreed; ULONG PeakPagesInUse; }; UCHAR Alignment[APPROX_L2_CACHE_LINE_SIZE - (sizeof(struct _FSB_CPU_POOL_HEADER_BASE) % APPROX_L2_CACHE_LINE_SIZE)]; } FSB_CPU_POOL_HEADER, *PFSB_CPU_POOL_HEADER;
C_ASSERT(sizeof(FSB_CPU_POOL_HEADER) % APPROX_L2_CACHE_LINE_SIZE == 0);
// FSB_PAGE_HEADER is the data at the beginning of each allocated pool page
// that describes the current state of the blocks on the page.
//
typedef struct _FSB_PAGE_HEADER { // cache-line -----
// Back pointer to the owning cpu pool.
//
PFSB_CPU_POOL_HEADER Pool;
// Linkage entry for the list of pages managed by the cpu pool.
//
LIST_ENTRY PageLink;
// Number of blocks built so far on this page. Blocks are built on
// demand. When this number reaches Pool->BlocksPerPage, all blocks on
// this page have been built.
//
USHORT BlocksBuilt;
// Boolean indicator of whether or not this page is on the cpu pool's
// used-page list. This is checked during MdpFree to see if the page
// should be moved back to the normal page list.
// (it is a USHORT, instead of BOOLEAN, for proper padding)
//
USHORT OnUsedPageList;
// List of free blocks on this page.
//
SLIST_HEADER FreeList;
// The value of KeQueryTickCount (normalized to units of seconds)
// which represents the time after which this page can be freed back
// to the system's pool. This time is only valid if the depth of
// FreeList is Pool->BlocksPerPage. (i.e. this time is only valid if
// the page is completely unused.)
//
LARGE_INTEGER LastUsedTick;
} FSB_PAGE_HEADER, *PFSB_PAGE_HEADER;
// Get a pointer to the overall pool given a pointer to one of
// the per-processor pools within it.
//
__inline PFSB_POOL_HEADER PoolFromCpuPool( IN PFSB_CPU_POOL_HEADER CpuPool ) { return (PFSB_POOL_HEADER)(CpuPool - CpuPool->OwnerCpu) - 1; }
__inline VOID ConvertSecondsToTicks( IN ULONG Seconds, OUT PLARGE_INTEGER Ticks ) { // If the following assert fires, you need to cast Seconds below to
// ULONGLONG so that 64 bit multiplication and division are used.
// The current code assumes less than 430 seconds so that the
// 32 multiplication below won't overflow.
//
ASSERT(Seconds < 430);
Ticks->HighPart = 0; Ticks->LowPart = (Seconds * 10*1000*1000) / KeQueryTimeIncrement(); }
// Build the next block on the specified pool page.
// This can only be called if not all of the blocks have been built yet.
//
PUCHAR FsbpBuildNextBlock( IN const FSB_POOL_HEADER* Pool, IN OUT PFSB_PAGE_HEADER Page ) { PUCHAR Block;
ASSERT(Page->BlocksBuilt < Pool->BlocksPerPage); ASSERT((PAGE_SIZE - sizeof(FSB_PAGE_HEADER)) / Pool->AlignedBlockSize == Pool->BlocksPerPage); ASSERT(Pool->CallerBlockSize <= Pool->AlignedBlockSize);
Block = (PUCHAR)(Page + 1) + (Page->BlocksBuilt * Pool->AlignedBlockSize); ASSERT(PAGE_ALIGN(Block) == Page);
if (Pool->BuildFunction) { Pool->BuildFunction(Block, Pool->CallerBlockSize); }
Page->BlocksBuilt++;
return Block; }
// Allocate a new pool page and insert it at the head of the specified
// CPU pool. Build the first block on the new page and return a pointer
// to it.
//
PUCHAR FsbpAllocateNewPageAndBuildOneBlock( IN const FSB_POOL_HEADER* Pool, IN PFSB_CPU_POOL_HEADER CpuPool ) { PFSB_PAGE_HEADER Page; PUCHAR Block = NULL; ULONG PagesInUse;
ASSERT(Pool);
Page = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, Pool->Tag); if (Page) { ASSERT(Page == PAGE_ALIGN(Page));
RtlZeroMemory(Page, sizeof(FSB_PAGE_HEADER)); Page->Pool = CpuPool; ExInitializeSListHead(&Page->FreeList);
// Insert the page at the head of the cpu's pool.
//
InsertHeadList(&CpuPool->PageList, &Page->PageLink); CpuPool->TotalPagesAllocated++;
// Update the pool's statistics.
//
PagesInUse = CpuPool->TotalPagesAllocated - CpuPool->TotalPagesFreed; if (PagesInUse > CpuPool->PeakPagesInUse) { CpuPool->PeakPagesInUse = PagesInUse; }
Block = FsbpBuildNextBlock(Pool, Page); ASSERT(Block); }
return Block; }
// Free the specified pool page back to the system's pool.
//
VOID FsbpFreePage( IN PFSB_CPU_POOL_HEADER CpuPool, IN PFSB_PAGE_HEADER Page ) { ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(Page->Pool == CpuPool);
ExFreePool(Page); CpuPool->TotalPagesFreed++;
ASSERT(CpuPool->TotalPagesFreed <= CpuPool->TotalPagesAllocated); }
// Reclaim the memory consumed by completely unused pool pages belonging
// to the specified per-processor pool.
//
// Caller IRQL: [DISPATCH_LEVEL]
//
VOID FsbpScavengePool( IN OUT PFSB_CPU_POOL_HEADER CpuPool ) { PFSB_POOL_HEADER Pool; PFSB_PAGE_HEADER Page; PLIST_ENTRY Scan; PLIST_ENTRY Next; LARGE_INTEGER Ticks; LARGE_INTEGER TicksDelta;
// We must not only be at DISPATCH_LEVEL (or higher), we must also
// be called on the processor that owns the specified pool.
//
ASSERT(KeGetCurrentIrql() >= DISPATCH_LEVEL); ASSERT((ULONG)KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu);
Pool = PoolFromCpuPool(CpuPool);
KeQueryTickCount(&Ticks);
// Compute the next tick value which represents the earliest time
// that we will scavenge this pool again.
//
ConvertSecondsToTicks(FSB_SCAVENGE_PERIOD_IN_SECONDS, &TicksDelta); CpuPool->NextScavengeTick.QuadPart = Ticks.QuadPart + TicksDelta.QuadPart;
// Compute the tick value which represents the last point at which
// its okay to free a page.
//
ConvertSecondsToTicks(FSB_MINIMUM_PAGE_LIFETIME_IN_SECONDS, &TicksDelta); Ticks.QuadPart = Ticks.QuadPart - TicksDelta.QuadPart;
for (Scan = CpuPool->PageList.Flink; Scan != &CpuPool->PageList; Scan = Next) { Page = CONTAINING_RECORD(Scan, FSB_PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(!Page->OnUsedPageList);
// Step to the next link before we possibly unlink this page.
//
Next = Scan->Flink;
if ((Pool->BlocksPerPage == ExQueryDepthSList(&Page->FreeList)) && (Ticks.QuadPart > Page->LastUsedTick.QuadPart)) { RemoveEntryList(Scan);
FsbpFreePage(CpuPool, Page); } }
// Scan the used pages to see if they can be moved back to the normal
// list. This can happen if too many frees by non-owning processors
// are done. In that case, the pages get orphaned on the used-page
// list after all of their MDLs have been freed to the page. Un-orhpan
// them here.
//
for (Scan = CpuPool->UsedPageList.Flink; Scan != &CpuPool->UsedPageList; Scan = Next) { Page = CONTAINING_RECORD(Scan, FSB_PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(Page->OnUsedPageList);
// Step to the next link before we possibly unlink this page.
Next = Scan->Flink;
if (0 != ExQueryDepthSList(&Page->FreeList)) { RemoveEntryList(Scan); Page->OnUsedPageList = FALSE; InsertTailList(&CpuPool->PageList, Scan); } } }
// Creates a pool of fixed-size blocks built over non-paged pool. Each
// block is BlockSize bytes long. If NULL is not returned,
// FsbDestroyPool should be called at a later time to reclaim the
// resources used by the pool.
//
// Arguments:
// BlockSize - The size, in bytes, of each block.
// FreeBlockLinkOffset - The offset, in bytes, from the beginning of a block
// that represenets a pointer-sized storage location that the pool can
// use to chain free blocks together. Most often this will be zero
// (meaning use the first pointer-size bytes of the block.)
// Tag - The pool tag to be used internally for calls to
// ExAllocatePoolWithTag. This allows callers to track
// memory consumption for different pools.
// BuildFunction - An optional pointer to a function which initializes
// blocks when they are first allocated by the pool. This allows the
// caller to perform custom, on-demand initialization of each block.
//
// Returns the handle used to identify the pool.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
HANDLE FsbCreatePool( IN USHORT BlockSize, IN USHORT FreeBlockLinkOffset, IN ULONG Tag, IN NDIS_BLOCK_INITIALIZER BuildFunction OPTIONAL ) { SIZE_T Size; PFSB_POOL_HEADER Pool; PFSB_CPU_POOL_HEADER CpuPool; CCHAR NumberCpus = KeNumberProcessors; CCHAR i;
// We need at least a pointer size worth of space to manage free
// blocks and we don't impose any per-block overhead, so we borrow it
// from the block itself.
//
ASSERT(BlockSize >= FreeBlockLinkOffset + sizeof(PVOID));
// This implementation shouldn't be used if we are not going to get more
// than about 8 blocks per page. Blocks bigger than this should probably
// be allocated with multiple pages at a time.
//
ASSERT(BlockSize < PAGE_SIZE / 8);
// Compute the size of our pool header allocation.
//
Size = sizeof(FSB_POOL_HEADER) + (sizeof(FSB_CPU_POOL_HEADER) * NumberCpus);
// Allocate the pool header.
//
Pool = ExAllocatePoolWithTag(NonPagedPool, Size, ' bsF');
if (Pool) { // Initialize the pool header fields.
//
RtlZeroMemory(Pool, Size); Pool->Tag = Tag; Pool->CallerBlockSize = BlockSize; Pool->AlignedBlockSize = (USHORT)ALIGN_UP(BlockSize, PVOID); Pool->BlocksPerPage = (PAGE_SIZE - sizeof(FSB_PAGE_HEADER)) / Pool->AlignedBlockSize; Pool->FreeBlockLinkOffset = FreeBlockLinkOffset; Pool->BuildFunction = BuildFunction; KeInitializeSpinLock(&Pool->Interlock);
// Initialize the per-cpu pool headers.
//
CpuPool = (PFSB_CPU_POOL_HEADER)(Pool + 1);
for (i = 0; i < NumberCpus; i++) { InitializeListHead(&CpuPool[i].PageList); InitializeListHead(&CpuPool[i].UsedPageList); CpuPool[i].OwnerCpu = i; } }
return Pool; }
// Destroys a pool of fixed-size blocks previously created by a call to
// FsbCreatePool.
//
// Arguments:
// PoolHandle - Handle which identifies the pool being destroyed.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
VOID FsbDestroyPool( IN HANDLE PoolHandle ) { PFSB_POOL_HEADER Pool; PFSB_PAGE_HEADER Page; PFSB_CPU_POOL_HEADER CpuPool; PLIST_ENTRY Scan; PLIST_ENTRY Next; CCHAR NumberCpus = KeNumberProcessors; CCHAR i;
Pool = (PFSB_POOL_HEADER)PoolHandle; if (!Pool) { return; }
for (i = 0, CpuPool = (PFSB_CPU_POOL_HEADER)(Pool + 1); i < NumberCpus; i++, CpuPool++) { ASSERT(CpuPool->OwnerCpu == (ULONG)i);
for (Scan = CpuPool->PageList.Flink; Scan != &CpuPool->PageList; Scan = Next) { Page = CONTAINING_RECORD(Scan, FSB_PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(!Page->OnUsedPageList);
ASSERT(Page->BlocksBuilt <= Pool->BlocksPerPage); ASSERT(Page->BlocksBuilt == ExQueryDepthSList(&Page->FreeList));
// Step to the next link before we free this page.
//
Next = Scan->Flink;
RemoveEntryList(Scan); FsbpFreePage(CpuPool, Page); }
ASSERT(IsListEmpty(&CpuPool->UsedPageList)); ASSERT(CpuPool->TotalPagesAllocated == CpuPool->TotalPagesFreed); ASSERT(CpuPool->TotalBlocksAllocated == CpuPool->TotalBlocksFreed); } }
// Returns a pointer to a block allocated from a pool. NULL is returned if
// the request could not be granted. The returned pointer is guaranteed to
// have 8 byte alignment.
//
// Arguments:
// PoolHandle - Handle which identifies the pool being allocated from.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
PUCHAR FsbAllocate( IN HANDLE PoolHandle ) { PFSB_POOL_HEADER Pool; PFSB_CPU_POOL_HEADER CpuPool; PFSB_PAGE_HEADER Page; PSINGLE_LIST_ENTRY BlockLink; PUCHAR Block = NULL; KIRQL OldIrql; ULONG Cpu; LARGE_INTEGER Ticks;
ASSERT(PoolHandle);
Pool = (PFSB_POOL_HEADER)PoolHandle;
// Raise IRQL before saving the processor number since there is chance
// it could have changed if we saved it while at passive.
//
OldIrql = KeRaiseIrqlToDpcLevel();
Cpu = KeGetCurrentProcessorNumber(); CpuPool = (PFSB_CPU_POOL_HEADER)(Pool + 1) + Cpu;
// See if the minimum time has passed since we last scavenged
// the pool. If it has, we'll scavenge again. Normally, scavenging
// should only be performed when we free. However, for the case when
// the caller constantly frees on a non-owning processor, we'll
// take this chance to do the scavenging.
//
KeQueryTickCount(&Ticks); if (Ticks.QuadPart > CpuPool->NextScavengeTick.QuadPart) { FsbpScavengePool(CpuPool); }
if (!IsListEmpty(&CpuPool->PageList)) { Page = CONTAINING_RECORD(CpuPool->PageList.Flink, FSB_PAGE_HEADER, PageLink); ASSERT(Page == PAGE_ALIGN(Page)); ASSERT(CpuPool == Page->Pool); ASSERT(!Page->OnUsedPageList);
BlockLink = ExInterlockedPopEntrySList(&Page->FreeList, &Pool->Interlock); if (BlockLink) { Block = (PUCHAR)BlockLink - Pool->FreeBlockLinkOffset; } else { // If there were no blocks on this page's free list, it had better
// mean we haven't yet built all of the blocks on the page.
// (Otherwise, what is a fully used page doing on the page list
// and not on the used-page list?)
//
ASSERT(Page->BlocksBuilt < Pool->BlocksPerPage);
Block = FsbpBuildNextBlock(Pool, Page); ASSERT(Block); }
// Got a block. Now check to see if it was the last one on a fully
// built page. If so, move the page to the used-page list.
//
if ((0 == ExQueryDepthSList(&Page->FreeList)) && (Page->BlocksBuilt == Pool->BlocksPerPage)) { PLIST_ENTRY PageLink; PageLink = RemoveHeadList(&CpuPool->PageList); InsertTailList(&CpuPool->UsedPageList, PageLink); Page->OnUsedPageList = TRUE;
ASSERT(Page == CONTAINING_RECORD(PageLink, FSB_PAGE_HEADER, PageLink)); }
ASSERT(Block); goto GotABlock; } else { // The page list is empty so we have to allocate and add a new page.
//
Block = FsbpAllocateNewPageAndBuildOneBlock(Pool, CpuPool); }
// If we are returning an block, update the statistics.
//
if (Block) { ULONG BlocksInUse; GotABlock:
CpuPool->TotalBlocksAllocated++;
BlocksInUse = CpuPool->TotalBlocksAllocated - CpuPool->TotalBlocksFreed; if (BlocksInUse > CpuPool->PeakBlocksInUse) { CpuPool->PeakBlocksInUse = BlocksInUse; }
// Don't give anyone ideas about where this might point. I don't
// want anyone trashing my pool because they thought this field
// was valid for some reason.
//
((PSINGLE_LIST_ENTRY)((PUCHAR)Block + Pool->FreeBlockLinkOffset))->Next = NULL; }
KeLowerIrql(OldIrql);
return Block; }
// Free a block back to the pool from which it was allocated.
//
// Arguments:
// Block - A block returned from a prior call to FsbAllocate.
//
// Caller IRQL: [PASSIVE_LEVEL, DISPATCH_LEVEL]
//
VOID FsbFree( IN PUCHAR Block ) { PFSB_PAGE_HEADER Page; PFSB_CPU_POOL_HEADER CpuPool; PFSB_POOL_HEADER Pool; LARGE_INTEGER Ticks; LOGICAL PageIsPossiblyUnused; LOGICAL PageIsOnUsedPageList; LOGICAL Scavenge = FALSE;
ASSERT(Block);
// Get the address of the page that this block lives on. This is where
// our page header is stored.
//
Page = PAGE_ALIGN(Block);
// Follow the back pointer in the page header to locate the owning
// cpu's pool.
//
CpuPool = Page->Pool;
// Locate the pool header.
//
Pool = PoolFromCpuPool(CpuPool);
// See if the minimum time has passed since we last scavenged
// the pool. If it has, we'll scavenge again.
//
KeQueryTickCount(&Ticks); if (Ticks.QuadPart > CpuPool->NextScavengeTick.QuadPart) { Scavenge = TRUE; }
// If this is the last block to be returned to this page, the page is
// now unused. Note that since there is no synchronization beyond
// ExInterlockedPush/PopSEntryList between allocate and free, we
// cannot guarantee that it will remain unused even before the next
// few instructions are executed.
//
PageIsPossiblyUnused = (ExQueryDepthSList(&Page->FreeList) == (Pool->BlocksPerPage - 1)); if (PageIsPossiblyUnused) { // Note the tick that this page was last used. This sets the
// minimum time that this page will continue to live unless it
// gets re-used.
//
Page->LastUsedTick.QuadPart = Ticks.QuadPart; }
// If this page is on the used-page list, we'll put it back on the normal
// page list (only after pushing the block back on the page's free list)
// if, after raising IRQL, we are on the processor that owns this
// pool.
//
PageIsOnUsedPageList = Page->OnUsedPageList;
InterlockedIncrement(&CpuPool->TotalBlocksFreed);
// Now return the block to the page's free list.
//
ExInterlockedPushEntrySList( &Page->FreeList, (PSINGLE_LIST_ENTRY)((PUCHAR)Block + Pool->FreeBlockLinkOffset), &Pool->Interlock);
//
// Warning: Now that the block is back on the page, one cannot reliably
// dereference anything through 'Page' anymore. It may have just been
// scavenged by its owning processor. This is not the case if the
// page was on the used-page list (because scavenging doesn't affect
// the used-page list). We saved off the value of Page->OnUsedPageList
// before returning the block so we would not risk touching Page to get
// this value only to find that it was false.
//
// If we need to move the page from the used-page list to the normal
// page list, or if we need to scavenge, we need to be at DISPATCH_LEVEL
// and be executing on the processor that owns this pool.
// Find out if the CPU we are executing on right now owns this pool.
// Note that if we are running at PASSIVE_LEVEL, the current CPU may
// change over the duration of this function call, so this value is
// not absolute over the life of the function.
//
if ((PageIsOnUsedPageList || Scavenge) && ((ULONG)KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu)) { KIRQL OldIrql;
OldIrql = KeRaiseIrqlToDpcLevel();
// Now that we are at DISPATCH_LEVEL, perform the work if we are still
// executing on the processor that owns the pool.
//
if ((ULONG)KeGetCurrentProcessorNumber() == CpuPool->OwnerCpu) { // If the page is still on the used-page list (meaning another
// MdpFree didn't just sneak by), then put the page on the
// normal list. Very important to do this after (not before)
// returning the MDL to the free list because MdpAllocate expects
// MDL's to be available from pages on the page list.
//
if (PageIsOnUsedPageList && Page->OnUsedPageList) { RemoveEntryList(&Page->PageLink); Page->OnUsedPageList = FALSE; InsertTailList(&CpuPool->PageList, &Page->PageLink); }
// Perform the scavenge if we previously noted we needed to do so.
//
if (Scavenge) { FsbpScavengePool(CpuPool); } }
KeLowerIrql(OldIrql); } }
|