Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1312 lines
47 KiB

  1. #include "stdafx.h"
  2. #pragma hdrstop
  3. /*
  4. * jquant2.c
  5. *
  6. * Copyright (C) 1991-1996, Thomas G. Lane.
  7. * This file is part of the Independent JPEG Group's software.
  8. * For conditions of distribution and use, see the accompanying README file.
  9. *
  10. * This file contains 2-pass color quantization (color mapping) routines.
  11. * These routines provide selection of a custom color map for an image,
  12. * followed by mapping of the image to that color map, with optional
  13. * Floyd-Steinberg dithering.
  14. * It is also possible to use just the second pass to map to an arbitrary
  15. * externally-given color map.
  16. *
  17. * Note: ordered dithering is not supported, since there isn't any fast
  18. * way to compute intercolor distances; it's unclear that ordered dither's
  19. * fundamental assumptions even hold with an irregularly spaced color map.
  20. */
  21. #define JPEG_INTERNALS
  22. #include "jinclude.h"
  23. #include "jpeglib.h"
  24. #ifdef QUANT_2PASS_SUPPORTED
  25. /*
  26. * This module implements the well-known Heckbert paradigm for color
  27. * quantization. Most of the ideas used here can be traced back to
  28. * Heckbert's seminal paper
  29. * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
  30. * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
  31. *
  32. * In the first pass over the image, we accumulate a histogram showing the
  33. * usage count of each possible color. To keep the histogram to a reasonable
  34. * size, we reduce the precision of the input; typical practice is to retain
  35. * 5 or 6 bits per color, so that 8 or 4 different input values are counted
  36. * in the same histogram cell.
  37. *
  38. * Next, the color-selection step begins with a box representing the whole
  39. * color space, and repeatedly splits the "largest" remaining box until we
  40. * have as many boxes as desired colors. Then the mean color in each
  41. * remaining box becomes one of the possible output colors.
  42. *
  43. * The second pass over the image maps each input pixel to the closest output
  44. * color (optionally after applying a Floyd-Steinberg dithering correction).
  45. * This mapping is logically trivial, but making it go fast enough requires
  46. * considerable care.
  47. *
  48. * Heckbert-style quantizers vary a good deal in their policies for choosing
  49. * the "largest" box and deciding where to cut it. The particular policies
  50. * used here have proved out well in experimental comparisons, but better ones
  51. * may yet be found.
  52. *
  53. * In earlier versions of the IJG code, this module quantized in YCbCr color
  54. * space, processing the raw upsampled data without a color conversion step.
  55. * This allowed the color conversion math to be done only once per colormap
  56. * entry, not once per pixel. However, that optimization precluded other
  57. * useful optimizations (such as merging color conversion with upsampling)
  58. * and it also interfered with desired capabilities such as quantizing to an
  59. * externally-supplied colormap. We have therefore abandoned that approach.
  60. * The present code works in the post-conversion color space, typically RGB.
  61. *
  62. * To improve the visual quality of the results, we actually work in scaled
  63. * RGB space, giving G distances more weight than R, and R in turn more than
  64. * B. To do everything in integer math, we must use integer scale factors.
  65. * The 2/3/1 scale factors used here correspond loosely to the relative
  66. * weights of the colors in the NTSC grayscale equation.
  67. * If you want to use this code to quantize a non-RGB color space, you'll
  68. * probably need to change these scale factors.
  69. */
  70. #define R_SCALE 2 /* scale R distances by this much */
  71. #define G_SCALE 3 /* scale G distances by this much */
  72. #define B_SCALE 1 /* and B by this much */
  73. /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
  74. * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
  75. * and B,G,R orders. If you define some other weird order in jmorecfg.h,
  76. * you'll get compile errors until you extend this logic. In that case
  77. * you'll probably want to tweak the histogram sizes too.
  78. */
  79. #if RGB_RED == 0
  80. #define C0_SCALE R_SCALE
  81. #endif
  82. #if RGB_BLUE == 0
  83. #define C0_SCALE B_SCALE
  84. #endif
  85. #if RGB_GREEN == 1
  86. #define C1_SCALE G_SCALE
  87. #endif
  88. #if RGB_RED == 2
  89. #define C2_SCALE R_SCALE
  90. #endif
  91. #if RGB_BLUE == 2
  92. #define C2_SCALE B_SCALE
  93. #endif
  94. /*
  95. * First we have the histogram data structure and routines for creating it.
  96. *
  97. * The number of bits of precision can be adjusted by changing these symbols.
  98. * We recommend keeping 6 bits for G and 5 each for R and B.
  99. * If you have plenty of memory and cycles, 6 bits all around gives marginally
  100. * better results; if you are short of memory, 5 bits all around will save
  101. * some space but degrade the results.
  102. * To maintain a fully accurate histogram, we'd need to allocate a "long"
  103. * (preferably unsigned long) for each cell. In practice this is overkill;
  104. * we can get by with 16 bits per cell. Few of the cell counts will overflow,
  105. * and clamping those that do overflow to the maximum value will give close-
  106. * enough results. This reduces the recommended histogram size from 256Kb
  107. * to 128Kb, which is a useful savings on PC-class machines.
  108. * (In the second pass the histogram space is re-used for pixel mapping data;
  109. * in that capacity, each cell must be able to store zero to the number of
  110. * desired colors. 16 bits/cell is plenty for that too.)
  111. * Since the JPEG code is intended to run in small memory model on 80x86
  112. * machines, we can't just allocate the histogram in one chunk. Instead
  113. * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
  114. * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
  115. * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
  116. * on 80x86 machines, the pointer row is in near memory but the actual
  117. * arrays are in far memory (same arrangement as we use for image arrays).
  118. */
  119. #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
  120. /* These will do the right thing for either R,G,B or B,G,R color order,
  121. * but you may not like the results for other color orders.
  122. */
  123. #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
  124. #define HIST_C1_BITS 6 /* bits of precision in G histogram */
  125. #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
  126. /* Number of elements along histogram axes. */
  127. #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
  128. #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
  129. #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
  130. /* These are the amounts to shift an input value to get a histogram index. */
  131. #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
  132. #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
  133. #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
  134. typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
  135. typedef histcell FAR * histptr; /* for pointers to histogram cells */
  136. typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
  137. typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
  138. typedef hist2d * hist3d; /* type for top-level pointer */
  139. /* Declarations for Floyd-Steinberg dithering.
  140. *
  141. * Errors are accumulated into the array fserrors[], at a resolution of
  142. * 1/16th of a pixel count. The error at a given pixel is propagated
  143. * to its not-yet-processed neighbors using the standard F-S fractions,
  144. * ... (here) 7/16
  145. * 3/16 5/16 1/16
  146. * We work left-to-right on even rows, right-to-left on odd rows.
  147. *
  148. * We can get away with a single array (holding one row's worth of errors)
  149. * by using it to store the current row's errors at pixel columns not yet
  150. * processed, but the next row's errors at columns already processed. We
  151. * need only a few extra variables to hold the errors immediately around the
  152. * current column. (If we are lucky, those variables are in registers, but
  153. * even if not, they're probably cheaper to access than array elements are.)
  154. *
  155. * The fserrors[] array has (#columns + 2) entries; the extra entry at
  156. * each end saves us from special-casing the first and last pixels.
  157. * Each entry is three values long, one value for each color component.
  158. *
  159. * Note: on a wide image, we might not have enough room in a PC's near data
  160. * segment to hold the error array; so it is allocated with alloc_large.
  161. */
  162. #if BITS_IN_JSAMPLE == 8
  163. typedef INT16 FSERROR; /* 16 bits should be enough */
  164. typedef int LOCFSERROR; /* use 'int' for calculation temps */
  165. #else
  166. typedef INT32 FSERROR; /* may need more than 16 bits */
  167. typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
  168. #endif
  169. typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
  170. /* Private subobject */
  171. typedef struct {
  172. struct jpeg_color_quantizer pub; /* public fields */
  173. /* Space for the eventually created colormap is stashed here */
  174. JSAMPARRAY sv_colormap; /* colormap allocated at init time */
  175. int desired; /* desired # of colors = size of colormap */
  176. /* Variables for accumulating image statistics */
  177. hist3d histogram; /* pointer to the histogram */
  178. boolean needs_zeroed; /* TRUE if next pass must zero histogram */
  179. /* Variables for Floyd-Steinberg dithering */
  180. FSERRPTR fserrors; /* accumulated errors */
  181. boolean on_odd_row; /* flag to remember which row we are on */
  182. int * error_limiter; /* table for clamping the applied error */
  183. } my_cquantizer;
  184. typedef my_cquantizer * my_cquantize_ptr;
  185. /*
  186. * Prescan some rows of pixels.
  187. * In this module the prescan simply updates the histogram, which has been
  188. * initialized to zeroes by start_pass.
  189. * An output_buf parameter is required by the method signature, but no data
  190. * is actually output (in fact the buffer controller is probably passing a
  191. * NULL pointer).
  192. */
  193. METHODDEF(void)
  194. prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
  195. JSAMPARRAY output_buf, int num_rows)
  196. {
  197. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  198. register JSAMPROW ptr;
  199. register histptr histp;
  200. register hist3d histogram = cquantize->histogram;
  201. int row;
  202. JDIMENSION col;
  203. JDIMENSION width = cinfo->output_width;
  204. for (row = 0; row < num_rows; row++) {
  205. ptr = input_buf[row];
  206. for (col = width; col > 0; col--) {
  207. /* get pixel value and index into the histogram */
  208. histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
  209. [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
  210. [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
  211. /* increment, check for overflow and undo increment if so. */
  212. if (++(*histp) <= 0)
  213. (*histp)--;
  214. ptr += 3;
  215. }
  216. }
  217. }
  218. /*
  219. * Next we have the really interesting routines: selection of a colormap
  220. * given the completed histogram.
  221. * These routines work with a list of "boxes", each representing a rectangular
  222. * subset of the input color space (to histogram precision).
  223. */
  224. typedef struct {
  225. /* The bounds of the box (inclusive); expressed as histogram indexes */
  226. int c0min, c0max;
  227. int c1min, c1max;
  228. int c2min, c2max;
  229. /* The volume (actually 2-norm) of the box */
  230. INT32 volume;
  231. /* The number of nonzero histogram cells within this box */
  232. long colorcount;
  233. } box;
  234. typedef box * boxptr;
  235. LOCAL(boxptr)
  236. find_biggest_color_pop (boxptr boxlist, int numboxes)
  237. /* Find the splittable box with the largest color population */
  238. /* Returns NULL if no splittable boxes remain */
  239. {
  240. register boxptr boxp;
  241. register int i;
  242. register long maxc = 0;
  243. boxptr which = NULL;
  244. for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
  245. if (boxp->colorcount > maxc && boxp->volume > 0) {
  246. which = boxp;
  247. maxc = boxp->colorcount;
  248. }
  249. }
  250. return which;
  251. }
  252. LOCAL(boxptr)
  253. find_biggest_volume (boxptr boxlist, int numboxes)
  254. /* Find the splittable box with the largest (scaled) volume */
  255. /* Returns NULL if no splittable boxes remain */
  256. {
  257. register boxptr boxp;
  258. register int i;
  259. register INT32 maxv = 0;
  260. boxptr which = NULL;
  261. for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
  262. if (boxp->volume > maxv) {
  263. which = boxp;
  264. maxv = boxp->volume;
  265. }
  266. }
  267. return which;
  268. }
  269. LOCAL(void)
  270. update_box (j_decompress_ptr cinfo, boxptr boxp)
  271. /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
  272. /* and recompute its volume and population */
  273. {
  274. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  275. hist3d histogram = cquantize->histogram;
  276. histptr histp;
  277. int c0,c1,c2;
  278. int c0min,c0max,c1min,c1max,c2min,c2max;
  279. INT32 dist0,dist1,dist2;
  280. long ccount;
  281. c0min = boxp->c0min; c0max = boxp->c0max;
  282. c1min = boxp->c1min; c1max = boxp->c1max;
  283. c2min = boxp->c2min; c2max = boxp->c2max;
  284. if (c0max > c0min)
  285. for (c0 = c0min; c0 <= c0max; c0++)
  286. for (c1 = c1min; c1 <= c1max; c1++) {
  287. histp = & histogram[c0][c1][c2min];
  288. for (c2 = c2min; c2 <= c2max; c2++)
  289. if (*histp++ != 0) {
  290. boxp->c0min = c0min = c0;
  291. goto have_c0min;
  292. }
  293. }
  294. have_c0min:
  295. if (c0max > c0min)
  296. for (c0 = c0max; c0 >= c0min; c0--)
  297. for (c1 = c1min; c1 <= c1max; c1++) {
  298. histp = & histogram[c0][c1][c2min];
  299. for (c2 = c2min; c2 <= c2max; c2++)
  300. if (*histp++ != 0) {
  301. boxp->c0max = c0max = c0;
  302. goto have_c0max;
  303. }
  304. }
  305. have_c0max:
  306. if (c1max > c1min)
  307. for (c1 = c1min; c1 <= c1max; c1++)
  308. for (c0 = c0min; c0 <= c0max; c0++) {
  309. histp = & histogram[c0][c1][c2min];
  310. for (c2 = c2min; c2 <= c2max; c2++)
  311. if (*histp++ != 0) {
  312. boxp->c1min = c1min = c1;
  313. goto have_c1min;
  314. }
  315. }
  316. have_c1min:
  317. if (c1max > c1min)
  318. for (c1 = c1max; c1 >= c1min; c1--)
  319. for (c0 = c0min; c0 <= c0max; c0++) {
  320. histp = & histogram[c0][c1][c2min];
  321. for (c2 = c2min; c2 <= c2max; c2++)
  322. if (*histp++ != 0) {
  323. boxp->c1max = c1max = c1;
  324. goto have_c1max;
  325. }
  326. }
  327. have_c1max:
  328. if (c2max > c2min)
  329. for (c2 = c2min; c2 <= c2max; c2++)
  330. for (c0 = c0min; c0 <= c0max; c0++) {
  331. histp = & histogram[c0][c1min][c2];
  332. for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
  333. if (*histp != 0) {
  334. boxp->c2min = c2min = c2;
  335. goto have_c2min;
  336. }
  337. }
  338. have_c2min:
  339. if (c2max > c2min)
  340. for (c2 = c2max; c2 >= c2min; c2--)
  341. for (c0 = c0min; c0 <= c0max; c0++) {
  342. histp = & histogram[c0][c1min][c2];
  343. for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
  344. if (*histp != 0) {
  345. boxp->c2max = c2max = c2;
  346. goto have_c2max;
  347. }
  348. }
  349. have_c2max:
  350. /* Update box volume.
  351. * We use 2-norm rather than real volume here; this biases the method
  352. * against making long narrow boxes, and it has the side benefit that
  353. * a box is splittable iff norm > 0.
  354. * Since the differences are expressed in histogram-cell units,
  355. * we have to shift back to JSAMPLE units to get consistent distances;
  356. * after which, we scale according to the selected distance scale factors.
  357. */
  358. dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
  359. dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
  360. dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
  361. boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
  362. /* Now scan remaining volume of box and compute population */
  363. ccount = 0;
  364. for (c0 = c0min; c0 <= c0max; c0++)
  365. for (c1 = c1min; c1 <= c1max; c1++) {
  366. histp = & histogram[c0][c1][c2min];
  367. for (c2 = c2min; c2 <= c2max; c2++, histp++)
  368. if (*histp != 0) {
  369. ccount++;
  370. }
  371. }
  372. boxp->colorcount = ccount;
  373. }
  374. LOCAL(int)
  375. median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
  376. int desired_colors)
  377. /* Repeatedly select and split the largest box until we have enough boxes */
  378. {
  379. int n,lb;
  380. int c0,c1,c2,cmax;
  381. register boxptr b1,b2;
  382. while (numboxes < desired_colors) {
  383. /* Select box to split.
  384. * Current algorithm: by population for first half, then by volume.
  385. */
  386. if (numboxes*2 <= desired_colors) {
  387. b1 = find_biggest_color_pop(boxlist, numboxes);
  388. } else {
  389. b1 = find_biggest_volume(boxlist, numboxes);
  390. }
  391. if (b1 == NULL) /* no splittable boxes left! */
  392. break;
  393. b2 = &boxlist[numboxes]; /* where new box will go */
  394. /* Copy the color bounds to the new box. */
  395. b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
  396. b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
  397. /* Choose which axis to split the box on.
  398. * Current algorithm: longest scaled axis.
  399. * See notes in update_box about scaling distances.
  400. */
  401. c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
  402. c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
  403. c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
  404. /* We want to break any ties in favor of green, then red, blue last.
  405. * This code does the right thing for R,G,B or B,G,R color orders only.
  406. */
  407. #if RGB_RED == 0
  408. cmax = c1; n = 1;
  409. if (c0 > cmax) { cmax = c0; n = 0; }
  410. if (c2 > cmax) { n = 2; }
  411. #else
  412. cmax = c1; n = 1;
  413. if (c2 > cmax) { cmax = c2; n = 2; }
  414. if (c0 > cmax) { n = 0; }
  415. #endif
  416. /* Choose split point along selected axis, and update box bounds.
  417. * Current algorithm: split at halfway point.
  418. * (Since the box has been shrunk to minimum volume,
  419. * any split will produce two nonempty subboxes.)
  420. * Note that lb value is max for lower box, so must be < old max.
  421. */
  422. switch (n) {
  423. case 0:
  424. lb = (b1->c0max + b1->c0min) / 2;
  425. b1->c0max = lb;
  426. b2->c0min = lb+1;
  427. break;
  428. case 1:
  429. lb = (b1->c1max + b1->c1min) / 2;
  430. b1->c1max = lb;
  431. b2->c1min = lb+1;
  432. break;
  433. case 2:
  434. lb = (b1->c2max + b1->c2min) / 2;
  435. b1->c2max = lb;
  436. b2->c2min = lb+1;
  437. break;
  438. }
  439. /* Update stats for boxes */
  440. update_box(cinfo, b1);
  441. update_box(cinfo, b2);
  442. numboxes++;
  443. }
  444. return numboxes;
  445. }
  446. LOCAL(void)
  447. compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
  448. /* Compute representative color for a box, put it in colormap[icolor] */
  449. {
  450. /* Current algorithm: mean weighted by pixels (not colors) */
  451. /* Note it is important to get the rounding correct! */
  452. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  453. hist3d histogram = cquantize->histogram;
  454. histptr histp;
  455. int c0,c1,c2;
  456. int c0min,c0max,c1min,c1max,c2min,c2max;
  457. long count;
  458. long total = 0;
  459. long c0total = 0;
  460. long c1total = 0;
  461. long c2total = 0;
  462. c0min = boxp->c0min; c0max = boxp->c0max;
  463. c1min = boxp->c1min; c1max = boxp->c1max;
  464. c2min = boxp->c2min; c2max = boxp->c2max;
  465. for (c0 = c0min; c0 <= c0max; c0++)
  466. for (c1 = c1min; c1 <= c1max; c1++) {
  467. histp = & histogram[c0][c1][c2min];
  468. for (c2 = c2min; c2 <= c2max; c2++) {
  469. if ((count = *histp++) != 0) {
  470. total += count;
  471. c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
  472. c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
  473. c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
  474. }
  475. }
  476. }
  477. cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
  478. cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
  479. cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
  480. }
  481. LOCAL(void)
  482. select_colors (j_decompress_ptr cinfo, int desired_colors)
  483. /* Master routine for color selection */
  484. {
  485. boxptr boxlist;
  486. int numboxes;
  487. int i;
  488. /* Allocate workspace for box list */
  489. boxlist = (boxptr) (*cinfo->mem->alloc_small)
  490. ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
  491. /* Initialize one box containing whole space */
  492. numboxes = 1;
  493. boxlist[0].c0min = 0;
  494. boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
  495. boxlist[0].c1min = 0;
  496. boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
  497. boxlist[0].c2min = 0;
  498. boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
  499. /* Shrink it to actually-used volume and set its statistics */
  500. update_box(cinfo, & boxlist[0]);
  501. /* Perform median-cut to produce final box list */
  502. numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
  503. /* Compute the representative color for each box, fill colormap */
  504. for (i = 0; i < numboxes; i++)
  505. compute_color(cinfo, & boxlist[i], i);
  506. cinfo->actual_number_of_colors = numboxes;
  507. TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
  508. }
  509. /*
  510. * These routines are concerned with the time-critical task of mapping input
  511. * colors to the nearest color in the selected colormap.
  512. *
  513. * We re-use the histogram space as an "inverse color map", essentially a
  514. * cache for the results of nearest-color searches. All colors within a
  515. * histogram cell will be mapped to the same colormap entry, namely the one
  516. * closest to the cell's center. This may not be quite the closest entry to
  517. * the actual input color, but it's almost as good. A zero in the cache
  518. * indicates we haven't found the nearest color for that cell yet; the array
  519. * is cleared to zeroes before starting the mapping pass. When we find the
  520. * nearest color for a cell, its colormap index plus one is recorded in the
  521. * cache for future use. The pass2 scanning routines call fill_inverse_cmap
  522. * when they need to use an unfilled entry in the cache.
  523. *
  524. * Our method of efficiently finding nearest colors is based on the "locally
  525. * sorted search" idea described by Heckbert and on the incremental distance
  526. * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
  527. * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
  528. * the distances from a given colormap entry to each cell of the histogram can
  529. * be computed quickly using an incremental method: the differences between
  530. * distances to adjacent cells themselves differ by a constant. This allows a
  531. * fairly fast implementation of the "brute force" approach of computing the
  532. * distance from every colormap entry to every histogram cell. Unfortunately,
  533. * it needs a work array to hold the best-distance-so-far for each histogram
  534. * cell (because the inner loop has to be over cells, not colormap entries).
  535. * The work array elements have to be INT32s, so the work array would need
  536. * 256Kb at our recommended precision. This is not feasible in DOS machines.
  537. *
  538. * To get around these problems, we apply Thomas' method to compute the
  539. * nearest colors for only the cells within a small subbox of the histogram.
  540. * The work array need be only as big as the subbox, so the memory usage
  541. * problem is solved. Furthermore, we need not fill subboxes that are never
  542. * referenced in pass2; many images use only part of the color gamut, so a
  543. * fair amount of work is saved. An additional advantage of this
  544. * approach is that we can apply Heckbert's locality criterion to quickly
  545. * eliminate colormap entries that are far away from the subbox; typically
  546. * three-fourths of the colormap entries are rejected by Heckbert's criterion,
  547. * and we need not compute their distances to individual cells in the subbox.
  548. * The speed of this approach is heavily influenced by the subbox size: too
  549. * small means too much overhead, too big loses because Heckbert's criterion
  550. * can't eliminate as many colormap entries. Empirically the best subbox
  551. * size seems to be about 1/512th of the histogram (1/8th in each direction).
  552. *
  553. * Thomas' article also describes a refined method which is asymptotically
  554. * faster than the brute-force method, but it is also far more complex and
  555. * cannot efficiently be applied to small subboxes. It is therefore not
  556. * useful for programs intended to be portable to DOS machines. On machines
  557. * with plenty of memory, filling the whole histogram in one shot with Thomas'
  558. * refined method might be faster than the present code --- but then again,
  559. * it might not be any faster, and it's certainly more complicated.
  560. */
  561. /* log2(histogram cells in update box) for each axis; this can be adjusted */
  562. #define BOX_C0_LOG (HIST_C0_BITS-3)
  563. #define BOX_C1_LOG (HIST_C1_BITS-3)
  564. #define BOX_C2_LOG (HIST_C2_BITS-3)
  565. #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
  566. #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
  567. #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
  568. #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
  569. #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
  570. #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
  571. /*
  572. * The next three routines implement inverse colormap filling. They could
  573. * all be folded into one big routine, but splitting them up this way saves
  574. * some stack space (the mindist[] and bestdist[] arrays need not coexist)
  575. * and may allow some compilers to produce better code by registerizing more
  576. * inner-loop variables.
  577. */
  578. LOCAL(int)
  579. find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
  580. JSAMPLE colorlist[])
  581. /* Locate the colormap entries close enough to an update box to be candidates
  582. * for the nearest entry to some cell(s) in the update box. The update box
  583. * is specified by the center coordinates of its first cell. The number of
  584. * candidate colormap entries is returned, and their colormap indexes are
  585. * placed in colorlist[].
  586. * This routine uses Heckbert's "locally sorted search" criterion to select
  587. * the colors that need further consideration.
  588. */
  589. {
  590. int numcolors = cinfo->actual_number_of_colors;
  591. int maxc0, maxc1, maxc2;
  592. int centerc0, centerc1, centerc2;
  593. int i, x, ncolors;
  594. INT32 minmaxdist, min_dist, max_dist, tdist;
  595. INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
  596. /* Compute true coordinates of update box's upper corner and center.
  597. * Actually we compute the coordinates of the center of the upper-corner
  598. * histogram cell, which are the upper bounds of the volume we care about.
  599. * Note that since ">>" rounds down, the "center" values may be closer to
  600. * min than to max; hence comparisons to them must be "<=", not "<".
  601. */
  602. maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
  603. centerc0 = (minc0 + maxc0) >> 1;
  604. maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
  605. centerc1 = (minc1 + maxc1) >> 1;
  606. maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
  607. centerc2 = (minc2 + maxc2) >> 1;
  608. /* For each color in colormap, find:
  609. * 1. its minimum squared-distance to any point in the update box
  610. * (zero if color is within update box);
  611. * 2. its maximum squared-distance to any point in the update box.
  612. * Both of these can be found by considering only the corners of the box.
  613. * We save the minimum distance for each color in mindist[];
  614. * only the smallest maximum distance is of interest.
  615. */
  616. minmaxdist = 0x7FFFFFFFL;
  617. for (i = 0; i < numcolors; i++) {
  618. /* We compute the squared-c0-distance term, then add in the other two. */
  619. x = GETJSAMPLE(cinfo->colormap[0][i]);
  620. if (x < minc0) {
  621. tdist = (x - minc0) * C0_SCALE;
  622. min_dist = tdist*tdist;
  623. tdist = (x - maxc0) * C0_SCALE;
  624. max_dist = tdist*tdist;
  625. } else if (x > maxc0) {
  626. tdist = (x - maxc0) * C0_SCALE;
  627. min_dist = tdist*tdist;
  628. tdist = (x - minc0) * C0_SCALE;
  629. max_dist = tdist*tdist;
  630. } else {
  631. /* within cell range so no contribution to min_dist */
  632. min_dist = 0;
  633. if (x <= centerc0) {
  634. tdist = (x - maxc0) * C0_SCALE;
  635. max_dist = tdist*tdist;
  636. } else {
  637. tdist = (x - minc0) * C0_SCALE;
  638. max_dist = tdist*tdist;
  639. }
  640. }
  641. x = GETJSAMPLE(cinfo->colormap[1][i]);
  642. if (x < minc1) {
  643. tdist = (x - minc1) * C1_SCALE;
  644. min_dist += tdist*tdist;
  645. tdist = (x - maxc1) * C1_SCALE;
  646. max_dist += tdist*tdist;
  647. } else if (x > maxc1) {
  648. tdist = (x - maxc1) * C1_SCALE;
  649. min_dist += tdist*tdist;
  650. tdist = (x - minc1) * C1_SCALE;
  651. max_dist += tdist*tdist;
  652. } else {
  653. /* within cell range so no contribution to min_dist */
  654. if (x <= centerc1) {
  655. tdist = (x - maxc1) * C1_SCALE;
  656. max_dist += tdist*tdist;
  657. } else {
  658. tdist = (x - minc1) * C1_SCALE;
  659. max_dist += tdist*tdist;
  660. }
  661. }
  662. x = GETJSAMPLE(cinfo->colormap[2][i]);
  663. if (x < minc2) {
  664. tdist = (x - minc2) * C2_SCALE;
  665. min_dist += tdist*tdist;
  666. tdist = (x - maxc2) * C2_SCALE;
  667. max_dist += tdist*tdist;
  668. } else if (x > maxc2) {
  669. tdist = (x - maxc2) * C2_SCALE;
  670. min_dist += tdist*tdist;
  671. tdist = (x - minc2) * C2_SCALE;
  672. max_dist += tdist*tdist;
  673. } else {
  674. /* within cell range so no contribution to min_dist */
  675. if (x <= centerc2) {
  676. tdist = (x - maxc2) * C2_SCALE;
  677. max_dist += tdist*tdist;
  678. } else {
  679. tdist = (x - minc2) * C2_SCALE;
  680. max_dist += tdist*tdist;
  681. }
  682. }
  683. mindist[i] = min_dist; /* save away the results */
  684. if (max_dist < minmaxdist)
  685. minmaxdist = max_dist;
  686. }
  687. /* Now we know that no cell in the update box is more than minmaxdist
  688. * away from some colormap entry. Therefore, only colors that are
  689. * within minmaxdist of some part of the box need be considered.
  690. */
  691. ncolors = 0;
  692. for (i = 0; i < numcolors; i++) {
  693. if (mindist[i] <= minmaxdist)
  694. colorlist[ncolors++] = (JSAMPLE) i;
  695. }
  696. return ncolors;
  697. }
  698. LOCAL(void)
  699. find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
  700. int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
  701. /* Find the closest colormap entry for each cell in the update box,
  702. * given the list of candidate colors prepared by find_nearby_colors.
  703. * Return the indexes of the closest entries in the bestcolor[] array.
  704. * This routine uses Thomas' incremental distance calculation method to
  705. * find the distance from a colormap entry to successive cells in the box.
  706. */
  707. {
  708. int ic0, ic1, ic2;
  709. int i, icolor;
  710. register INT32 * bptr; /* pointer into bestdist[] array */
  711. JSAMPLE * cptr; /* pointer into bestcolor[] array */
  712. INT32 dist0, dist1; /* initial distance values */
  713. register INT32 dist2; /* current distance in inner loop */
  714. INT32 xx0, xx1; /* distance increments */
  715. register INT32 xx2;
  716. INT32 inc0, inc1, inc2; /* initial values for increments */
  717. /* This array holds the distance to the nearest-so-far color for each cell */
  718. INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
  719. /* Initialize best-distance for each cell of the update box */
  720. bptr = bestdist;
  721. for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
  722. *bptr++ = 0x7FFFFFFFL;
  723. /* For each color selected by find_nearby_colors,
  724. * compute its distance to the center of each cell in the box.
  725. * If that's less than best-so-far, update best distance and color number.
  726. */
  727. /* Nominal steps between cell centers ("x" in Thomas article) */
  728. #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
  729. #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
  730. #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
  731. for (i = 0; i < numcolors; i++) {
  732. icolor = GETJSAMPLE(colorlist[i]);
  733. /* Compute (square of) distance from minc0/c1/c2 to this color */
  734. inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
  735. dist0 = inc0*inc0;
  736. inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
  737. dist0 += inc1*inc1;
  738. inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
  739. dist0 += inc2*inc2;
  740. /* Form the initial difference increments */
  741. inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
  742. inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
  743. inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
  744. /* Now loop over all cells in box, updating distance per Thomas method */
  745. bptr = bestdist;
  746. cptr = bestcolor;
  747. xx0 = inc0;
  748. for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
  749. dist1 = dist0;
  750. xx1 = inc1;
  751. for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
  752. dist2 = dist1;
  753. xx2 = inc2;
  754. for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
  755. if (dist2 < *bptr) {
  756. *bptr = dist2;
  757. *cptr = (JSAMPLE) icolor;
  758. }
  759. dist2 += xx2;
  760. xx2 += 2 * STEP_C2 * STEP_C2;
  761. bptr++;
  762. cptr++;
  763. }
  764. dist1 += xx1;
  765. xx1 += 2 * STEP_C1 * STEP_C1;
  766. }
  767. dist0 += xx0;
  768. xx0 += 2 * STEP_C0 * STEP_C0;
  769. }
  770. }
  771. }
  772. LOCAL(void)
  773. fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
  774. /* Fill the inverse-colormap entries in the update box that contains */
  775. /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
  776. /* we can fill as many others as we wish.) */
  777. {
  778. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  779. hist3d histogram = cquantize->histogram;
  780. int minc0, minc1, minc2; /* lower left corner of update box */
  781. int ic0, ic1, ic2;
  782. register JSAMPLE * cptr; /* pointer into bestcolor[] array */
  783. register histptr cachep; /* pointer into main cache array */
  784. /* This array lists the candidate colormap indexes. */
  785. JSAMPLE colorlist[MAXNUMCOLORS];
  786. int numcolors; /* number of candidate colors */
  787. /* This array holds the actually closest colormap index for each cell. */
  788. JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
  789. /* Convert cell coordinates to update box ID */
  790. c0 >>= BOX_C0_LOG;
  791. c1 >>= BOX_C1_LOG;
  792. c2 >>= BOX_C2_LOG;
  793. /* Compute true coordinates of update box's origin corner.
  794. * Actually we compute the coordinates of the center of the corner
  795. * histogram cell, which are the lower bounds of the volume we care about.
  796. */
  797. minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
  798. minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
  799. minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
  800. /* Determine which colormap entries are close enough to be candidates
  801. * for the nearest entry to some cell in the update box.
  802. */
  803. numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
  804. /* Determine the actually nearest colors. */
  805. find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, bestcolor);
  806. /* Save the best color numbers (plus 1) in the main cache array */
  807. c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
  808. c1 <<= BOX_C1_LOG;
  809. c2 <<= BOX_C2_LOG;
  810. cptr = bestcolor;
  811. for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
  812. for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
  813. cachep = & histogram[c0+ic0][c1+ic1][c2];
  814. for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
  815. *cachep++ = (histcell) (GETJSAMPLE(*(cptr++)) + 1);
  816. }
  817. }
  818. }
  819. }
  820. /*
  821. * Map some rows of pixels to the output colormapped representation.
  822. */
  823. METHODDEF(void)
  824. pass2_no_dither (j_decompress_ptr cinfo,
  825. JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
  826. /* This version performs no dithering */
  827. {
  828. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  829. hist3d histogram = cquantize->histogram;
  830. register JSAMPROW inptr, outptr;
  831. register histptr cachep;
  832. register int c0, c1, c2;
  833. int row;
  834. JDIMENSION col;
  835. JDIMENSION width = cinfo->output_width;
  836. for (row = 0; row < num_rows; row++) {
  837. inptr = input_buf[row];
  838. outptr = output_buf[row];
  839. for (col = width; col > 0; col--) {
  840. /* get pixel value and index into the cache */
  841. c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
  842. c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
  843. c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
  844. cachep = & histogram[c0][c1][c2];
  845. /* If we have not seen this color before, find nearest colormap entry */
  846. /* and update the cache */
  847. if (*cachep == 0)
  848. fill_inverse_cmap(cinfo, c0,c1,c2);
  849. /* Now emit the colormap index for this cell */
  850. *outptr++ = (JSAMPLE) (*cachep - 1);
  851. }
  852. }
  853. }
  854. METHODDEF(void)
  855. pass2_fs_dither (j_decompress_ptr cinfo,
  856. JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
  857. /* This version performs Floyd-Steinberg dithering */
  858. {
  859. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  860. hist3d histogram = cquantize->histogram;
  861. register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
  862. LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
  863. LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
  864. register FSERRPTR errorptr; /* => fserrors[] at column before current */
  865. JSAMPROW inptr; /* => current input pixel */
  866. JSAMPROW outptr; /* => current output pixel */
  867. histptr cachep;
  868. int dir; /* +1 or -1 depending on direction */
  869. int dir3; /* 3*dir, for advancing inptr & errorptr */
  870. int row;
  871. JDIMENSION col;
  872. JDIMENSION width = cinfo->output_width;
  873. JSAMPLE *range_limit = cinfo->sample_range_limit;
  874. int *error_limit = cquantize->error_limiter;
  875. JSAMPROW colormap0 = cinfo->colormap[0];
  876. JSAMPROW colormap1 = cinfo->colormap[1];
  877. JSAMPROW colormap2 = cinfo->colormap[2];
  878. SHIFT_TEMPS
  879. for (row = 0; row < num_rows; row++) {
  880. inptr = input_buf[row];
  881. outptr = output_buf[row];
  882. if (cquantize->on_odd_row) {
  883. /* work right to left in this row */
  884. inptr += (width-1) * 3; /* so point to rightmost pixel */
  885. outptr += width-1;
  886. dir = -1;
  887. dir3 = -3;
  888. errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
  889. cquantize->on_odd_row = FALSE; /* flip for next time */
  890. } else {
  891. /* work left to right in this row */
  892. dir = 1;
  893. dir3 = 3;
  894. errorptr = cquantize->fserrors; /* => entry before first real column */
  895. cquantize->on_odd_row = TRUE; /* flip for next time */
  896. }
  897. /* Preset error values: no error propagated to first pixel from left */
  898. cur0 = cur1 = cur2 = 0;
  899. /* and no error propagated to row below yet */
  900. belowerr0 = belowerr1 = belowerr2 = 0;
  901. bpreverr0 = bpreverr1 = bpreverr2 = 0;
  902. for (col = width; col > 0; col--) {
  903. /* curN holds the error propagated from the previous pixel on the
  904. * current line. Add the error propagated from the previous line
  905. * to form the complete error correction term for this pixel, and
  906. * round the error term (which is expressed * 16) to an integer.
  907. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
  908. * for either sign of the error value.
  909. * Note: errorptr points to *previous* column's array entry.
  910. */
  911. cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
  912. cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
  913. cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
  914. /* Limit the error using transfer function set by init_error_limit.
  915. * See comments with init_error_limit for rationale.
  916. */
  917. cur0 = error_limit[cur0];
  918. cur1 = error_limit[cur1];
  919. cur2 = error_limit[cur2];
  920. /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  921. * The maximum error is +- MAXJSAMPLE (or less with error limiting);
  922. * this sets the required size of the range_limit array.
  923. */
  924. cur0 += GETJSAMPLE(inptr[0]);
  925. cur1 += GETJSAMPLE(inptr[1]);
  926. cur2 += GETJSAMPLE(inptr[2]);
  927. cur0 = GETJSAMPLE(range_limit[cur0]);
  928. cur1 = GETJSAMPLE(range_limit[cur1]);
  929. cur2 = GETJSAMPLE(range_limit[cur2]);
  930. /* Index into the cache with adjusted pixel value */
  931. cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
  932. /* If we have not seen this color before, find nearest colormap */
  933. /* entry and update the cache */
  934. if (*cachep == 0)
  935. fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
  936. /* Now emit the colormap index for this cell */
  937. { register int pixcode = *cachep - 1;
  938. *outptr = (JSAMPLE) pixcode;
  939. /* Compute representation error for this pixel */
  940. cur0 -= GETJSAMPLE(colormap0[pixcode]);
  941. cur1 -= GETJSAMPLE(colormap1[pixcode]);
  942. cur2 -= GETJSAMPLE(colormap2[pixcode]);
  943. }
  944. /* Compute error fractions to be propagated to adjacent pixels.
  945. * Add these into the running sums, and simultaneously shift the
  946. * next-line error sums left by 1 column.
  947. */
  948. { register LOCFSERROR bnexterr, delta;
  949. bnexterr = cur0; /* Process component 0 */
  950. delta = cur0 * 2;
  951. cur0 += delta; /* form error * 3 */
  952. errorptr[0] = (FSERROR) (bpreverr0 + cur0);
  953. cur0 += delta; /* form error * 5 */
  954. bpreverr0 = belowerr0 + cur0;
  955. belowerr0 = bnexterr;
  956. cur0 += delta; /* form error * 7 */
  957. bnexterr = cur1; /* Process component 1 */
  958. delta = cur1 * 2;
  959. cur1 += delta; /* form error * 3 */
  960. errorptr[1] = (FSERROR) (bpreverr1 + cur1);
  961. cur1 += delta; /* form error * 5 */
  962. bpreverr1 = belowerr1 + cur1;
  963. belowerr1 = bnexterr;
  964. cur1 += delta; /* form error * 7 */
  965. bnexterr = cur2; /* Process component 2 */
  966. delta = cur2 * 2;
  967. cur2 += delta; /* form error * 3 */
  968. errorptr[2] = (FSERROR) (bpreverr2 + cur2);
  969. cur2 += delta; /* form error * 5 */
  970. bpreverr2 = belowerr2 + cur2;
  971. belowerr2 = bnexterr;
  972. cur2 += delta; /* form error * 7 */
  973. }
  974. /* At this point curN contains the 7/16 error value to be propagated
  975. * to the next pixel on the current line, and all the errors for the
  976. * next line have been shifted over. We are therefore ready to move on.
  977. */
  978. inptr += dir3; /* Advance pixel pointers to next column */
  979. outptr += dir;
  980. errorptr += dir3; /* advance errorptr to current column */
  981. }
  982. /* Post-loop cleanup: we must unload the final error values into the
  983. * final fserrors[] entry. Note we need not unload belowerrN because
  984. * it is for the dummy column before or after the actual array.
  985. */
  986. errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
  987. errorptr[1] = (FSERROR) bpreverr1;
  988. errorptr[2] = (FSERROR) bpreverr2;
  989. }
  990. }
  991. /*
  992. * Initialize the error-limiting transfer function (lookup table).
  993. * The raw F-S error computation can potentially compute error values of up to
  994. * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
  995. * much less, otherwise obviously wrong pixels will be created. (Typical
  996. * effects include weird fringes at color-area boundaries, isolated bright
  997. * pixels in a dark area, etc.) The standard advice for avoiding this problem
  998. * is to ensure that the "corners" of the color cube are allocated as output
  999. * colors; then repeated errors in the same direction cannot cause cascading
  1000. * error buildup. However, that only prevents the error from getting
  1001. * completely out of hand; Aaron Giles reports that error limiting improves
  1002. * the results even with corner colors allocated.
  1003. * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
  1004. * well, but the smoother transfer function used below is even better. Thanks
  1005. * to Aaron Giles for this idea.
  1006. */
  1007. LOCAL(void)
  1008. init_error_limit (j_decompress_ptr cinfo)
  1009. /* Allocate and fill in the error_limiter table */
  1010. {
  1011. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1012. int * table;
  1013. int in, out;
  1014. table = (int *) (*cinfo->mem->alloc_small)
  1015. ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
  1016. table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
  1017. cquantize->error_limiter = table;
  1018. #define STEPSIZE ((MAXJSAMPLE+1)/16)
  1019. /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
  1020. out = 0;
  1021. for (in = 0; in < STEPSIZE; in++, out++) {
  1022. table[in] = out; table[-in] = -out;
  1023. }
  1024. /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
  1025. for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
  1026. table[in] = out; table[-in] = -out;
  1027. }
  1028. /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
  1029. for (; in <= MAXJSAMPLE; in++) {
  1030. table[in] = out; table[-in] = -out;
  1031. }
  1032. #undef STEPSIZE
  1033. }
  1034. /*
  1035. * Finish up at the end of each pass.
  1036. */
  1037. METHODDEF(void)
  1038. finish_pass1 (j_decompress_ptr cinfo)
  1039. {
  1040. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1041. /* Select the representative colors and fill in cinfo->colormap */
  1042. cinfo->colormap = cquantize->sv_colormap;
  1043. select_colors(cinfo, cquantize->desired);
  1044. /* Force next pass to zero the color index table */
  1045. cquantize->needs_zeroed = TRUE;
  1046. }
  1047. METHODDEF(void)
  1048. finish_pass2 (j_decompress_ptr cinfo)
  1049. {
  1050. /* no work */
  1051. }
  1052. /*
  1053. * Initialize for each processing pass.
  1054. */
  1055. METHODDEF(void)
  1056. start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
  1057. {
  1058. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1059. hist3d histogram = cquantize->histogram;
  1060. int i;
  1061. /* Only F-S dithering or no dithering is supported. */
  1062. /* If user asks for ordered dither, give him F-S. */
  1063. if (cinfo->dither_mode != JDITHER_NONE)
  1064. cinfo->dither_mode = JDITHER_FS;
  1065. if (is_pre_scan) {
  1066. /* Set up method pointers */
  1067. cquantize->pub.color_quantize = prescan_quantize;
  1068. cquantize->pub.finish_pass = finish_pass1;
  1069. cquantize->needs_zeroed = TRUE; /* Always zero histogram */
  1070. } else {
  1071. /* Set up method pointers */
  1072. if (cinfo->dither_mode == JDITHER_FS)
  1073. cquantize->pub.color_quantize = pass2_fs_dither;
  1074. else
  1075. cquantize->pub.color_quantize = pass2_no_dither;
  1076. cquantize->pub.finish_pass = finish_pass2;
  1077. /* Make sure color count is acceptable */
  1078. i = cinfo->actual_number_of_colors;
  1079. if (i < 1)
  1080. ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
  1081. if (i > MAXNUMCOLORS)
  1082. ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
  1083. if (cinfo->dither_mode == JDITHER_FS) {
  1084. size_t arraysize = (size_t) ((cinfo->output_width + 2) *
  1085. (3 * SIZEOF(FSERROR)));
  1086. /* Allocate Floyd-Steinberg workspace if we didn't already. */
  1087. if (cquantize->fserrors == NULL)
  1088. cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
  1089. ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
  1090. /* Initialize the propagated errors to zero. */
  1091. jzero_far((void FAR *) cquantize->fserrors, arraysize);
  1092. /* Make the error-limit table if we didn't already. */
  1093. if (cquantize->error_limiter == NULL)
  1094. init_error_limit(cinfo);
  1095. cquantize->on_odd_row = FALSE;
  1096. }
  1097. }
  1098. /* Zero the histogram or inverse color map, if necessary */
  1099. if (cquantize->needs_zeroed) {
  1100. for (i = 0; i < HIST_C0_ELEMS; i++) {
  1101. jzero_far((void FAR *) histogram[i],
  1102. HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
  1103. }
  1104. cquantize->needs_zeroed = FALSE;
  1105. }
  1106. }
  1107. /*
  1108. * Switch to a new external colormap between output passes.
  1109. */
  1110. METHODDEF(void)
  1111. new_color_map_2_quant (j_decompress_ptr cinfo)
  1112. {
  1113. my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1114. /* Reset the inverse color map */
  1115. cquantize->needs_zeroed = TRUE;
  1116. }
  1117. /*
  1118. * Module initialization routine for 2-pass color quantization.
  1119. */
  1120. GLOBAL(void)
  1121. jinit_2pass_quantizer (j_decompress_ptr cinfo)
  1122. {
  1123. my_cquantize_ptr cquantize;
  1124. int i;
  1125. cquantize = (my_cquantize_ptr)
  1126. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1127. SIZEOF(my_cquantizer));
  1128. cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  1129. cquantize->pub.start_pass = start_pass_2_quant;
  1130. cquantize->pub.new_color_map = new_color_map_2_quant;
  1131. cquantize->fserrors = NULL; /* flag optional arrays not allocated */
  1132. cquantize->error_limiter = NULL;
  1133. /* Make sure jdmaster didn't give me a case I can't handle */
  1134. if (cinfo->out_color_components != 3)
  1135. ERREXIT(cinfo, JERR_NOTIMPL);
  1136. /* Allocate the histogram/inverse colormap storage */
  1137. cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
  1138. ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
  1139. for (i = 0; i < HIST_C0_ELEMS; i++) {
  1140. cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
  1141. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1142. HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
  1143. }
  1144. cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
  1145. /* Allocate storage for the completed colormap, if required.
  1146. * We do this now since it is FAR storage and may affect
  1147. * the memory manager's space calculations.
  1148. */
  1149. if (cinfo->enable_2pass_quant) {
  1150. /* Make sure color count is acceptable */
  1151. int desired = cinfo->desired_number_of_colors;
  1152. /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
  1153. if (desired < 8)
  1154. ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
  1155. /* Make sure colormap indexes can be represented by JSAMPLEs */
  1156. if (desired > MAXNUMCOLORS)
  1157. ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
  1158. cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
  1159. ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
  1160. cquantize->desired = desired;
  1161. } else
  1162. cquantize->sv_colormap = NULL;
  1163. /* Only F-S dithering or no dithering is supported. */
  1164. /* If user asks for ordered dither, give him F-S. */
  1165. if (cinfo->dither_mode != JDITHER_NONE)
  1166. cinfo->dither_mode = JDITHER_FS;
  1167. /* Allocate Floyd-Steinberg workspace if necessary.
  1168. * This isn't really needed until pass 2, but again it is FAR storage.
  1169. * Although we will cope with a later change in dither_mode,
  1170. * we do not promise to honor max_memory_to_use if dither_mode changes.
  1171. */
  1172. if (cinfo->dither_mode == JDITHER_FS) {
  1173. cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
  1174. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1175. (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
  1176. /* Might as well create the error-limiting table too. */
  1177. init_error_limit(cinfo);
  1178. }
  1179. }
  1180. #endif /* QUANT_2PASS_SUPPORTED */