|
|
//
// SBC.C
// Sent Bitmap Cache
//
// Copyright(c) Microsoft 1997-
//
#include <as16.h>
//
// SBC_DDProcessRequest()
// Handle SBC escapes
//
BOOL SBC_DDProcessRequest ( UINT fnEscape, LPOSI_ESCAPE_HEADER pResult, DWORD cbResult ) { BOOL rc;
DebugEntry(SBC_DDProcessRequest);
switch (fnEscape) { case SBC_ESC_NEW_CAPABILITIES: { TRACE_OUT(("SBC_ESC_NEW_CAPABILITIES"));
ASSERT(cbResult == sizeof(SBC_NEW_CAPABILITIES));
#if 0
SBCDDSetNewCapabilities((LPSBC_NEW_CAPABILITIES)pResult); #endif
rc = TRUE; } break;
default: { ERROR_OUT(("Unrecognized SBC_ escape")); rc = FALSE; } break; }
DebugExitBOOL(SBC_DDProcessRequest, rc); return(rc); }
#if 0
//
// FUNCTION: SBCDDSetNewCapabilities
//
// DESCRIPTION:
//
// Set the new SBC related capabilities
//
// RETURNS:
//
// NONE
//
// PARAMETERS:
//
// pDataIn - pointer to the input buffer
//
//
void SBCDDSetNewCapabilities(LPSBC_NEW_CAPABILITIES pCapabilities) { DebugEntry(SBCSetNewCapabilities);
//
// Copy the data from the Share Core.
//
g_sbcSendingBPP = pCapabilities->sendingBpp;
hmemcpy(&g_sbcCacheInfo, pCapabilities->cacheInfo, sizeof(g_sbcCacheInfo));
DebugExitVOID(SBCSetNewCapabilities); } #endif
//
// SBC_DDInit()
//
BOOL SBC_DDInit ( HDC hdcScreen, LPDWORD ppShuntBuffers, LPDWORD pBitmasks ) { UINT i; BOOL rc = FALSE;
DebugEntry(SBC_DDInit);
#if 0
for (i = 0; i < SBC_NUM_TILE_SIZES; i++) { ASSERT(!g_sbcWorkInfo[i].pShuntBuffer); ASSERT(!g_sbcWorkInfo[i].mruIndex); ASSERT(!g_sbcWorkInfo[i].workBitmap);
if (i == SBC_SMALL_TILE_INDEX) { g_sbcWorkInfo[SBC_SMALL_TILE_INDEX].tileWidth = SBC_SMALL_TILE_WIDTH; g_sbcWorkInfo[SBC_SMALL_TILE_INDEX].tileHeight = SBC_SMALL_TILE_HEIGHT; } else { ASSERT(i == SBC_LARGE_TILE_INDEX);
g_sbcWorkInfo[SBC_LARGE_TILE_INDEX].tileWidth = SBC_LARGE_TILE_WIDTH; g_sbcWorkInfo[SBC_LARGE_TILE_INDEX].tileHeight = SBC_LARGE_TILE_HEIGHT; }
g_sbcWorkInfo[i].workBitmap = CreateCompatibleBitmap(hdcScreen, g_sbcWorkInfo[i].tileWidth, g_sbcWorkInfo[i].tileHeight);
if (! g_sbcWorkInfo[i].workBitmap) { ERROR_OUT(("Failed to create work bitmap %d", i)); DC_QUIT; }
SetObjectOwner(g_sbcWorkInfo[i].workBitmap, g_hInstAs16); MakeObjectPrivate(g_sbcWorkInfo[i].workBitmap, TRUE); }
//
// Initialize the shunt buffers
//
if (! SBCDDCreateShuntBuffers()) DC_QUIT;
//
// We've created our SBC cache. Fill in the details
//
for (i = 0; i < SBC_NUM_TILE_SIZES; i++) { ppShuntBuffers[i] = (DWORD)MapSL(g_sbcWorkInfo[i].pShuntBuffer); ASSERT(ppShuntBuffers[i]); }
pBitmasks[0] = g_osiScreenRedMask; pBitmasks[1] = g_osiScreenGreenMask; pBitmasks[2] = g_osiScreenBlueMask;
g_sbcPaletteChanged = TRUE;
rc = TRUE;
DC_EXIT_POINT:
#endif
DebugExitBOOL(SBC_DDInit, rc); return(rc); }
//
// SBC_DDTerm()
//
void SBC_DDTerm(void) { UINT i;
DebugEntry(SBC_DDTerm);
#if 0
//
// Clear out our array and free the shunt buffer memory.
//
for (i = 0 ; i < SBC_NUM_TILE_SIZES ; i++) { // Kill the bitmap if we there
if (g_sbcWorkInfo[i].workBitmap) { SysDeleteObject(g_sbcWorkInfo[i].workBitmap); g_sbcWorkInfo[i].workBitmap = NULL; }
if (g_sbcWorkInfo[i].pShuntBuffer) { GlobalFree((HGLOBAL)SELECTOROF(g_sbcWorkInfo[i].pShuntBuffer)); g_sbcWorkInfo[i].pShuntBuffer = NULL; }
g_sbcWorkInfo[i].mruIndex = 0; } #endif
DebugExitVOID(SBC_DDTerm); }
#if 0
//
// SBC_DDTossFromCache()
// This throws away a bitmap if we'd cached it, which happens when the
// contents change.
//
void SBC_DDTossFromCache ( HBITMAP hbmp ) { DebugEntry(SBC_DDTossFromCache);
DebugExitVOID(SBC_DDTossFromCache); }
//
//
// SBC_DDIsMemScreenBltCachable() - see sbc.h
//
//
BOOL SBC_DDIsMemScreenBltCachable ( UINT type, HDC hdcSrc, HBITMAP hbmpSrc, UINT cxSubWidth, UINT cySubHeight, HDC hdcDst, LPBITMAPINFO lpbmi ) { BOOL rc = FALSE; UINT srcBpp; UINT tileWidth; UINT tileHeight; BITMAP bmpDetails; int bmpWidth; int bmpHeight;
DebugEntry(SBC_DDIsMemScreenBltCachable);
ASSERT((type == LOWORD(ORD_MEMBLT)) || (type == LOWORD(ORD_MEM3BLT)));
if (g_sbcSendingBPP > 8) { TRACE_OUT(( "Unsupported sending bpp %d", g_sbcSendingBPP)); DC_QUIT; }
//
// If this is a thrasher then don't cache it
//
if (!SBCBitmapCacheAllowed(hbmp)) { TRACE_OUT(( "Its a thrasher")); DC_QUIT; }
//
// Ensure we're not in full screen mode.
//
if (g_asShared->fullScreen) { TRACE_OUT(("Not caching SBC; full screen active")); DC_QUIT; }
if (hdcSrc && (GetMapMode(hdcSrc) != MM_TEXT)) { TRACE_OUT(("Not caching SBC; source map mode not MM_TEXT")); DC_QUIT; }
if (!hbmp) { //
// We don't cache compressed DIB and DIB section bitmaps
//
if (lpbi->bmiHeader.biCompression != BI_RGB) DC_QUIT;
bmpWidth = lpbi->bmiHeader.biWidth; bmpHeight = lpbi->bmiHeader.biHeight; srcBpp = lpbi->bmiHeader.biPlanes * lpbi->bmiHeader.biBitCount; } else { if (!GetObject(hbmp, sizeof(bmpDetails), &bmpDetails)) { ERROR_OUT(("Can't get source info")); DC_QUIT; }
srcBpp = bmpDetails.bmBitsPixel * bmpDetails.bmPlanes; bmpWidth = bmpDetails.bmWidth; bmpHeight = bmpDetails.bmHeight; }
//
// Oprah394
//
// This function is much too ready to take on work, even when it would
// mean bogging down the host with unnecessary caching work. We
// have no way to determine when an app is doing animation save to
// reject cache requests when the rate looks to be too high.
//
// This function is called for complete source bitmaps before tiling
// so we do not need to worry about confusing tiling with animation.
// The CacheRequests count is decayed in SBC_Periodic
//
//
// MNM0063 - Oprah 394 revisited
//
// If we decide here that we are doing animation, we set the
// sbcAnimating flag for the benefit of other parts of the code. In
// particular, we use this to suppress the comparison of before and
// after states of the screen during a BitBlt operation
//
//
if ((cxSubBitmapWidth != bmpWidth) || (cySubBitmapHeight != bmpHeight)) { TRACE_OUT(("Partial blit - check for slideshow effects")); g_sbcBltRate++; if (g_sbcBltRate > SBC_CACHE_DISABLE_RATE) { TRACE_OUT(("Excessive cache rate %d - disabled", g_sbcBltRate)); g_sbcAnimating = TRUE; DC_QUIT; } } //
// MNM63: if we get here, we will assume we're not animating
//
g_sbcAnimating = FALSE;
//
// If the bitmap is 1bpp and the colors are not default then we don't
// cache it (all bitmaps are cached in glorious technicolor!)
//
if ( (srcBpp == 1) && ( (g_oeState.lpdc->DrawMode.bkColorL != DEFAULT_BG_COLOR) || (g_oeState.lpdc->DrawMode.txColorL != DEFAULT_FG_COLOR) || (type == LOWORD(ORD_MEM3BLT))) ) { TRACE_OUT(("Didn't cache mono bitmap with non-default colors")); DC_QUIT; }
//
// Check that the cache will accept tiles
//
if (!SBC_DDQueryBitmapTileSize(bmpWidth, bmpHeight, &tileWidth, &tileHeight)) { TRACE()"Cache does not support tiling")); DC_QUIT; }
//
// We are ready to go ahead with the caching!
//
rc = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBC_DDIsMemScreenBltCachable, rc); return(rc); }
//
//
// SBC_DDCacheMemScreenBlt() - see sbc.h
//
//
BOOL SBC_DDCacheMemScreenBlt ( LPINT_ORDER pOrder, LPMEMBLT_ORDER_EXTRA_INFO lpMemBltInfo, HDC hdcDst ) { BOOL rc = FALSE; LPMEMBLT_ORDER pMemBltOrder = (LPMEMBLT_ORDER)&(pOrder->abOrderData); LPMEM3BLT_ORDER pMem3BltOrder = (LPMEM3BLT_ORDER)pMemBltOrder; HBITMAP hBitmap; HDC hdcSrc; UINT iCache; UINT iCacheEntry; UINT iColorTable; UINT type; LPINT pXSrc; LPINT pYSrc; UINT srcBpp; BITMAP bmpDetails; UINT bmpWidth; UINT bmpHeight; UINT tileWidth; UINT tileHeight; POINT tileOrg; UINT cxSubBitmapWidth; UINT cySubBitmapHeight; LPBYTE pWorkBits; RECT destRect; POINT sourcePt; int tileSize; LPSBC_TILE_DATA pTileData = NULL;
DebugEntry(SBC_DDCacheMemScreenBlt);
//
// Do a first pass on the cacheability of the Blt
//
if (!SBC_DDIsMemScreenBltCachable(lpMemBltInfo)) { TRACE_OUT(( "This MemBlt Order is not cachable")); DC_QUIT; }
//
// Get the width and height of the source bitmap
//
pSourceSurf = pMemBltInfo->pSource; bmpWidth = pSourceSurf->sizlBitmap.cx; bmpHeight = pSourceSurf->sizlBitmap.cy;
//
// Calculate the tile size for this blit
//
if (!SBC_DDQueryBitmapTileSize(bmpWidth, bmpHeight, &tileWidth, &tileHeight)) { TRACE_OUT(( "Cache does not support tiling")); DC_QUIT; }
//
// Set up pointers to the source coordinates in the order.
//
type = pMemBltOrder->type; if (type == ORD_MEMBLT_TYPE) { sourcePt.x = pMemBltOrder->nXSrc; sourcePt.y = pMemBltOrder->nYSrc; TRACE_OUT(( "Request to cache MemBlt (%d, %d), %d x %d -> (%d, %d), src %x", sourcePt.x, sourcePt.y, pMemBltOrder->nWidth, pMemBltOrder->nHeight, pMemBltOrder->nLeftRect, pMemBltOrder->nTopRect, pSourceSurf->hsurf)); } else { sourcePt.x = pMem3BltOrder->nXSrc; sourcePt.y = pMem3BltOrder->nYSrc; TRACE_OUT(( "Request to cache Mem3Blt (%d, %d), %d x %d -> (%d, %d), src %x", sourcePt.x, sourcePt.y, pMem3BltOrder->nWidth, pMem3BltOrder->nHeight, pMem3BltOrder->nLeftRect, pMem3BltOrder->nTopRect, pSourceSurf->hsurf)); }
//
// Calculate the tile origin and size of remaining bitmap. Origin is
// rounded down to the nearest tile. Actual size of bitmap to cache
// may be smaller than tile size if the tile runs off the right/bottom
// of the bitmap
//
tileOrg.x = sourcePt.x - (sourcePt.x % tileWidth); tileOrg.y = sourcePt.y - (sourcePt.y % tileHeight);
//
// Actual size of bitmap to cache may be smaller than tile size if the
// tile runs off the right/bottom of the bitmap. To see why this
// calculation is correct, realize that (bmpWidth - tileOrg.x) is the
// remaining width of the bitmap after the start of this tile.
//
cxSubBitmapWidth = min(tileWidth, bmpWidth - tileOrg.x); cySubBitmapHeight = min(tileHeight, bmpHeight - tileOrg.y);
//
// We know how large a tile we have - we now have to Blt it into one of
// our work bitmaps and pass it up to the share core. First, work out
// which of our work bitmaps we should use and set up some variables
// based on this.
//
for (tileSize=0 ; tileSize<SBC_NUM_TILE_SIZES ; tileSize++) { if ((cxSubBitmapWidth <= g_sbcWorkInfo[tileSize].tileWidth) && (cySubBitmapHeight <= g_sbcWorkInfo[tileSize].tileHeight)) { break; } }
if (tileSize == SBC_NUM_TILE_SIZES) { ERROR_OUT(( "%d x %d tile doesn't fit into work bmp", cxSubBitmapWidth, cySubBitmapHeight)); DC_QUIT; }
//
// Before doing any more work, get the next free entry in the shunt
// buffer. Note that this fills in the tileId element of the returned
// structure.
//
// It is perfectly valid for this call to fail. The shunt buffer may
// just be full if we are sending lots of bitmap data up to the share
// core.
//
if (!SBCDDGetNextFreeTile(tileSize, &pTileData)) { TRACE_OUT(( "Unable to get a free tile in shunt buffer")); DC_QUIT; }
//
// Lock the work bitmap to get a surface to pass to EngBitBlt
//
pWorkSurf = EngLockSurface((HSURF)g_sbcWorkInfo[tileSize].workBitmap); if (pWorkSurf == NULL) { ERROR_OUT(( "Failed to lock work surface")); DC_QUIT; } TRACE_OUT(( "Locked surface"));
//
// Do the Blt to our work bitmap to get the bits at native bpp, and
// using the color table which we sent to the share core.
//
destRectl.top = 0; destRectl.left = 0; destRectl.right = cxSubBitmapWidth; destRectl.bottom = cySubBitmapHeight;
sourcePt = tileOrg;
if (!EngBitBlt(pWorkSurf, pSourceSurf, NULL, // mask surface
NULL, // clip object
pMemBltInfo->pXlateObj, &destRectl, &sourcePt, NULL, // mask origin
NULL, // brush
NULL, // brush origin
0xcccc)) // SRCCPY
{ ERROR_OUT(( "Failed to Blt to work bitmap")); DC_QUIT; } TRACE_OUT(( "Completed BitBlt"));
//
// The Blt succeeded, so pass the bits to the share core by copying
// them into the correct shunt buffer.
//
// bytesUsed is set to the number of bytes required for
// cySubBitmapHeight number of full scanlines in the shunt buffer tile
// (NOT the number of bytes available in the tile, or the number of
// bytes of data which was actually Blted)
//
// major/minorCacheInfo are set to details from the source surface.
// hdev does not change on consecutive Blts from the same surface, but
// iUniq may.
//
pDestSurf = pMemBltInfo->pDest; pDestDev = (LPOSI_PDEV)pDestSurf->dhpdev; pTileData->bytesUsed = BYTES_IN_BITMAP(g_sbcWorkInfo[tileSize].tileWidth, cySubBitmapHeight, pDestDev->cBitsPerPel); pTileData->srcX = (TSHR_UINT16)sourcePt.x; pTileData->srcY = (TSHR_UINT16)sourcePt.y; pTileData->width = cxSubBitmapWidth; pTileData->height = cySubBitmapHeight; pTileData->tilingWidth = tileWidth; pTileData->tilingHeight = tileHeight; pTileData->majorCacheInfo = (UINT)pSourceSurf->hsurf; pTileData->minorCacheInfo = (UINT)pSourceSurf->iUniq; pTileData->majorPalette = (UINT)pMemBltInfo->pXlateObj; pTileData->minorPalette = (UINT)(pMemBltInfo->pXlateObj != NULL ? pMemBltInfo->pXlateObj->iUniq : 0);
//
// If the source surface has the BMF_DONTCACHE flag set then it is a
// DIB Section. This means that an app can change the bits in the
// surface without calling GDI, and hence without the iUniq value being
// updated.
//
// We rely on iUniq changing for the fast path to work, so we must
// exclude these bitmaps from the fast path. Do this by resetting the
// majorCacheInfo field (we use this rather than minorCacheInfo because
// we can't tell what an invalid iUniq value is).
//
if ( (pSourceSurf->iType == STYPE_BITMAP) && ((pSourceSurf->fjBitmap & BMF_DONTCACHE) != 0) ) { TRACE_OUT(( "Source hsurf %#.8lx has BMF_DONTCACHE set", pTileData->majorCacheInfo)); pTileData->majorCacheInfo = SBC_DONT_FASTPATH; }
//
// Note that this only works correctly because we create our work
// bitmaps to be "top down" rather than the default of "bottom up".
// i.e. the data for the top scanline is first in memory, so we can
// start copying from the start of the bit data. Bottom up would mean
// working out an offset into the work bitmap to start copying from.
//
memcpy(pTileData->bitData, pWorkSurf->pvBits, pTileData->bytesUsed);
//
// We've done the copy. Reset the work bitmap bits for next time we
// use this work bitmap - this helps with compression later on.
//
memset(pWorkSurf->pvBits, 0, pWorkSurf->cjBits);
//
// Fill in the required info in the Mem(3)Blt order.
//
if (type == ORD_MEMBLT_TYPE) { pMemBltOrder->cacheId = pTileData->tileId; } else { pMem3BltOrder->cacheId = pTileData->tileId; }
//
// We've filled in all the data in the shunt buffer entry, so mark it
// as in use so that the share core can access it.
//
pTileData->inUse = TRUE;
//
// Must have completed successfully to get to here
//
TRACE_OUT(( "Queued tile (%d, %d), %d x %d, tile %d x %d, Id %hx", sourcePt.x, sourcePt.y, cxSubBitmapWidth, cySubBitmapHeight, g_sbcWorkInfo[tileSize].tileWidth, g_sbcWorkInfo[tileSize].tileHeight, pTileData->tileId)); rc = TRUE;
DC_EXIT_POINT:
//
// Unlock the work surface (if required)
//
if (pWorkSurf != NULL) { EngUnlockSurface(pWorkSurf); TRACE_OUT(( "Unlocked surface")); }
DebugExitDWORD(SBC_DDCacheMemScreenBlt, rc); return(rc);
//
// If the data flow rate is high enough then we don't bother with
// any bitmap caching. This allows the host to run at its maximum
// speed at all times, which gives us the maximum amount of spoiling
// and responsiveness.
//
if (!usrCacheBitmaps) { DC_QUIT; }
//
// Bitmap caching is only supported for 4bpp and 8bpp protocols. If we
// switch the sending bpp during a share it does not matter because we
// are controlling the remote bitmap caches.
//
if ((usrSendingbpp != 4) && (usrSendingbpp != 8)) { DC_QUIT; }
//
// Extract the src DC handle from the Order Header.
//
hdcSrc = pOrder->OrderHeader.memBltInfo.hdcSrc;
//
// If the mapping mode of the src DC is anything other that MM_TEXT
// (the default) then we don't cache the bitmap.
// We are aiming to cache icons and buttons and these will normally
// be drawn using MM_TEXT mapping mode. Therefore if the mode is
// anything other than MM_TEXT we can assume something more complex
// is going on and we probably don't want to cache it anyway.
//
if ((hdcSrc != NULL) && (GetMapMode(hdcSrc) != MM_TEXT)) { TRACE()"Didn't cache blt using complex mapping mode")); DC_QUIT; }
//
// Extract the src bitmap handle from the Order.
//
type = ((LPMEMBLT_ORDER)&pOrder->abOrderData)->type; if (type == LOWORD(ORD_MEMBLT)) { hBitmap = (HBITMAP)((LPMEMBLT_ORDER)&pOrder->abOrderData)->hBitmap; } else { hBitmap = (HBITMAP)((LPMEM3BLT_ORDER)&pOrder->abOrderData)->hBitmap; } TRACE_DBG()"hBitmap %x", hBitmap));
//
// If this is a thrasher then don't cache it
//
if (!SBCBitmapCacheAllowed(hBitmap)) { TRACE()"Its a thrasher!")); DC_QUIT; }
//
// Fetch the bitmap details. If the bitmap is 1bpp and the colors are
// not default then we don't cache it (all bitmaps are cached in
// glorious technicolor!)
//
if (hBitmap == NULL) { bmpWidth = (TSHR_INT16)pOrder->OrderHeader.memBltInfo.lpbmi-> bmiHeader.biWidth; bmpHeight = (TSHR_INT)pOrder->OrderHeader.memBltInfo.lpbmi-> bmiHeader.biHeight; srcBpp = pOrder->OrderHeader.memBltInfo.lpbmi->bmiHeader.biPlanes * pOrder->OrderHeader.memBltInfo.lpbmi->bmiHeader.biBitCount; } else { if (GetObject(hBitmap, sizeof(BITMAP), &bmpDetails)) { srcBpp = bmpDetails.bmBitsPixel * bmpDetails.bmPlanes; bmpWidth = bmpDetails.bmWidth; bmpHeight = bmpDetails.bmHeight; } else { TRACE_ERR()"Failed to get bmp details (%x)", (TSHR_UINT16)hBitmap)); DC_QUIT; } }
if ( (srcBpp == 1) && ( (GetBkColor(hdcDst) != DEFAULT_BG_COLOR) || (GetTextColor(hdcDst) != DEFAULT_FG_COLOR) || (type == LOWORD(ORD_MEM3BLT))) ) { TRACE()"Didn't cache mono bitmap with non-default colors")); DC_QUIT; }
//
// Set up pointers to the source coordinates in the order.
//
if ( type == LOWORD(ORD_MEMBLT) ) { pXSrc = &((LPMEMBLT_ORDER)&(pOrder->abOrderData))->nXSrc; pYSrc = &((LPMEMBLT_ORDER)&(pOrder->abOrderData))->nYSrc; } else { pXSrc = &((LPMEM3BLT_ORDER)&(pOrder->abOrderData))->nXSrc; pYSrc = &((LPMEM3BLT_ORDER)&(pOrder->abOrderData))->nYSrc; }
//
// Calculate the tile size for this blit
//
if (!SBC_QueryBitmapTileSize(bmpWidth, bmpHeight, &tileWidth, &tileHeight)) { TRACE()"Cache does not support tiling")); DC_QUIT; }
//
// Calculate the tile origin and size of remaining bitmap. Origin is
// rounded down to the nearest tile. Actual size of bitmap to cache
// may be smaller than tile size if the tile runs off the right/bottom
// of the bitmap
//
tileOrg.x = *pXSrc - (*pXSrc % tileWidth); tileOrg.y = *pYSrc - (*pYSrc % tileHeight);
//
// Actual size of bitmap to cache may be smaller than tile size if the
// tile runs off the right/bottom of the bitmap. To see why this
// calculation is correct, realize that (bmpWidth - tileOrg.x) is the
// remaining width of the bitmap after the start of this tile.
//
cxSubBitmapWidth = MIN((TSHR_INT16)tileWidth, bmpWidth - tileOrg.x); cySubBitmapHeight = MIN((TSHR_INT16)tileHeight, bmpHeight - tileOrg.y);
//
// Add the bitmap to the cache.
//
// If the sub-bitmap is already in the cache then this function will
// locate it and return the cache index.
//
// If the sub-bitmap is not in the cache, this function will cache
// it, adding the sub-bitmap data to the order queue.
//
if (!SBCCacheSubBitmap(&iCache, hBitmap, hdcSrc, hdcDst, tileOrg.x, tileOrg.y, bmpWidth, bmpHeight, cxSubBitmapWidth, cySubBitmapHeight, srcBpp, &iCacheEntry, &iColorTable, pOrder->OrderHeader.memBltInfo.pBits, pOrder->OrderHeader.memBltInfo.lpbmi, pOrder->OrderHeader.memBltInfo.fuColorUse, pOrder->OrderHeader.memBltInfo.hPalDest)) { //
// The sub-bitmap could not be cached - return FALSE.
// The caller will add the destination of the blt into the SDA and
// discard the order.
//
TRACE()"Failed to cache bitmap %04x", hBitmap)); DC_QUIT; }
//
// Set up the source co-ordinates. For R1 protocols, the x-coordinate
// includes the offset which is required to get the right cell within
// the receive bitmap cache. For R2, we set up the cache entry in a
// separate field.
//
if (!sbcMultiPoint) { *pXSrc = (iCacheEntry * sbcBmpCaches[iCache].cCellSize) + *pXSrc % tileWidth; } else { *pXSrc = *pXSrc % tileWidth; } *pYSrc = *pYSrc % tileHeight;
//
// The sub-bitmap and color table are in the cache. Store a cache
// handle and color handle (which the receiver will turn back into an
// HBITMAP). Also store the cache index for R2 protocols (see above).
//
if (type == LOWORD(ORD_MEMBLT)) { ((LPMEMBLT_ORDER)&pOrder->abOrderData)->hBitmap = MEMBLT_COMBINEHANDLES(iColorTable,iCache); if (sbcMultiPoint) { ((LPMEMBLT_R2_ORDER)&pOrder->abOrderData)->type = LOWORD(ORD_MEMBLT_R2); ((LPMEMBLT_R2_ORDER)&pOrder->abOrderData)->cacheIndex = iCacheEntry; } TRACE()"MEMBLT color %d bitmap %d:%d",iColorTable,iCache,iCacheEntry)); } else { ((LPMEM3BLT_ORDER)&pOrder->abOrderData)->hBitmap = MEMBLT_COMBINEHANDLES(iColorTable,iCache); if (sbcMultiPoint) { ((LPMEM3BLT_R2_ORDER)&pOrder->abOrderData)->type = LOWORD(ORD_MEM3BLT_R2); ((LPMEM3BLT_R2_ORDER)&pOrder->abOrderData)->cacheIndex = iCacheEntry; } TRACE()"MEM3BLT color %d bitmap %d:%d",iColorTable,iCache,iCacheEntry));
}
TRACE_DBG()"iCacheEntry=%u, tileWidth=%hu, xSrc=%hd, ySrc=%hd", iCacheEntry, tileWidth, *pXSrc, *pYSrc));
rc = TRUE;
DC_EXIT(rc); }
//
//
// SBC_DDQueryBitmapTileSize - see sbc.h
//
//
BOOL SBC_DDQueryBitmapTileSize ( UINT bmpWidth, UINT bmpHeight, LPUINT pTileWidth, LPUINT pTileHeight ) { BOOL rc = FALSE; UINT i; UINT maxSide;
DebugEntry(SBC_DDQueryBitmapTileSize);
//
// The tile cell sizes are a local only decision, with the proviso that
// the largest uncompressed tile must fit into the largest cache slot.
// What this means is that for R1.1 we must define cell dimensions that
// have a good fit in the square cache cells. For R2.0 we can just
// select tile sizes that seem appropriate. Taking widths that are not
// a multiple of 16 is wasteful. The height should generally be less
// than the width, simply on the grounds that bitmaps tend to be wider
// than they are high.
//
if (g_sbcCacheInfo[ID_LARGE_BMP_CACHE].cCellSize < (g_sbcWorkInfo[SBC_SMALL_TILE_INDEX].tileWidth * g_sbcWorkInfo[SBC_SMALL_TILE_INDEX].tileHeight)) { ERROR_OUT(( "No space for any cells")); DC_QUIT; }
rc = TRUE;
//
// If large cell size is adequate then allow 64*63 cells for
// wide bitmaps
//
if (g_sbcCacheInfo[ID_LARGE_BMP_CACHE].cCellSize >= (MP_LARGE_TILE_WIDTH * MP_LARGE_TILE_HEIGHT)) { if ((bmpWidth > MP_SMALL_TILE_WIDTH) || (bmpHeight > MP_SMALL_TILE_HEIGHT)) { *pTileWidth = MP_LARGE_TILE_WIDTH; *pTileHeight = MP_LARGE_TILE_HEIGHT; DC_QUIT; } }
//
// Otherwise we just use 32*31 cells
//
*pTileWidth = MP_SMALL_TILE_WIDTH; *pTileHeight = MP_SMALL_TILE_HEIGHT;
DC_EXIT_POINT: DebugExitBOOL(SBC_DDQueryBitmapTileSize, rc); return(rc); }
//
//
// SBC_DDSyncUpdatesNow() - see sbc.h
//
//
void SBC_DDSyncUpdatesNow(void) { LPSBC_TILE_DATA pTileData; UINT i; UINT j;
DebugEntry(SBC_DDSyncUpdatesNow);
TRACE_OUT(( "Marking all shunt buffer entries as not in use"));
//
// We have to mark all entries in the shunt buffers as being free.
//
for (i = 0 ; i < SBC_NUM_TILE_SIZES; i++) { for (j = 0 ; j < g_sbcWorkInfo[i].pShuntBuffer->numEntries; j++) { pTileData = SBCTilePtrFromIndex(g_sbcWorkInfo[i].pShuntBuffer, j); pTileData->inUse = FALSE; }
//
// Reset the MRU counter for this shunt buffer
//
g_sbcWorkInfo[i].mruIndex = 0; }
//
// If we are a palette device (i.e. we are running at 8 bpp or less),
// set the paletteChanged flag so we will send up a color table before
// our next Mem(3)Blt. We do this because the color table order for
// the current device palette may have been discarded during the OA
// sync.
//
g_sbcPaletteChanged = (g_osiScreenBPP <= 8);
DebugExitVOID(SBC_DDSyncUpdatesNow); }
//
//
// SBC_DDOrderSpoiltNotification() - see sbc.h
//
//
void SBC_DDOrderSpoiltNotification(LPINT_ORDER pOrder) { LPMEMBLT_ORDER pMemBltOrder = (LPMEMBLT_ORDER)&(pOrder->abOrderData); LPMEM3BLT_ORDER pMem3BltOrder = (LPMEM3BLT_ORDER)pMemBltOrder; UINT tileId; LPSBC_TILE_DATA pTileData; UINT tileType; UINT i;
DebugEntry(SBC_DDOrderSpoiltNotification);
//
// pOrder has been removed from the order heap before being processed.
// We have to free up the entry which it references in one of the shunt
// buffers. First get the tile Id.
//
if (pMemBltOrder->type = ORD_MEMBLT_TYPE) { tileId = pMemBltOrder->cacheId; } else { tileId = pMem3BltOrder->cacheId; } TRACE_OUT(( "Order referencing tile %hx has been spoiled", tileId));
//
// Find out which of the shunt buffers the entry should be in based on
// the tileId
//
tileType = SBC_TILE_TYPE(tileId);
//
// We implement the shunt buffers as circular FIFO queues, so we will
// start looking from the last order which we marked as being in use,
// and work BACKWARDS. This is because, in general, the entries after
// the last one we accessed will not be in use (unless the whole shunt
// buffer is in use).
//
// So, get the index of the last tile we accessed.
//
i = g_sbcWorkInfo[tileType].mruIndex;
//
// Loop through the circular buffer until we get a match, or have
// circled back to the beginning.
//
// Note that this has been coded as a "do while" loop, rather than just
// a "while" loop so that we don't miss mruIndex. mruIndex is set up
// to point to the NEXT entry to be used, rather than the last entry to
// be used, so decrementing i before doing any work first time round
// the loop is actually what we want to do.
//
do { //
// On to the next tile
//
i = (i == 0) ? g_sbcWorkInfo[tileType].pShuntBuffer->numEntries - 1 : i - 1;
pTileData = SBCTilePtrFromIndex(g_sbcWorkInfo[tileType].pShuntBuffer, i);
if (pTileData->inUse && (pTileData->tileId == tileId)) { //
// We've got a match, so mark the tile as being free.
//
// We don't want to update the shunt buffer mruIndex - this
// should remain indicating the next tile to be used when
// adding an entry to the shunt buffer.
//
TRACE_OUT(( "Marked tile Id %hx at index %d as free", tileId, i)); pTileData->inUse = FALSE; break; } } while (i != g_sbcWorkInfo[tileType].mruIndex);
DebugExitVOID(SBC_DDOrderSpoiltNotification); }
//
//
// SBC_DDMaybeQueueColorTable() - see sbc.h
//
//
BOOL SBC_DDMaybeQueueColorTable(void) { BOOL queuedOK = FALSE; int orderSize; LPINT_ORDER pOrder; LPINT_COLORTABLE_ORDER_1BPP pColorTableOrder; UINT numColors; UINT i;
DebugEntry(SBC_DDMaybeQueueColorTable);
//
// If we're running at > 8 bpp, then we don't have a palette, so just
// quit out.
//
if (g_osiScreenBPP > 8) { queuedOK = TRUE; DC_QUIT; }
//
// Check the boolean in our PDEV to see if the palette has changed
// since the last time we sent a color table order. Note that if we
// have a non palette device, the boolean will never be set.
//
if (!g_sbcPaletteChanged) { queuedOK = TRUE; DC_QUIT; }
//
// The palette has changed, so allocate order memory to queue a color
// table order. The order size depends on the bpp of our device. Note
// that the allocation can fail if the order buffer is full.
//
switch (g_osiScreenBPP) { case 1: { orderSize = sizeof(INT_COLORTABLE_ORDER_1BPP); } break;
case 4: { orderSize = sizeof(INT_COLORTABLE_ORDER_4BPP); } break;
case 8: { orderSize = sizeof(INT_COLORTABLE_ORDER_8BPP); } break;
default: { ERROR_OUT(("Invalid bpp (%d) for palette device", g_osiScreenBPP)); DC_QUIT; } break; }
pOrder = OA_DDAllocOrderMem(orderSize, 0); if (pOrder == NULL) { TRACE_OUT(( "Failed to allocate %d bytes for order", orderSize)); DC_QUIT; } TRACE_OUT(( "Allocate %d bytes for color table order", orderSize));
//
// We've successfully allocated the order, so fill in the details. We
// mark the order as internal so that the Update Packager will spot it
// up in the share core and prevent it being sent over the wire.
//
pOrder->OrderHeader.Common.fOrderFlags = OF_INTERNAL;
pColorTableOrder = (LPINT_COLORTABLE_ORDER_1BPP)&(pOrder->abOrderData); pColorTableOrder->header.type = INTORD_COLORTABLE_TYPE; pColorTableOrder->header.bpp = g_osiScreenBPP;
//
// Get the current system palette and save it.
//
numColors = COLORS_FOR_BPP(g_osiScreenBPP); for (i = 0 ; i < numColors; i++) { pColorTableOrder->colorData[i].rgbRed = ppDev->pPal[i].peRed; pColorTableOrder->colorData[i].rgbGreen = ppDev->pPal[i].peGreen; pColorTableOrder->colorData[i].rgbBlue = ppDev->pPal[i].peBlue; }
//
// Add the order
//
OA_DDAddOrder(pOrder, NULL); TRACE_OUT(( "Added internal color table order, size %d", orderSize));
//
// Reset the flag which indicates that the palette needs to be sent
//
g_sbcPaletteChanged = FALSE;
//
// Must be OK to get to here
//
queuedOK = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBC_DDMaybeQueueColorTable, queuedOK); return(queuedOK); }
//
// Name: SBCDDCreateShuntBuffers
//
// Purpose: Allocate memory for, and initialize the two shunt buffers
// used to pass data from the driver to the share core.
//
// Returns: TRUE if the buffers were allocated OK, FALSE otherwise.
//
// Operation: If this function succeeds, the following global variables
// are initialized.
//
// g_sbcWorkInfo[x].pShuntBuffer
// g_sbcWorkInfo[x].mruIndex
// g_sbcNextTileId
//
// If the function fails, some of these variables may be
// initialized.
//
BOOL SBCDDCreateShuntBuffers(void) { int i; UINT memPerTile[SBC_NUM_TILE_SIZES]; UINT numEntries[SBC_NUM_TILE_SIZES]; DWORD memRequired; DWORD minRequired; HGLOBAL hBuffer; LPBYTE pBuffer; BOOL rc;
DebugEntry(SBCDDCreateShuntBuffers);
rc = FALSE;
//
// We should already have a pointer to the shared memory we can use for
// our shunt buffers, and the number of bytes available. What we have
// to do is to partition this shared memory into SBC_NUM_TILE_SIZE
// shunt buffers. i.e. one shunt buffer per tile size.
//
//
// <--- buffer 0 ---><------------------ buffer 1 -------------------->
//
//��������������������������������������������������������������������Ŀ
//� � : : : : � � : : : : �
//� � : : : : � � tile : tile : tile : tile : tile �
//� � : : : : � � : : : : �
//����������������������������������������������������������������������
//^ ^ ^
//� � �
//� ���� header[0] ���� header[1]
//�
//��� psbcSharedMemory
//
//
// We try to use the number of entries given in the pEntries array, but
// if we do not have enough shared memory for this, we reduce the
// number of entries in each shunt buffer, preserving the ratio between
// the number of entries in each of the shunt buffers.
//
for (i = 0; i < SBC_NUM_TILE_SIZES ; i++) { numEntries[i] = SBC_TILE_ENTRIES;
//
// Calculate how much memory we need per tile, and for the whole
// shunt buffer.
//
memPerTile[i] = SBC_BYTES_PER_TILE(g_sbcWorkInfo[i].tileWidth, g_sbcWorkInfo[i].tileHeight, g_osiScreenBPP);
memRequired = SBCShuntBufferSize(memPerTile[i], numEntries[i]);
if (i == SBC_SMALL_TILE_INDEX) minRequired = SBCShuntBufferSize(memPerTile[i], SBC_SMALL_TILE_MIN_ENTRIES); else minRequired = SBCShuntBufferSize(memPerTile[i], SBC_LARGE_TILE_MIN_ENTRIES);
TRACE_OUT(( "[%d]: Requested %d entries, %ld bytes, %ld bytes min", i, numEntries[i], memRequired, minRequired));
//
// If memRequired or minRequired are greater than 64K, bail out.
//
if (memRequired > 0x10000) { if (minRequired > 0x10000) { WARNING_OUT(("Not enough memory for SBC")); DC_QUIT; }
//
// We have enough shared memory for the minimum # of entries,
// but not enough for the default. Figure out how many will fit.
// in 64K. We do this in a tricky way to avoid DWORD divides
//
// Basically, the result is
// (64K - fixed shunt buffer goop) / memPerTile
//
numEntries[i] = (0xFFFF - (sizeof(SBC_SHUNT_BUFFER) - sizeof(SBC_TILE_DATA)) + 1) / memPerTile[i]; }
//
// Try to allocate memory block.
//
hBuffer = GlobalAlloc(GMEM_FIXED | GMEM_ZEROINIT | GMEM_SHARE, SBCShuntBufferSize(memPerTile[i], numEntries[i]));
if (!hBuffer) { WARNING_OUT(("Not enough memory for SBC")); DC_QUIT; }
g_sbcWorkInfo[i].pShuntBuffer = (LPSBC_SHUNT_BUFFER)MAKELP(hBuffer, 0); }
//
// There are currently only two tile sizes and therefore two shunt
// buffers. If we run out of memory on the second one, yeah, we'll
// exit this function with one 64K block still allocated for the small
// tile size cache. It will get freed when SBC_DDTerm() is called.
//
// If this happens, freeing the block isn't going to make much of a
// difference, Windows is almost on its knees anyway. So no point in
// getting fancy and freeing it now.
//
//
// OK, we're home free.
//
for (i = 0; i < SBC_NUM_TILE_SIZES ; i++) { ASSERT(g_sbcWorkInfo[i].pShuntBuffer);
g_sbcWorkInfo[i].pShuntBuffer->numEntries = numEntries[i]; g_sbcWorkInfo[i].pShuntBuffer->numBytes = memPerTile[i] - sizeof(SBC_TILE_DATA); g_sbcWorkInfo[i].pShuntBuffer->structureSize = memPerTile[i];
//
// Fill in the mruIndex for this shunt buffer
//
g_sbcWorkInfo[i].mruIndex = 0; }
//
// Initialize the global variables associated with the shunt buffers
//
g_sbcNextTileId = 0;
rc = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBCDDCreateShuntBuffers, rc); return(rc); }
//
// Name: SBCDDGetNextFreeTile
//
// Purpose: Return the next free tile of the correct size from one of the
// shunt buffers.
//
// Returns: TRUE if a tile is returned, FALSE otherwise
//
// Params: IN workTileSize - The tile size. One of
// SBC_SMALL_TILE
// SBC_LARGE_TILE
// OUT ppTileData - A pointer to the tile.
//
// Operation: The tileId field of the tile is filled in on return from
// this function.
//
//*PROC-********************************************************************
BOOL SBCDDGetNextFreeTile(int tileSize, LPSBC_TILE_DATA FAR * ppTileData) { BOOL foundFreeTile = FALSE; LPSBC_TILE_DATA pTileData;
DebugEntry(SBCDDGetNextFreeTile);
ASSERT(tileSize < SBC_NUM_TILE_SIZES);
//
// Get a pointer to the next entry to be used in the shunt buffer
// containing tiles of the given size.
//
pTileData = SBCTilePtrFromIndex(g_sbcWorkInfo[tileSize].pShuntBuffer, g_sbcWorkInfo[tileSize].mruIndex);
//
// If the entry is still in use (the share core has not yet processed
// the order which references this tile) we have to quit - the shunt
// buffer is full.
//
if (pTileData->inUse) { TRACE_OUT(( "Target entry (%d, %d) is still in use", tileSize, g_sbcWorkInfo[tileSize].mruIndex)); DC_QUIT; }
//
// The entry is not in use - we can re-use it. Fill in the Id field,
// and the pointer to the entry which we return to the caller.
//
// We always set the top bit of the tile Id for large tiles, and clear
// it for small tiles.
//
*ppTileData = pTileData; pTileData->tileId = g_sbcNextTileId; if (tileSize == SBC_SMALL_TILE_INDEX) { pTileData->tileId &= ~0x8000; } else { pTileData->tileId |= 0x8000; } TRACE_OUT(( "Returning entry (%d, %d), Id %hx", tileSize, g_sbcWorkInfo[tileSize].mruIndex, pTileData->tileId));
//
// Update the index of the next free entry in this shunt buffer, and
// also the Id which we should assign next time. Remember to wrap the
// shunt buffer index to the number of entries in the shunt buffer.
//
g_sbcWorkInfo[tileSize].mruIndex = (g_sbcWorkInfo[tileSize].mruIndex + 1) % g_sbcWorkInfo[tileSize].pShuntBuffer->numEntries;
g_sbcNextTileId++; g_sbcNextTileId &= ~0x8000;
//
// Completed successfully !
//
foundFreeTile = TRUE;
DC_EXIT_POINT: DebugExitBOOL(SBCDDGetNextFreeTile, foundFreeTile); return(foundFreeTile); }
//
// Name: SBCDDIsBitmapThrasher
//
// Purpose: Check to see if the given bitmap (surface object) is one
// which would cause cache thrashing.
//
// Returns: TRUE if the bitmap is a thrasher, FALSE otherwise.
//
// Params: IN pSurfObj - Pointer to the bitmap
//
BOOL SBCDDIsBitmapThrasher(HDC hdc) { UINT i; BOOL rc = FALSE; BOOL bitmapInList = FALSE; BOOL updateEntry = FALSE; UINT updateIndex; UINT nextTickCount; UINT evictIndex; UINT evictTickCount;
DebugEntry(SBCDDIsBitmapThrasher);
//
// Here's an overview of how our bitmap cache thrash detection works...
//
// We hold an array of information about the last SBC_NUM_THRASHERS
// bitmaps which we have tried to cache. This information is
// - A value to identify the bitmap. This is the hsurf field from the
// bitmap surface object, and is different for every bitmap.
// - A value to identify the "version" of the bitmap. This is the
// iUniq field from the bitmap surface object, and is updated by GDI
// each time the bitmap is drawn to.
// - A timestamp for the last time which we saw iUniq change for this
// bitmap (or when we added the bitmap to the array).
//
// Each time this function is called, we scan this array looking for an
// entry for the bitmap.
//
// If we find an entry, we check whether the bitmap has changed (has
// the iUniq field changed). If it has not changed, the bitmap is not
// a thrasher. If the bitmap has changed, we check the interval from
// the timestamp value to the current time. If the interval is less
// than the SBC_THRASH_INTERVAL, the bitmap has changed too quickly, so
// it is a thrasher. If the interval is OK, the bitmap is not a
// thrasher. In either case, we update the stored iUniq field and the
// timestamp to record the time / version at which we spotted that the
// bitmap changed.
//
// If we do not find an entry for the bitmap, we add an entry for it.
// If the array is fully populated, we evict the entry with the oldest
// timestamp, and replace it with the new entry.
//
//
// Scan the thrasher list looking for a match
//
for (i=0 ; i < SBC_NUM_THRASHERS ; i++) { //
// If we find a match then we are only worried if it has been
// modified since the last time we read it.
//
if (sbcThrashers[i].hsurf == lpdce->hbmp) { bitmapInList = TRUE;
if (sbcThrashers[i].iUniq != pSurfObj->iUniq) { TRACE_OUT(( "Matching surface %x, index %u," "tick count %u has been modified", pSurfObj->hsurf, i, sbcThrashers[i].tickCount)); updateEntry = TRUE; updateIndex = i;
//
// Now we need to determine if this is a thrasher. It is a
// thrasher if the time we last read it is less than our
// thrash interval. (We only update the time when we read
// a modified bitmap)
//
nextTickCount = SBCDDGetTickCount(); if ((nextTickCount - sbcThrashers[i].tickCount) < SBC_THRASH_INTERVAL) { TRACE_OUT(( "Rejected cache attempt of thrashy bitmap %x", pSurfObj->hsurf)); rc = TRUE; } sbcThrashers[i].tickCount = nextTickCount; sbcThrashers[i].iUniq = pSurfObj->iUniq; }
//
// We've found a match - we can break out of the loop
//
break; } }
if (!bitmapInList) { //
// The bitmap isn't already in the thrasher list, so add it now.
// Find the entry with the smallest (earliest) tick count - we will
// evict this entry from the array to make room for the new entry.
//
evictIndex = 0; evictTickCount = 0xffffffff;
for (i = 0; i < SBC_NUM_THRASHERS; i++) { if (evictTickCount > sbcThrashers[i].tickCount) { evictTickCount = sbcThrashers[i].tickCount; evictIndex = i; } } TRACE_OUT(( "Evicting entry %d, surface %x", evictIndex, sbcThrashers[i].hsurf));
nextTickCount = SBCDDGetTickCount();
TRACE_OUT(( "Adding surface %x to thrash list, tick %d", pSurfObj->hsurf, nextTickCount)); updateEntry = TRUE; updateIndex = evictIndex; }
if (updateEntry) { //
// We have to update the entry at index updateIndex. We optimise
// things slightly by always putting the most recent bitmap in
// position 0 of the array, so copy entry 0 to the eviction index,
// and put the new entry in position 0.
//
sbcThrashers[updateIndex] = sbcThrashers[0];
sbcThrashers[0].hsurf = lpdce->hbmp; sbcThrashers[0].iUniq = pSurfObj->iUniq; sbcThrashers[0].tickCount = nextTickCount; }
DebugExitBOOL(SBCDDIsBitmapThrasher, rc); return(rc); }
//
// Name: SBCDDGetTickCount
//
// Purpose: Get a system tick count
//
// Returns: The number of centi-seconds since the system was started.
// This number will wrap after approximately 497 days!
//
// Params: None
//
DWORD SBCDDGetTickCount(void) { DWORD tickCount;
DebugEntry(SBCDDGetTickCount);
tickCount = GetTickCount() / 10;
DebugExitDWORD(SBCDDGetTickCount, tickCount); return(tickCount); }
#endif // #if 0
#if 0
//
// SBC_BitmapHasChanged(..)
//
// See asbcapi.h for description.
//
DCVOID DCAPI SBC_BitmapHasChanged(HBITMAP hChangedBitmap) { TSHR_UINT nextIndex; TSHR_INT nextTickCount; TSHR_INT tickDelta; TSHR_INT tickWork; UINT i;
TRACE_FN("SBC_BitmapHasChanged");
//
// We maintain a list of bitmaps that are the target for a drawing
// operation and we prevent these bitmaps from being cached unless
// the update frequency is below a target value.
//
// All we need to do at this stage is to make sure that the bitmap
// handle is in the thrash list and is marked as modified since the
// last read. That means that the next read will be "productive"
// and so we will check/update the timer at that stage. If the
// "productive" read occurs within a certain interval from the last
// read then this bitmap has become a thrasher.
//
if (sbcThrashers[0].hBitmap == hChangedBitmap) { TRACE()"Repeat bitmap %x modified",(UINT)hChangedBitmap)); sbcThrashers[0].modified = TRUE; } else { nextIndex = 0; nextTickCount = (int)(CO_GET_TICK_COUNT()/32); tickDelta = abs(nextTickCount - sbcThrashers[0].tickCount);
for (i=1; i<SBC_NUM_THRASHERS; i++) { if (sbcThrashers[i].hBitmap == hChangedBitmap) { sbcThrashers[i].modified = TRUE; break; }
tickWork = abs(nextTickCount - sbcThrashers[i].tickCount); if (tickWork > tickDelta) { tickDelta = tickWork; nextIndex = i; }
}
//
// If not found in the list then add to the list. Always add to
// the top of the list so we find repeated bitmaps as the first
// entry
//
if (i == SBC_NUM_THRASHERS) { TRACE()"Relegating bitmap %x at list pos %u", (UINT)sbcThrashers[nextIndex].hBitmap,nextIndex)); if (nextIndex != 0) { sbcThrashers[nextIndex].hBitmap = sbcThrashers[0].hBitmap; sbcThrashers[nextIndex].tickCount = sbcThrashers[0].tickCount; sbcThrashers[nextIndex].modified = sbcThrashers[0].modified; } sbcThrashers[0].hBitmap = hChangedBitmap; sbcThrashers[0].tickCount = nextTickCount - BMC_THRASH_INTERVAL; sbcThrashers[0].modified = TRUE; TRACE()"Adding bitmap %x to thrash list tick %u", (TSHR_UINT16)hChangedBitmap, nextTickCount)); } }
//
// We also maintain a list of "fast path" bitmaps, which is those tiles
// that have not been modified since we cached them and can therefore
// be interpreted from the handle alone. This must be an exhaustive
// search for each bitmap update and so we cannot offord the CPU of
// processing a very long list, but we can afford to cache enough to
// handle most animations. Also it is not worth the CPU to try and
// save individual tiles here. We just evict the complete bitmap.
//
for (i=0; i<SBC_NUM_FASTPATH; i++) { if (sbcFastPath[i].hBitmap == hChangedBitmap) { TRACE()"Bitmap %x no longer fastpathed",(UINT)hChangedBitmap)); sbcFastPath[i].hBitmap = 0; } }
return; }
//
// SBC_BitmapDeleted()
//
// See asbcapi.h for description.
//
DCVOID DCAPI SBC_BitmapDeleted(HBITMAP hDeletedBitmap) { UINT i;
TRACE_FN("SBC_BitmapDeleted");
//
// Remove the bitmap from the thrashy list.
//
for (i=0; i<SBC_NUM_THRASHERS; i++) { if (sbcThrashers[i].hBitmap == hDeletedBitmap) { TRACE_DBG()"Bitmap %x no longer thrashing",hDeletedBitmap)); sbcThrashers[i].hBitmap = 0; sbcThrashers[i].tickCount = 0; break; } }
//
// We also maintain a list of "fast path" bitmaps, which is those tiles
// that have not been modified since we cached them and can therefore
// be interpreted from the handle alone. This must be an exhaustive
// search for each bitmap update and so we cannot offord the CPU of
// processing a very long list, but we can afford to cache enough to
// handle most animations. Also it is not worth the CPU to try and
// save individual tiles here. We just evict the complete bitmap.
//
for (i=0; i<SBC_NUM_FASTPATH; i++) { if (sbcFastPath[i].hBitmap == hDeletedBitmap) { TRACE()"Bitmap %x no longer fastpathed",(UINT)hDeletedBitmap)); sbcFastPath[i].hBitmap = 0; sbcFastPath[i].tickCount = 0; } }
return; }
//
// SBC_ColorsChanged()
//
// Called whenever the system palette changes (presumably as a result of
// a new logical palette being realized to the screen).
//
//
DCVOID DCAPI SBC_ColorsChanged(DCVOID) { TRACE_FN("SBC_ColorsChanged"); //
// Just clear out all the fast path cache because we can no longer
// trust the cached bits to accurately reflect the color table we
// have cached. (Note that this does not mean we will not use the
// bits without resending, merely that we will force a retest of
// the bits with the latest color info selected.
//
TRACE()"Fastpath table reset")); memset(sbcFastPath, 0, sizeof(sbcFastPath)); }
#endif
|