Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

859 lines
31 KiB

  1. #include "stdafx.h"
  2. #pragma hdrstop
  3. /*
  4. * jquant1.c
  5. *
  6. * Copyright (C) 1991-1996, Thomas G. Lane.
  7. * This file is part of the Independent JPEG Group's software.
  8. * For conditions of distribution and use, see the accompanying README file.
  9. *
  10. * This file contains 1-pass color quantization (color mapping) routines.
  11. * These routines provide mapping to a fixed color map using equally spaced
  12. * color values. Optional Floyd-Steinberg or ordered dithering is available.
  13. */
  14. #define JPEG_INTERNALS
  15. #include "jinclude.h"
  16. #include "jpeglib.h"
  17. #ifdef QUANT_1PASS_SUPPORTED
  18. /*
  19. * The main purpose of 1-pass quantization is to provide a fast, if not very
  20. * high quality, colormapped output capability. A 2-pass quantizer usually
  21. * gives better visual quality; however, for quantized grayscale output this
  22. * quantizer is perfectly adequate. Dithering is highly recommended with this
  23. * quantizer, though you can turn it off if you really want to.
  24. *
  25. * In 1-pass quantization the colormap must be chosen in advance of seeing the
  26. * image. We use a map consisting of all combinations of Ncolors[i] color
  27. * values for the i'th component. The Ncolors[] values are chosen so that
  28. * their product, the total number of colors, is no more than that requested.
  29. * (In most cases, the product will be somewhat less.)
  30. *
  31. * Since the colormap is orthogonal, the representative value for each color
  32. * component can be determined without considering the other components;
  33. * then these indexes can be combined into a colormap index by a standard
  34. * N-dimensional-array-subscript calculation. Most of the arithmetic involved
  35. * can be precalculated and stored in the lookup table colorindex[].
  36. * colorindex[i][j] maps pixel value j in component i to the nearest
  37. * representative value (grid plane) for that component; this index is
  38. * multiplied by the array stride for component i, so that the
  39. * index of the colormap entry closest to a given pixel value is just
  40. * sum( colorindex[component-number][pixel-component-value] )
  41. * Aside from being fast, this scheme allows for variable spacing between
  42. * representative values with no additional lookup cost.
  43. *
  44. * If gamma correction has been applied in color conversion, it might be wise
  45. * to adjust the color grid spacing so that the representative colors are
  46. * equidistant in linear space. At this writing, gamma correction is not
  47. * implemented by jdcolor, so nothing is done here.
  48. */
  49. /* Declarations for ordered dithering.
  50. *
  51. * We use a standard 16x16 ordered dither array. The basic concept of ordered
  52. * dithering is described in many references, for instance Dale Schumacher's
  53. * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
  54. * In place of Schumacher's comparisons against a "threshold" value, we add a
  55. * "dither" value to the input pixel and then round the result to the nearest
  56. * output value. The dither value is equivalent to (0.5 - threshold) times
  57. * the distance between output values. For ordered dithering, we assume that
  58. * the output colors are equally spaced; if not, results will probably be
  59. * worse, since the dither may be too much or too little at a given point.
  60. *
  61. * The normal calculation would be to form pixel value + dither, range-limit
  62. * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
  63. * We can skip the separate range-limiting step by extending the colorindex
  64. * table in both directions.
  65. */
  66. #define ODITHER_SIZE 16 /* dimension of dither matrix */
  67. /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
  68. #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
  69. #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
  70. typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
  71. typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
  72. static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
  73. /* Bayer's order-4 dither array. Generated by the code given in
  74. * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
  75. * The values in this array must range from 0 to ODITHER_CELLS-1.
  76. */
  77. { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
  78. { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
  79. { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
  80. { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
  81. { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
  82. { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
  83. { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
  84. { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
  85. { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
  86. { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
  87. { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
  88. { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
  89. { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
  90. { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
  91. { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
  92. { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
  93. };
  94. /* Declarations for Floyd-Steinberg dithering.
  95. *
  96. * Errors are accumulated into the array fserrors[], at a resolution of
  97. * 1/16th of a pixel count. The error at a given pixel is propagated
  98. * to its not-yet-processed neighbors using the standard F-S fractions,
  99. * ... (here) 7/16
  100. * 3/16 5/16 1/16
  101. * We work left-to-right on even rows, right-to-left on odd rows.
  102. *
  103. * We can get away with a single array (holding one row's worth of errors)
  104. * by using it to store the current row's errors at pixel columns not yet
  105. * processed, but the next row's errors at columns already processed. We
  106. * need only a few extra variables to hold the errors immediately around the
  107. * current column. (If we are lucky, those variables are in registers, but
  108. * even if not, they're probably cheaper to access than array elements are.)
  109. *
  110. * The fserrors[] array is indexed [component#][position].
  111. * We provide (#columns + 2) entries per component; the extra entry at each
  112. * end saves us from special-casing the first and last pixels.
  113. *
  114. * Note: on a wide image, we might not have enough room in a PC's near data
  115. * segment to hold the error array; so it is allocated with alloc_large.
  116. */
  117. #if BITS_IN_JSAMPLE == 8
  118. typedef INT16 FSERROR; /* 16 bits should be enough */
  119. typedef int LOCFSERROR; /* use 'int' for calculation temps */
  120. #else
  121. typedef INT32 FSERROR; /* may need more than 16 bits */
  122. typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
  123. #endif
  124. typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
  125. /* Private subobject */
  126. #define MAX_Q_COMPS 4 /* max components I can handle */
  127. typedef struct {
  128. struct jpeg_color_quantizer pub; /* public fields */
  129. /* Initially allocated colormap is saved here */
  130. JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
  131. int sv_actual; /* number of entries in use */
  132. JSAMPARRAY colorindex; /* Precomputed mapping for speed */
  133. /* colorindex[i][j] = index of color closest to pixel value j in component i,
  134. * premultiplied as described above. Since colormap indexes must fit into
  135. * JSAMPLEs, the entries of this array will too.
  136. */
  137. boolean is_padded; /* is the colorindex padded for odither? */
  138. int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
  139. /* Variables for ordered dithering */
  140. int row_index; /* cur row's vertical index in dither matrix */
  141. ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
  142. /* Variables for Floyd-Steinberg dithering */
  143. FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
  144. boolean on_odd_row; /* flag to remember which row we are on */
  145. } my_cquantizer;
  146. typedef my_cquantizer * my_cquantize_ptr;
  147. /*
  148. * Policy-making subroutines for create_colormap and create_colorindex.
  149. * These routines determine the colormap to be used. The rest of the module
  150. * only assumes that the colormap is orthogonal.
  151. *
  152. * * select_ncolors decides how to divvy up the available colors
  153. * among the components.
  154. * * output_value defines the set of representative values for a component.
  155. * * largest_input_value defines the mapping from input values to
  156. * representative values for a component.
  157. * Note that the latter two routines may impose different policies for
  158. * different components, though this is not currently done.
  159. */
  160. LOCAL(int)
  161. select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
  162. /* Determine allocation of desired colors to components, */
  163. /* and fill in Ncolors[] array to indicate choice. */
  164. /* Return value is total number of colors (product of Ncolors[] values). */
  165. {
  166. int nc = cinfo->out_color_components; /* number of color components */
  167. int max_colors = cinfo->desired_number_of_colors;
  168. int total_colors, iroot, i, j;
  169. boolean changed;
  170. long temp;
  171. static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
  172. /* We can allocate at least the nc'th root of max_colors per component. */
  173. /* Compute floor(nc'th root of max_colors). */
  174. iroot = 1;
  175. do {
  176. iroot++;
  177. temp = iroot; /* set temp = iroot ** nc */
  178. for (i = 1; i < nc; i++)
  179. temp *= iroot;
  180. } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
  181. iroot--; /* now iroot = floor(root) */
  182. /* Must have at least 2 color values per component */
  183. if (iroot < 2)
  184. ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
  185. /* Initialize to iroot color values for each component */
  186. total_colors = 1;
  187. for (i = 0; i < nc; i++) {
  188. Ncolors[i] = iroot;
  189. total_colors *= iroot;
  190. }
  191. /* We may be able to increment the count for one or more components without
  192. * exceeding max_colors, though we know not all can be incremented.
  193. * Sometimes, the first component can be incremented more than once!
  194. * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
  195. * In RGB colorspace, try to increment G first, then R, then B.
  196. */
  197. do {
  198. changed = FALSE;
  199. for (i = 0; i < nc; i++) {
  200. j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
  201. /* calculate new total_colors if Ncolors[j] is incremented */
  202. temp = total_colors / Ncolors[j];
  203. temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
  204. if (temp > (long) max_colors)
  205. break; /* won't fit, done with this pass */
  206. Ncolors[j]++; /* OK, apply the increment */
  207. total_colors = (int) temp;
  208. changed = TRUE;
  209. }
  210. } while (changed);
  211. return total_colors;
  212. }
  213. LOCAL(int)
  214. output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  215. /* Return j'th output value, where j will range from 0 to maxj */
  216. /* The output values must fall in 0..MAXJSAMPLE in increasing order */
  217. {
  218. /* We always provide values 0 and MAXJSAMPLE for each component;
  219. * any additional values are equally spaced between these limits.
  220. * (Forcing the upper and lower values to the limits ensures that
  221. * dithering can't produce a color outside the selected gamut.)
  222. */
  223. return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
  224. }
  225. LOCAL(int)
  226. largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
  227. /* Return largest input value that should map to j'th output value */
  228. /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
  229. {
  230. /* Breakpoints are halfway between values returned by output_value */
  231. return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
  232. }
  233. /*
  234. * Create the colormap.
  235. */
  236. LOCAL(void)
  237. create_colormap (j_decompress_ptr cinfo)
  238. {
  239. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  240. JSAMPARRAY colormap; /* Created colormap */
  241. int total_colors; /* Number of distinct output colors */
  242. int i,j,k, nci, blksize, blkdist, ptr, val;
  243. /* Select number of colors for each component */
  244. total_colors = select_ncolors(cinfo, cquantize->Ncolors);
  245. /* Report selected color counts */
  246. if (cinfo->out_color_components == 3)
  247. TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
  248. total_colors, cquantize->Ncolors[0],
  249. cquantize->Ncolors[1], cquantize->Ncolors[2]);
  250. else
  251. TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
  252. /* Allocate and fill in the colormap. */
  253. /* The colors are ordered in the map in standard row-major order, */
  254. /* i.e. rightmost (highest-indexed) color changes most rapidly. */
  255. colormap = (*cinfo->mem->alloc_sarray)
  256. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  257. (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
  258. /* blksize is number of adjacent repeated entries for a component */
  259. /* blkdist is distance between groups of identical entries for a component */
  260. blkdist = total_colors;
  261. for (i = 0; i < cinfo->out_color_components; i++) {
  262. /* fill in colormap entries for i'th color component */
  263. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  264. blksize = blkdist / nci;
  265. for (j = 0; j < nci; j++) {
  266. /* Compute j'th output value (out of nci) for component */
  267. val = output_value(cinfo, i, j, nci-1);
  268. /* Fill in all colormap entries that have this value of this component */
  269. for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
  270. /* fill in blksize entries beginning at ptr */
  271. for (k = 0; k < blksize; k++)
  272. colormap[i][ptr+k] = (JSAMPLE) val;
  273. }
  274. }
  275. blkdist = blksize; /* blksize of this color is blkdist of next */
  276. }
  277. /* Save the colormap in private storage,
  278. * where it will survive color quantization mode changes.
  279. */
  280. cquantize->sv_colormap = colormap;
  281. cquantize->sv_actual = total_colors;
  282. }
  283. /*
  284. * Create the color index table.
  285. */
  286. LOCAL(void)
  287. create_colorindex (j_decompress_ptr cinfo)
  288. {
  289. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  290. JSAMPROW indexptr;
  291. int i,j,k, nci, blksize, val, pad;
  292. /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
  293. * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
  294. * This is not necessary in the other dithering modes. However, we
  295. * flag whether it was done in case user changes dithering mode.
  296. */
  297. if (cinfo->dither_mode == JDITHER_ORDERED) {
  298. pad = MAXJSAMPLE*2;
  299. cquantize->is_padded = TRUE;
  300. } else {
  301. pad = 0;
  302. cquantize->is_padded = FALSE;
  303. }
  304. cquantize->colorindex = (*cinfo->mem->alloc_sarray)
  305. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  306. (JDIMENSION) (MAXJSAMPLE+1 + pad),
  307. (JDIMENSION) cinfo->out_color_components);
  308. /* blksize is number of adjacent repeated entries for a component */
  309. blksize = cquantize->sv_actual;
  310. for (i = 0; i < cinfo->out_color_components; i++) {
  311. /* fill in colorindex entries for i'th color component */
  312. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  313. blksize = blksize / nci;
  314. /* adjust colorindex pointers to provide padding at negative indexes. */
  315. if (pad)
  316. cquantize->colorindex[i] += MAXJSAMPLE;
  317. /* in loop, val = index of current output value, */
  318. /* and k = largest j that maps to current val */
  319. indexptr = cquantize->colorindex[i];
  320. val = 0;
  321. k = largest_input_value(cinfo, i, 0, nci-1);
  322. for (j = 0; j <= MAXJSAMPLE; j++) {
  323. while (j > k) /* advance val if past boundary */
  324. k = largest_input_value(cinfo, i, ++val, nci-1);
  325. /* premultiply so that no multiplication needed in main processing */
  326. indexptr[j] = (JSAMPLE) (val * blksize);
  327. }
  328. /* Pad at both ends if necessary */
  329. if (pad)
  330. for (j = 1; j <= MAXJSAMPLE; j++) {
  331. indexptr[-j] = indexptr[0];
  332. indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
  333. }
  334. }
  335. }
  336. /*
  337. * Create an ordered-dither array for a component having ncolors
  338. * distinct output values.
  339. */
  340. LOCAL(ODITHER_MATRIX_PTR)
  341. make_odither_array (j_decompress_ptr cinfo, int ncolors)
  342. {
  343. ODITHER_MATRIX_PTR odither;
  344. int j,k;
  345. INT32 num,den;
  346. odither = (ODITHER_MATRIX_PTR)
  347. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  348. SIZEOF(ODITHER_MATRIX));
  349. /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
  350. * Hence the dither value for the matrix cell with fill order f
  351. * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
  352. * On 16-bit-int machine, be careful to avoid overflow.
  353. */
  354. den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
  355. for (j = 0; j < ODITHER_SIZE; j++) {
  356. for (k = 0; k < ODITHER_SIZE; k++) {
  357. num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
  358. * MAXJSAMPLE;
  359. /* Ensure round towards zero despite C's lack of consistency
  360. * about rounding negative values in integer division...
  361. */
  362. odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
  363. }
  364. }
  365. return odither;
  366. }
  367. /*
  368. * Create the ordered-dither tables.
  369. * Components having the same number of representative colors may
  370. * share a dither table.
  371. */
  372. LOCAL(void)
  373. create_odither_tables (j_decompress_ptr cinfo)
  374. {
  375. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  376. ODITHER_MATRIX_PTR odither;
  377. int i, j, nci;
  378. for (i = 0; i < cinfo->out_color_components; i++) {
  379. nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
  380. odither = NULL; /* search for matching prior component */
  381. for (j = 0; j < i; j++) {
  382. if (nci == cquantize->Ncolors[j]) {
  383. odither = cquantize->odither[j];
  384. break;
  385. }
  386. }
  387. if (odither == NULL) /* need a new table? */
  388. odither = make_odither_array(cinfo, nci);
  389. cquantize->odither[i] = odither;
  390. }
  391. }
  392. /*
  393. * Map some rows of pixels to the output colormapped representation.
  394. */
  395. METHODDEF(void)
  396. color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  397. JSAMPARRAY output_buf, int num_rows)
  398. /* General case, no dithering */
  399. {
  400. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  401. JSAMPARRAY colorindex = cquantize->colorindex;
  402. register int pixcode, ci;
  403. register JSAMPROW ptrin, ptrout;
  404. int row;
  405. JDIMENSION col;
  406. JDIMENSION width = cinfo->output_width;
  407. register int nc = cinfo->out_color_components;
  408. for (row = 0; row < num_rows; row++) {
  409. ptrin = input_buf[row];
  410. ptrout = output_buf[row];
  411. for (col = width; col > 0; col--) {
  412. pixcode = 0;
  413. for (ci = 0; ci < nc; ci++) {
  414. pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
  415. }
  416. *ptrout++ = (JSAMPLE) pixcode;
  417. }
  418. }
  419. }
  420. METHODDEF(void)
  421. color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  422. JSAMPARRAY output_buf, int num_rows)
  423. /* Fast path for out_color_components==3, no dithering */
  424. {
  425. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  426. register int pixcode;
  427. register JSAMPROW ptrin, ptrout;
  428. JSAMPROW colorindex0 = cquantize->colorindex[0];
  429. JSAMPROW colorindex1 = cquantize->colorindex[1];
  430. JSAMPROW colorindex2 = cquantize->colorindex[2];
  431. int row;
  432. JDIMENSION col;
  433. JDIMENSION width = cinfo->output_width;
  434. for (row = 0; row < num_rows; row++) {
  435. ptrin = input_buf[row];
  436. ptrout = output_buf[row];
  437. for (col = width; col > 0; col--) {
  438. pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
  439. pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
  440. pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
  441. *ptrout++ = (JSAMPLE) pixcode;
  442. }
  443. }
  444. }
  445. METHODDEF(void)
  446. quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  447. JSAMPARRAY output_buf, int num_rows)
  448. /* General case, with ordered dithering */
  449. {
  450. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  451. register JSAMPROW input_ptr;
  452. register JSAMPROW output_ptr;
  453. JSAMPROW colorindex_ci;
  454. int * dither; /* points to active row of dither matrix */
  455. int row_index, col_index; /* current indexes into dither matrix */
  456. int nc = cinfo->out_color_components;
  457. int ci;
  458. int row;
  459. JDIMENSION col;
  460. JDIMENSION width = cinfo->output_width;
  461. for (row = 0; row < num_rows; row++) {
  462. /* Initialize output values to 0 so can process components separately */
  463. jzero_far((void FAR *) output_buf[row],
  464. (size_t) (width * SIZEOF(JSAMPLE)));
  465. row_index = cquantize->row_index;
  466. for (ci = 0; ci < nc; ci++) {
  467. input_ptr = input_buf[row] + ci;
  468. output_ptr = output_buf[row];
  469. colorindex_ci = cquantize->colorindex[ci];
  470. dither = cquantize->odither[ci][row_index];
  471. col_index = 0;
  472. for (col = width; col > 0; col--) {
  473. /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
  474. * select output value, accumulate into output code for this pixel.
  475. * Range-limiting need not be done explicitly, as we have extended
  476. * the colorindex table to produce the right answers for out-of-range
  477. * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
  478. * required amount of padding.
  479. */
  480. *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
  481. input_ptr += nc;
  482. output_ptr++;
  483. col_index = (col_index + 1) & ODITHER_MASK;
  484. }
  485. }
  486. /* Advance row index for next row */
  487. row_index = (row_index + 1) & ODITHER_MASK;
  488. cquantize->row_index = row_index;
  489. }
  490. }
  491. METHODDEF(void)
  492. quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  493. JSAMPARRAY output_buf, int num_rows)
  494. /* Fast path for out_color_components==3, with ordered dithering */
  495. {
  496. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  497. register int pixcode;
  498. register JSAMPROW input_ptr;
  499. register JSAMPROW output_ptr;
  500. JSAMPROW colorindex0 = cquantize->colorindex[0];
  501. JSAMPROW colorindex1 = cquantize->colorindex[1];
  502. JSAMPROW colorindex2 = cquantize->colorindex[2];
  503. int * dither0; /* points to active row of dither matrix */
  504. int * dither1;
  505. int * dither2;
  506. int row_index, col_index; /* current indexes into dither matrix */
  507. int row;
  508. JDIMENSION col;
  509. JDIMENSION width = cinfo->output_width;
  510. for (row = 0; row < num_rows; row++) {
  511. row_index = cquantize->row_index;
  512. input_ptr = input_buf[row];
  513. output_ptr = output_buf[row];
  514. dither0 = cquantize->odither[0][row_index];
  515. dither1 = cquantize->odither[1][row_index];
  516. dither2 = cquantize->odither[2][row_index];
  517. col_index = 0;
  518. for (col = width; col > 0; col--) {
  519. pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
  520. dither0[col_index]]);
  521. pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
  522. dither1[col_index]]);
  523. pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
  524. dither2[col_index]]);
  525. *output_ptr++ = (JSAMPLE) pixcode;
  526. col_index = (col_index + 1) & ODITHER_MASK;
  527. }
  528. row_index = (row_index + 1) & ODITHER_MASK;
  529. cquantize->row_index = row_index;
  530. }
  531. }
  532. METHODDEF(void)
  533. quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  534. JSAMPARRAY output_buf, int num_rows)
  535. /* General case, with Floyd-Steinberg dithering */
  536. {
  537. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  538. register LOCFSERROR cur; /* current error or pixel value */
  539. LOCFSERROR belowerr; /* error for pixel below cur */
  540. LOCFSERROR bpreverr; /* error for below/prev col */
  541. LOCFSERROR bnexterr; /* error for below/next col */
  542. LOCFSERROR delta;
  543. register FSERRPTR errorptr; /* => fserrors[] at column before current */
  544. register JSAMPROW input_ptr;
  545. register JSAMPROW output_ptr;
  546. JSAMPROW colorindex_ci;
  547. JSAMPROW colormap_ci;
  548. int pixcode;
  549. int nc = cinfo->out_color_components;
  550. int dir; /* 1 for left-to-right, -1 for right-to-left */
  551. int dirnc; /* dir * nc */
  552. int ci;
  553. int row;
  554. JDIMENSION col;
  555. JDIMENSION width = cinfo->output_width;
  556. JSAMPLE *range_limit = cinfo->sample_range_limit;
  557. SHIFT_TEMPS
  558. for (row = 0; row < num_rows; row++) {
  559. /* Initialize output values to 0 so can process components separately */
  560. jzero_far((void FAR *) output_buf[row],
  561. (size_t) (width * SIZEOF(JSAMPLE)));
  562. for (ci = 0; ci < nc; ci++) {
  563. input_ptr = input_buf[row] + ci;
  564. output_ptr = output_buf[row];
  565. if (cquantize->on_odd_row) {
  566. /* work right to left in this row */
  567. input_ptr += (width-1) * nc; /* so point to rightmost pixel */
  568. output_ptr += width-1;
  569. dir = -1;
  570. dirnc = -nc;
  571. errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
  572. } else {
  573. /* work left to right in this row */
  574. dir = 1;
  575. dirnc = nc;
  576. errorptr = cquantize->fserrors[ci]; /* => entry before first column */
  577. }
  578. colorindex_ci = cquantize->colorindex[ci];
  579. colormap_ci = cquantize->sv_colormap[ci];
  580. /* Preset error values: no error propagated to first pixel from left */
  581. cur = 0;
  582. /* and no error propagated to row below yet */
  583. belowerr = bpreverr = 0;
  584. for (col = width; col > 0; col--) {
  585. /* cur holds the error propagated from the previous pixel on the
  586. * current line. Add the error propagated from the previous line
  587. * to form the complete error correction term for this pixel, and
  588. * round the error term (which is expressed * 16) to an integer.
  589. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
  590. * for either sign of the error value.
  591. * Note: errorptr points to *previous* column's array entry.
  592. */
  593. cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
  594. /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  595. * The maximum error is +- MAXJSAMPLE; this sets the required size
  596. * of the range_limit array.
  597. */
  598. cur += GETJSAMPLE(*input_ptr);
  599. cur = GETJSAMPLE(range_limit[cur]);
  600. /* Select output value, accumulate into output code for this pixel */
  601. pixcode = GETJSAMPLE(colorindex_ci[cur]);
  602. *output_ptr += (JSAMPLE) pixcode;
  603. /* Compute actual representation error at this pixel */
  604. /* Note: we can do this even though we don't have the final */
  605. /* pixel code, because the colormap is orthogonal. */
  606. cur -= GETJSAMPLE(colormap_ci[pixcode]);
  607. /* Compute error fractions to be propagated to adjacent pixels.
  608. * Add these into the running sums, and simultaneously shift the
  609. * next-line error sums left by 1 column.
  610. */
  611. bnexterr = cur;
  612. delta = cur * 2;
  613. cur += delta; /* form error * 3 */
  614. errorptr[0] = (FSERROR) (bpreverr + cur);
  615. cur += delta; /* form error * 5 */
  616. bpreverr = belowerr + cur;
  617. belowerr = bnexterr;
  618. cur += delta; /* form error * 7 */
  619. /* At this point cur contains the 7/16 error value to be propagated
  620. * to the next pixel on the current line, and all the errors for the
  621. * next line have been shifted over. We are therefore ready to move on.
  622. */
  623. input_ptr += dirnc; /* advance input ptr to next column */
  624. output_ptr += dir; /* advance output ptr to next column */
  625. errorptr += dir; /* advance errorptr to current column */
  626. }
  627. /* Post-loop cleanup: we must unload the final error value into the
  628. * final fserrors[] entry. Note we need not unload belowerr because
  629. * it is for the dummy column before or after the actual array.
  630. */
  631. errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
  632. }
  633. cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
  634. }
  635. }
  636. /*
  637. * Allocate workspace for Floyd-Steinberg errors.
  638. */
  639. LOCAL(void)
  640. alloc_fs_workspace (j_decompress_ptr cinfo)
  641. {
  642. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  643. size_t arraysize;
  644. int i;
  645. arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  646. for (i = 0; i < cinfo->out_color_components; i++) {
  647. cquantize->fserrors[i] = (FSERRPTR)
  648. (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
  649. }
  650. }
  651. /*
  652. * Initialize for one-pass color quantization.
  653. */
  654. METHODDEF(void)
  655. start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
  656. {
  657. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  658. size_t arraysize;
  659. int i;
  660. /* Install my colormap. */
  661. cinfo->colormap = cquantize->sv_colormap;
  662. cinfo->actual_number_of_colors = cquantize->sv_actual;
  663. /* Initialize for desired dithering mode. */
  664. switch (cinfo->dither_mode) {
  665. case JDITHER_NONE:
  666. if (cinfo->out_color_components == 3)
  667. cquantize->pub.color_quantize = color_quantize3;
  668. else
  669. cquantize->pub.color_quantize = color_quantize;
  670. break;
  671. case JDITHER_ORDERED:
  672. if (cinfo->out_color_components == 3)
  673. cquantize->pub.color_quantize = quantize3_ord_dither;
  674. else
  675. cquantize->pub.color_quantize = quantize_ord_dither;
  676. cquantize->row_index = 0; /* initialize state for ordered dither */
  677. /* If user changed to ordered dither from another mode,
  678. * we must recreate the color index table with padding.
  679. * This will cost extra space, but probably isn't very likely.
  680. */
  681. if (! cquantize->is_padded)
  682. create_colorindex(cinfo);
  683. /* Create ordered-dither tables if we didn't already. */
  684. if (cquantize->odither[0] == NULL)
  685. create_odither_tables(cinfo);
  686. break;
  687. case JDITHER_FS:
  688. cquantize->pub.color_quantize = quantize_fs_dither;
  689. cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
  690. /* Allocate Floyd-Steinberg workspace if didn't already. */
  691. if (cquantize->fserrors[0] == NULL)
  692. alloc_fs_workspace(cinfo);
  693. /* Initialize the propagated errors to zero. */
  694. arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
  695. for (i = 0; i < cinfo->out_color_components; i++)
  696. jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
  697. break;
  698. default:
  699. ERREXIT(cinfo, JERR_NOT_COMPILED);
  700. break;
  701. }
  702. }
  703. /*
  704. * Finish up at the end of the pass.
  705. */
  706. METHODDEF(void)
  707. finish_pass_1_quant (j_decompress_ptr cinfo)
  708. {
  709. /* no work in 1-pass case */
  710. }
  711. /*
  712. * Switch to a new external colormap between output passes.
  713. * Shouldn't get to this module!
  714. */
  715. METHODDEF(void)
  716. new_color_map_1_quant (j_decompress_ptr cinfo)
  717. {
  718. ERREXIT(cinfo, JERR_MODE_CHANGE);
  719. }
  720. /*
  721. * Module initialization routine for 1-pass color quantization.
  722. */
  723. GLOBAL(void)
  724. jinit_1pass_quantizer (j_decompress_ptr cinfo)
  725. {
  726. my_cquantize_ptr cquantize;
  727. cquantize = (my_cquantize_ptr)
  728. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  729. SIZEOF(my_cquantizer));
  730. cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  731. cquantize->pub.start_pass = start_pass_1_quant;
  732. cquantize->pub.finish_pass = finish_pass_1_quant;
  733. cquantize->pub.new_color_map = new_color_map_1_quant;
  734. cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
  735. cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
  736. /* Make sure my internal arrays won't overflow */
  737. if (cinfo->out_color_components > MAX_Q_COMPS)
  738. ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
  739. /* Make sure colormap indexes can be represented by JSAMPLEs */
  740. if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
  741. ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
  742. /* Create the colormap and color index table. */
  743. create_colormap(cinfo);
  744. create_colorindex(cinfo);
  745. /* Allocate Floyd-Steinberg workspace now if requested.
  746. * We do this now since it is FAR storage and may affect the memory
  747. * manager's space calculations. If the user changes to FS dither
  748. * mode in a later pass, we will allocate the space then, and will
  749. * possibly overrun the max_memory_to_use setting.
  750. */
  751. if (cinfo->dither_mode == JDITHER_FS)
  752. alloc_fs_workspace(cinfo);
  753. }
  754. #endif /* QUANT_1PASS_SUPPORTED */