|
|
//+-------------------------------------------------------------------------
//
// Microsoft Windows
// Copyright (C) Microsoft Corporation, 1992 - 1992.
//
// File: fat.cxx
//
// Contents: Allocation functions for MStream
//
// Classes: None. (defined in fat.hxx)
//
//--------------------------------------------------------------------------
#include "msfhead.cxx"
#include "h/difat.hxx"
#include "h/sstream.hxx"
#include "mread.hxx"
//+-------------------------------------------------------------------------
//
// Method: CFatSect::Init, public
//
// Synopsis: CFatSect initialization function
//
// Effects: [uEntries] -- Number of entries in sector
//
// Algorithm: Allocate an array of SECT with size uEntries from
// the heap.
//
//--------------------------------------------------------------------------
SCODE CFatSect::Init(FSOFFSET uEntries) { msfDebugOut((DEB_FAT,"In CFatSect constructor\n"));
//This assumes that FREESECT is always 0xFFFFFFFF
memset(_asectEntry, 0xFF, uEntries * sizeof(SECT));
msfDebugOut((DEB_FAT,"Out CFatSect constructor\n")); return S_OK; }
//+-------------------------------------------------------------------------
//
// Method: CFatSect::InitCopy, public
//
// Synopsis: Initialization function for copying FatSects
//
// Arguments: [fsOld] -- Reference to FatSect to be copies
//
// Returns: S_OK if call completed successfully.
//
// Algorithm: Allocate a new array of SECT and copy old
// information in.
//
//--------------------------------------------------------------------------
SCODE CFatSect::InitCopy(USHORT uSize, CFatSect& fsOld) { msfDebugOut((DEB_FAT,"In CFatSect copy constructor\n")); msfDebugOut((DEB_FAT,"This = %p, fsOld = %p\n",this,&fsOld));
msfDebugOut((DEB_FAT,"Sector size is %u sectors\n",uSize));
memcpy(_asectEntry,fsOld._asectEntry,sizeof(SECT)*uSize); msfDebugOut((DEB_FAT,"Out CFatSect copy constructor\n")); return S_OK; }
//+-------------------------------------------------------------------------
//
// Method: CFat::CFat, public
//
// Synopsis: CFat constructor.
//
// Arguments: [pmsParent] -- Pointer to parent multistream.
//
// Algorithm: Set uFatEntries to match parent MS header info.
// Initialize all member variables.
//
// Notes:
//
//--------------------------------------------------------------------------
CFat::CFat(SID sid, USHORT cbSector, USHORT uSectorShift) : _fv( sid, (USHORT) (cbSector >> 2), // 4 bytes per entry
(USHORT) (cbSector >> 2) ), // left shift this amount for FAT
_uFatShift((USHORT) (uSectorShift - 2) ), // (# entries per sector) - 1
_uFatMask( (USHORT) ((cbSector >> 2) - 1)), _sid(sid), _pmsParent(NULL), _sectFirstFree( (SECT) 0), _sectMax(ENDOFCHAIN) { }
//+---------------------------------------------------------------------------
//
// Member: CFat::Empty, public
//
// Synopsis: Empty all the control structures of this instance
//
// Arguments: None.
//
// Returns: void.
//
//----------------------------------------------------------------------------
void CFat::Empty(void) { _fv.Empty(); _pmsParent = NULL; _cfsTable = 0; _ulFreeSects = MAX_ULONG; _sectFirstFree = 0; _sectMax = ENDOFCHAIN; }
//+-------------------------------------------------------------------------
//
// Method: CFat::~CFat, public
//
// Synopsis: CFat Destructor
//
// Algorithm: delete dynamically allocated storage
//
// Notes:
//
//--------------------------------------------------------------------------
CFat::~CFat() { msfDebugOut((DEB_FAT,"In CFat destructor. Size of fat is %lu\n",_cfsTable));
msfDebugOut((DEB_FAT,"Exiting CFat destructor\n")); }
//+-------------------------------------------------------------------------
//
// Member: CFat::GetFree, private
//
// Synposis: Locate and return a free sector in the FAT
//
// Effects: May modify full bit on full sectors
//
// Arguments: [psectRet] -- Pointer to return value
//
// Returns: S_OK if call completed successfully.
//
// Algorithm: Do a linear search of all tables until a free sector is
// found. If all tables are full, extend the FAT by one
// sector.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::GetFree(ULONG ulCount, SECT *psectRet) { FSINDEX ipfs; FSOFFSET isect; SECT sectRetval; SCODE sc; SECT sectLast = ENDOFCHAIN; FSINDEX ipfsLast; FSOFFSET isectLast; *psectRet = ENDOFCHAIN; while (TRUE) { if (_ulFreeSects == MAX_ULONG) { msfChk(CountFree(&_ulFreeSects)); } #if DBG == 1
else { ULONG ulFree; msfChk(CountFree(&ulFree)); msfAssert((ulFree == _ulFreeSects) && aMsg("Free count doesn't match cached value.")); } #endif
while (ulCount > _ulFreeSects) { #if DBG == 1
ULONG ulFree = _ulFreeSects; #endif
msfChk(Resize(_cfsTable + ((ulCount - _ulFreeSects + _fv.GetSectTable() - 1) >> _uFatShift))); #if DBG == 1
msfAssert(_ulFreeSects > ulFree && aMsg("Number of free sectors didn't increase after Resize.")); #endif
} FSOFFSET isectStart; FSINDEX ipfsStart; SectToPair(_sectFirstFree, &ipfsStart, &isectStart); for (ipfs = ipfsStart; ipfs < _cfsTable; ipfs++) { CVectBits *pfb = _fv.GetBits(ipfs); if ((pfb == NULL) || (!pfb->full)) { CFatSect *pfs; msfChk(_fv.GetTable(ipfs, FB_NONE, &pfs)); if (pfb != NULL) { isectStart = pfb->firstfree; } for (isect = isectStart; isect < _fv.GetSectTable(); isect++) { SECT sectCurrent = pfs->GetSect(isect); SECT sectNew = PairToSect(ipfs, isect); if (sectCurrent == FREESECT) { msfAssert(_ulFreeSects != MAX_ULONG && aMsg("Free sect count not set")); _ulFreeSects--; sectRetval = sectNew; if (pfb != NULL) { olAssert(isect+1 < USHRT_MAX); pfb->firstfree = (USHORT) (isect + 1); } msfAssert(sectRetval >= _sectFirstFree && aMsg("Found free sector before _sectFirstFree")); _sectFirstFree = sectRetval + 1; pfs->SetSect(isect, ENDOFCHAIN); msfChkTo(Err_Rel, _fv.SetDirty(ipfs)); if (sectLast != ENDOFCHAIN) { if (ipfsLast == ipfs) { pfs->SetSect(isectLast, sectRetval); } else { CFatSect *pfsLast; msfChkTo(Err_Rel, _fv.GetTable( ipfsLast, FB_DIRTY, &pfsLast)); pfsLast->SetSect(isectLast, sectRetval); _fv.ReleaseTable(ipfsLast); } } if (*psectRet == ENDOFCHAIN) { *psectRet = sectRetval; } ulCount--; if (ulCount == 0) { _fv.ReleaseTable(ipfs);
if (sectRetval >= _sectMax) { _sectMax = sectRetval + 1; } return S_OK; } else { sectLast = sectRetval; ipfsLast = ipfs; isectLast = isect; } } } _fv.ReleaseTable(ipfs); if (pfb != NULL) { pfb->full = TRUE; } } isectStart = 0; } if (sectRetval >= _sectMax) { _sectMax = sectRetval + 1; } } msfAssert(0 && aMsg("GetFree exited improperly.")); sc = STG_E_ABNORMALAPIEXIT; Err: return sc; Err_Rel: _fv.ReleaseTable(ipfs); return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::GetLength, public
//
// Synposis: Return the length of a fat chain.
//
// Arguments: [sect] -- Sector to begin count at.
//
// Returns: Length of the chain, in sectors
//
// Algorithm: Traverse the chain until ENDOFCHAIN is reached.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::GetLength(SECT sect, ULONG * pulRet) { msfDebugOut((DEB_FAT,"In CFat::GetLength(%lu)\n",sect)); SCODE sc = S_OK;
ULONG csect = 0;
while (sect != ENDOFCHAIN) { msfChk(GetNext(sect, §)); csect++; }
msfDebugOut((DEB_FAT,"FAT: GetLength returned %u\n",csect)); *pulRet = csect; Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::Init, public
//
// Synposis: Sets up a FAT, reading data from an existing stream
//
// Effects: Changes all _apfsTable entries, _cfsTable, and all
// flags fields
//
// Arguments: None.
//
// Returns: S_OK if call completed OK.
//
// Algorithm: Read size from first FAT in stream.
// Resize array to necessary size.
// Read in FAT sectors sequentially.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::Init(CMStream *pmsParent, FSINDEX cFatSect, BOOL fConvert) { SCODE sc; UNREFERENCED_PARM(fConvert); msfDebugOut((DEB_FAT,"CFat::setup thinks the FAT is size %lu\n",cFatSect));
_pmsParent = pmsParent;
msfChk(_fv.Init(_pmsParent, cFatSect));
_cfsTable = cFatSect;
USHORT cbSectorSize; cbSectorSize = _pmsParent->GetSectorSize();
_ulFreeSects = MAX_ULONG;
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Method: CFat::InitConvert, public
//
// Synopsis: Init function used for conversion
//
// Arguments: [sectData] -- number of sectors used by file
//
// Returns: S_OK if call completed OK.
//
// Algorithm: *Finish This*
//
// Notes:
//
//--------------------------------------------------------------------------
SCODE CFat::InitConvert(CMStream *pmsParent, SECT sectData) { SCODE sc; msfDebugOut((DEB_FAT,"Doing conversion\n")); _pmsParent = pmsParent;
msfAssert((sectData != 0) && aMsg("Attempt to convert zero length file."));
SECT sectMax = 0; FSINDEX csectFat = 0; FSINDEX csectLast;
if (_sid == SIDFAT) { SECT sectTotal;
//Since the fat needs to represent itself, we can't determine
// the actual number of sectors needed in one pass. We
// therefore loop, factoring in the number of fat sectors
// at each iteration, until we reach a stable state.
//
//As an example, consider the case where each fat sector represents
// 128 sectors and the file being converted is 128 sectors long.
// There will be no DIFat - therefore, we have 128 sectors needed
// on the first pass, which will require 1 fat sector to
// represent them. On the second pass, we discover that we
// actually need 2 fat sectors, since we now have 129 total
// sectors to allocate space for. The third pass will result
// in a stable state.
do { csectLast = csectFat; sectTotal = sectData + _pmsParent->GetHeader()->GetDifLength() + csectFat + 1; csectFat = (sectTotal + _fv.GetSectTable() - 1) >> _uFatShift; } while (csectLast != csectFat); sectMax = sectData + _pmsParent->GetHeader()->GetDifLength(); } else { //The minifat doesn't need to represent itself, so we can
// compute the number of sectors needed in one pass.
sectMax = sectData; csectFat = (sectMax + _fv.GetSectTable() -1) >> _uFatShift; }
msfChk(_fv.Init(_pmsParent, csectFat));
FSINDEX i;
if (_sid == SIDMINIFAT) { SECT sectFirst; msfChk(_pmsParent->GetFat()->Allocate(csectFat, §First));
_pmsParent->GetHeader()->SetMiniFatStart(sectFirst);
_pmsParent->GetHeader()->SetMiniFatLength(csectFat); }
for (i = 0; i < csectFat; i++) { CFatSect *pfs;
msfChk(_fv.GetTable(i, FB_NEW, &pfs)); if (_sid == SIDFAT) { _fv.SetSect(i, sectMax + i); _pmsParent->GetDIFat()->SetFatSect(i, sectMax + i); } else { SECT sect; msfChk(_pmsParent->GetESect(_sid, i, §)); _fv.SetSect(i, sect); }
_fv.ReleaseTable(i); }
_cfsTable = csectFat;
if (_sid != SIDMINIFAT) {
_pmsParent->GetHeader()->SetFatLength(_cfsTable);
SECT sect;
if (sectData > 1) { for (sect = 0; sect < sectData - 2; sect++) { msfChk(SetNext(sect, sect + 1)); }
msfChk(SetNext(sectData - 2, ENDOFCHAIN)); msfChk(SetNext(sectData - 1, 0)); } else { //In the event that the file to be converted is less
// than one sector long, we don't need to create a
// real chain, just a single terminated sector.
msfChk(SetNext(0, ENDOFCHAIN)); }
for (sect = sectData; sect < sectMax; sect++) { msfChk(SetNext(sect, DIFSECT)); }
for (ULONG j = 0; j < csectFat; j++) { msfChk(SetNext(sectMax + j, FATSECT)); }
//Set up directory chain.
msfChk(SetNext(sectMax + i, ENDOFCHAIN));
_pmsParent->GetHeader()->SetDirStart(sectMax + i);
_ulFreeSects = (_cfsTable << _uFatShift) - (sectMax + csectFat + 1); } else { for (SECT sect = 0; sect < sectData -1; sect++) { msfChk(SetNext(sect, sect + 1)); } msfChk(SetNext(sectData - 1, ENDOFCHAIN)); _ulFreeSects = (_cfsTable << _uFatShift) - sectData; }
msfChk(_pmsParent->SetSize());
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::InitNew, public
//
// Synposis: Sets up a FAT for a newly created multi-strean
//
// Effects: Changes all _apfsTable entries, _cfsTable, and all
// flags fields
//
// Arguments: [pmsparent] -- pointer to parent Mstream
//
// Returns: S_OK if call completed OK.
//
// Algorithm: Set parent pointer.
// Allocate 1 sector for FAT and 1 for Directory.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::InitNew(CMStream *pmsParent) { msfDebugOut((DEB_FAT,"In CFat::InitNew()\n")); SCODE sc;
_pmsParent = pmsParent;
FSINDEX count; if (SIDMINIFAT == _sid) count = _pmsParent->GetHeader()->GetMiniFatLength(); else count = _pmsParent->GetHeader()->GetFatLength();
msfDebugOut((DEB_FAT,"Setting up Fat of size %lu\n",count));
msfChk(_fv.Init(_pmsParent, count));
_cfsTable = count;
if (SIDFAT == _sid) { FSINDEX ipfs; FSOFFSET isect; CFatSect *pfs;
SectToPair(_pmsParent->GetHeader()->GetFatStart(), &ipfs, &isect); msfChk(_fv.GetTable(ipfs, FB_NEW, &pfs)); _fv.SetSect(ipfs, _pmsParent->GetHeader()->GetFatStart()); _fv.ReleaseTable(ipfs);
msfChk(SetNext(_pmsParent->GetHeader()->GetFatStart(), FATSECT)); msfDebugOut((DEB_ITRACE,"Set sector %lu (FAT) to ENDOFCHAIN\n",_pmsParent->GetHeader()->GetFatStart()));
msfChk(SetNext(_pmsParent->GetHeader()->GetDirStart(), ENDOFCHAIN)); msfDebugOut((DEB_ITRACE,"Set sector %lu (DIR) to ENDOFCHAIN\n",_pmsParent->GetHeader()->GetDirStart())); _ulFreeSects = (count << _uFatShift) - 2; } else { _ulFreeSects = 0; }
msfChk(_pmsParent->SetSize());
msfDebugOut((DEB_FAT,"Exiting CFat::setupnew()\n"));
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::Resize, private
//
// Synposis: Resize FAT, both in memory and in the file
//
// Effects: Modifies _cfsTable, _apfsTable, and all flags fields
//
// Arguments: [ulSize] -- New size (in # of tables) for FAT
//
// Returns: S_OK if call completed OK.
//
// Algorithm: Allocate new array of new size.
// Copy over all old pointers.
// Allocate new tables for any necessary.
//
// Notes: This routine currently cannot reduce the size of a fat
//---------------------------------------------------------------------------
SCODE CFat::Resize(ULONG ulSize) { msfDebugOut((DEB_FAT,"In CFat::Resize(%lu)\n",ulSize)); SCODE sc;
if (ulSize == _cfsTable) { return S_OK; }
ULONG csect = _cfsTable;
msfAssert(ulSize > _cfsTable && aMsg("Attempted to shrink Fat"));
ULONG ipfs; SECT sectNew;
CFat *pfat = _pmsParent->GetFat();
if (_sid == SIDFAT) {
//Make sure we have enough space for all of the sectors
// to be allocated.
ULONG csectFat = ulSize - _cfsTable; ULONG csectPerDif = (1 << _uFatShift) - 1; ULONG csectDif = (csectFat + csectPerDif - 1) / csectPerDif;
//Assuming all the free sectors are at the end of the file,
// we need a file csectNew sectors long to hold them.
ULONG csectOld, csectNew;
msfChk(FindMaxSect(&csectOld));
csectNew = csectOld + csectFat + csectDif;
ULARGE_INTEGER cbSize; ULISet32(cbSize, ConvertSectOffset( csectNew, 0, _pmsParent->GetSectorShift()));
msfHChk(_pmsParent->GetILB()->SetSize(cbSize));
//If we are the fat, we have enough space in the file for
// ourselves at this point.
} else { if (_cfsTable == 0) { msfChk(pfat->Allocate(ulSize, §New)); _pmsParent->GetHeader()->SetMiniFatStart(sectNew); } else { sectNew = _pmsParent->GetHeader()->GetMiniFatStart();
SECT sectLast; msfChk(pfat->GetESect(sectNew, ulSize - 1, §Last));
}
msfChk(_pmsParent->SetSize());
msfChk(pfat->GetSect(sectNew, csect, §New));
//If we are the Minifat, we have enough space in the underlying
// file for ourselves at this point.
}
_fv.Resize(ulSize);
for (ipfs = csect; ipfs < ulSize; ipfs++) { CFatSect *pfs; msfChk(_fv.GetTable(ipfs, FB_NEW, &pfs)); _cfsTable = ipfs + 1; _ulFreeSects += (1 << _uFatShift);
if (_sid == SIDFAT) { msfChk(pfat->GetFree(1, §New));
msfChk(_pmsParent->GetDIFat()->SetFatSect(ipfs, sectNew)); msfChk(pfat->SetNext(sectNew, FATSECT)); }
msfAssert(sectNew != ENDOFCHAIN && aMsg("Bad sector returned for fatsect."));
_fv.SetSect(ipfs, sectNew); _fv.ReleaseTable(ipfs);
if (_sid == SIDMINIFAT) { msfChk(pfat->GetNext(sectNew, §New)); } }
msfDebugOut((DEB_FAT,"CFat::Resize() - all new objects allocated\n"));
if (SIDMINIFAT == _sid) _pmsParent->GetHeader()->SetMiniFatLength(_cfsTable); else _pmsParent->GetHeader()->SetFatLength(_cfsTable);
//This setsize should only shrink the file.
#if DBG == 1
STATSTG stat;
msfHChk(_pmsParent->GetILB()->Stat(&stat, STATFLAG_NONAME)); #endif
msfChk(_pmsParent->SetSize());
#if DBG == 1
STATSTG statNew;
msfHChk(_pmsParent->GetILB()->Stat(&statNew, STATFLAG_NONAME));
msfAssert(ULIGetLow(statNew.cbSize) <= ULIGetLow(stat.cbSize)); #endif
msfDebugOut((DEB_FAT,"Out CFat::Resize(%lu)\n",ulSize));
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::Extend, private
//
// Synposis: Increase the size of an existing chain
//
// Effects: Modifies ulSize sectors within the fat. Causes one or
// more sector writes.
//
// Arguments: [sect] -- Sector ID of last sector in chain to be extended
// [ulSize] -- Number of sectors to add to chain
//
// Requires: sect must be at the end of a chain.
//
// Returns: S_OK if call completed OK.
//
// Algorithm: Use calls to GetFree to allocate chain.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::Extend(SECT sect, ULONG ulSize) { SCODE sc;
msfDebugOut((DEB_FAT,"In CFat::Extend(%lu,%lu)\n",sect,ulSize)); SECT sectTemp;
msfChk(GetFree(ulSize, §Temp)); msfChk(SetNext(sect, sectTemp));
msfDebugOut((DEB_FAT,"Out CFat::Extend()\n"));
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::GetNext, public
//
// Synposis: Returns the next sector in a chain, given a sector
//
// Arguments: [sect] -- Sector ID of any sector in a chain.
//
// Returns: Sector ID of next sector in chain, ENDOFCHAIN if at end
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::GetNext(const SECT sect, SECT * psRet) { SCODE sc;
FSINDEX ipfs; FSOFFSET isect;
msfAssert(sect <= MAXREGSECT && aMsg("Called GetNext() on invalid sector"));
SectToPair(sect, &ipfs, &isect); CFatSect *pfs; msfChk(_fv.GetTable(ipfs, FB_NONE, &pfs));
*psRet = pfs->GetSect(isect);
_fv.ReleaseTable(ipfs);
msfAssert(sect != *psRet && aMsg("Detected loop in fat chain.")); return S_OK;
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::SetNext, private
//
// Synposis: Set the next sector in a chain
//
// Effects: Modifies a single entry within the fat.
//
// Arguments: [sectFirst] -- Sector ID of first sector
// [sectNext] -- Sector ID of next sector
//
// Returns: void
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::SetNext(SECT sectFirst, SECT sectNext) { FSINDEX ipfs; FSOFFSET isect; SCODE sc;
// creating infinite loops is a no-no
msfAssert(sectFirst != sectNext && aMsg("Attempted to create loop in Fat chain")); msfAssert(sectFirst <= MAXREGSECT && aMsg("Called SetNext on invalid sector"));
SectToPair(sectFirst, &ipfs, &isect);
CFatSect *pfs;
msfChk(_fv.GetTable(ipfs, FB_DIRTY, &pfs));
pfs->SetSect(isect,sectNext);
_fv.ReleaseTable(ipfs);
if (sectNext == FREESECT) { CVectBits *pfb; pfb = _fv.GetBits(ipfs);
if ((pfb != NULL) && ((pfb->full == TRUE) || (isect < pfb->firstfree))) { pfb->full = FALSE; pfb->firstfree = isect; }
if (sectFirst == _sectMax - 1) { _sectMax = ENDOFCHAIN; } if (sectFirst < _sectFirstFree) { _sectFirstFree = sectFirst; }
if (_ulFreeSects != MAX_ULONG) { _ulFreeSects++; } }
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::CountFree, private
//
// Synposis: Count and return the number of free sectors in the Fat
//
// Arguments: void.
//
// Returns: void.
//
// Algorithm: Do a linear search of the Fat, counting free sectors.
// If a FatSect has its full bit set, it is not necessary
// to search that FatSect.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::CountFree(ULONG * pulRet) { msfDebugOut((DEB_FAT,"In CFat::CountFree()\n")); SCODE sc = S_OK;
FSINDEX ipfs; ULONG csectFree=0; FSOFFSET isectStart; FSINDEX ipfsStart;
SectToPair(_sectFirstFree, &ipfsStart, &isectStart);
for (ipfs = ipfsStart; ipfs < _cfsTable; ipfs++) { CVectBits *pfb = _fv.GetBits(ipfs);
if ((pfb == NULL) || (!pfb->full)) { msfDebugOut((DEB_FAT,"Checking table %lu\n",ipfs)); CFatSect *pfs; msfChk(_fv.GetTable(ipfs, FB_NONE, &pfs));
if (pfb != NULL) { isectStart = pfb->firstfree; }
FSOFFSET isect; for (isect = isectStart; isect < _fv.GetSectTable(); isect++) { SECT sectCurrent = pfs->GetSect(isect); SECT sectNew = PairToSect(ipfs, isect);
if (sectCurrent == FREESECT) { csectFree++; } } _fv.ReleaseTable(ipfs); } isectStart = 0; } msfDebugOut((DEB_FAT,"Countfree returned %lu\n",csectFree)); *pulRet = csectFree;
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::GetSect, public
//
// Synposis: Return the nth sector in a chain
//
// Arguments: [sect] -- Sector ID of beginning of chain
// [uNum] -- indicator of which sector is to be returned
// [psectReturn] -- Pointer to storage for return value
//
// Returns: S_OK.
//
// Algorithm: Linearly traverse chain until numth sector
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::GetSect(SECT sect, ULONG ulNum, SECT * psectReturn) { msfDebugOut((DEB_FAT,"In CFat::GetSect(%lu,%lu)\n",sect,ulNum));
SCODE sc = S_OK;
if (ulNum == 0) { msfDebugOut((DEB_FAT,"Out CFat::GetSect()=>%lu\n",sect)); } else if ((SIDFAT == _sid) && (_pmsParent->GetHeader()->GetFatStart() == sect)) { msfChk(_pmsParent->GetDIFat()->GetFatSect(ulNum, §)); } else for (ULONG i = 0; i < ulNum; i++) { msfChk(GetNext(sect, §)); if (sect > MAXREGSECT) { //The stream isn't long enough, so stop.
msfAssert(sect == ENDOFCHAIN && aMsg("Found invalid sector in fat chain.")); break; } }
*psectReturn = sect; msfDebugOut((DEB_FAT,"Out CFat::GetSect()=>%lu\n",sect));
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::GetESect
//
// Synposis: Return the nth sector in a chain, extending the chain
// if necessary.
//
// Effects: Modifies fat (via Extend) if necessary
//
// Arguments: [sect] -- Sector ID of beginning of chain
// [ulNum] -- Indicates which sector is to be returned
// [psectReturn] -- Pointer to storage for return value
//
// Returns: S_OK if call completed OK.
//
// Algorithm: Linearly search chain until numth sector is found. If
// the chain terminates early, extend it as necessary.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::GetESect(SECT sect, ULONG ulNum, SECT *psectReturn) { msfDebugOut((DEB_FAT,"In CFat::GetESect(%lu,%lu)\n",sect,ulNum));
SCODE sc = S_OK;
ULONG i = 0; while (i < ulNum) { SECT temp; msfChk(GetNext(sect, &temp));
msfAssert(temp != FREESECT && aMsg("FREESECT found in chain."));
if (temp == ENDOFCHAIN) {
//The stream isn't long enough, so extend it somehow.
ULONG need = ulNum - i;
msfAssert((SIDMINIFAT == _sid || sect != _pmsParent->GetHeader()->GetFatStart()) && aMsg("Called GetESect on Fat chain")); msfChk(Extend(sect,need)); } else { sect = temp; i++; } }
msfDebugOut((DEB_FAT,"Exiting GetESect with result %lu\n",sect)); *psectReturn = sect;
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::SetChainLength, private
//
// Synposis: Set the length of a fat chain. This is used to reduce
// the length of the chain only. To extend a chain, use
// Extend or GetESect
//
// Effects: Modifies the fat
//
// Arguments: [sectStart] -- Sector to begin at (head of chain)
// [uLength] -- New length for chain
//
// Returns: void.
//
// Algorithm: Traverse chain until uLength is reached or the chain
// terminates. If it terminates prematurely, return with
// no other action. Otherwise, deallocate all remaining
// sectors in the chain.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::SetChainLength(SECT sectStart, ULONG ulLength) { msfDebugOut((DEB_FAT,"In CFat::SetChainLength(%lu,%lu)\n",sectStart,ulLength)); SCODE sc;
if (sectStart == ENDOFCHAIN) return S_OK;
for (ULONG ui = 0; ui < ulLength; ui++) { msfChk(GetNext(sectStart, §Start)); if (sectStart == ENDOFCHAIN) return S_OK; }
msfAssert(sectStart != ENDOFCHAIN && aMsg("Called SetChainLength is ENDOFCHAIN start"));
SECT sectEnd; sectEnd = sectStart;
msfChk(GetNext(sectStart, §Start)); if (ulLength != 0) { msfChk(SetNext(sectEnd, ENDOFCHAIN)); } else { msfChk(SetNext(sectEnd, FREESECT)); }
while (sectStart != ENDOFCHAIN) { SECT sectTemp; msfChk(GetNext(sectStart, §Temp)); msfChk(SetNext(sectStart, FREESECT)); sectStart = sectTemp; } msfDebugOut((DEB_FAT,"Out CFat::SetChainLength()\n"));
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Method: CFat::FindLast, private
//
// Synopsis: Find last used sector in a fat
//
// Returns: Location of last used sector
//
// Algorithm: Perform a backward linear search until a non-free
// sector is found.
//
// Notes: Used for shadow fats only.
//
//--------------------------------------------------------------------------
SCODE CFat::FindLast(SECT * psectRet) { SCODE sc = S_OK; FSINDEX ipfs = _cfsTable; SECT sect = 0;
while (ipfs > 0) { ipfs--;
FSOFFSET isect = _fv.GetSectTable();
CFatSect *pfs; msfChk(_fv.GetTable(ipfs, FB_NONE, &pfs));
while (isect > 0) { isect--;
SECT sectCurrent = pfs->GetSect(isect);
if (sectCurrent != FREESECT) { msfDebugOut((DEB_FAT,"FindLast returns %lu\n",PairToSect(ipfs,isect))); sect = PairToSect(ipfs, (FSOFFSET) (isect + 1)); break; } }
_fv.ReleaseTable(ipfs); if (sect != 0) break; }
*psectRet = sect; Err: return sc; }
//+-------------------------------------------------------------------------
//
// Method: CFat::FindMaxSect, private
//
// Synopsis: Return last used sector in current Fat.
//
// Arguments: None.
//
// Returns: Last used sector in current Fat
//
//--------------------------------------------------------------------------
SCODE CFat::FindMaxSect(SECT *psectRet) { SCODE sc = S_OK;
if (_sectMax == ENDOFCHAIN) { msfChk(FindLast(psectRet)); } else { #if DBG == 1
SECT sectLast; msfChk(FindLast(§Last)); #endif
*psectRet = _sectMax; }
Err: return sc; }
//+-------------------------------------------------------------------------
//
// Member: CFat::Contig, public
//
// Synposis: Create contiguous sector table
//
// Effects: Creates new CSegment.
//
// Arguments: [sect] -- Starting sector for table to begin
// [ulength] -- Runlength in sectors of table to produce
//
// Returns: Pointer to a Segment table
//
// Algorithm: Perform calls to CFat::GetNext(). Any call that is
// 1 higher than the previous represents contiguous blocks.
// Construct the Segment table on that basis.
//
// Notes:
//
//---------------------------------------------------------------------------
SCODE CFat::Contig( SSegment STACKBASED *aseg, SECT sect, ULONG ulLength) { msfDebugOut((DEB_ITRACE,"In CFat::Contig(%lu,%lu)\n",sect,ulLength)); SCODE sc = S_OK; SECT stemp = sect; ULONG ulCount = 1; USHORT iseg = 0;
msfAssert(sect != ENDOFCHAIN && aMsg("Called Contig with ENDOFCHAIN start"));
aseg[iseg].sectStart = sect; aseg[iseg].cSect = 1;
while ((ulLength > 1) && (iseg < CSEG)) { msfAssert(sect != ENDOFCHAIN && aMsg("Contig found premature ENDOFCHAIN"));
FSINDEX ipfs; FSOFFSET isect;
SectToPair(sect, &ipfs, &isect);
CFatSect *pfs; msfChk(_fv.GetTable(ipfs, FB_NONE, &pfs)); sect = pfs->GetSect(isect); _fv.ReleaseTable(ipfs);
if (sect == ENDOFCHAIN) { //Allocate new sectors.
SECT sectNew; msfChk(GetFree(ulLength - 1, §New)); msfChk(SetNext(stemp, sectNew)); sect = sectNew; }
if (sect != (stemp + 1)) { aseg[iseg].cSect = ulCount; ulCount = 1; iseg++; aseg[iseg].sectStart = sect; stemp = sect; } else { ulCount++; stemp = sect; } ulLength--; }
if (iseg < CSEG) { aseg[iseg].cSect = ulCount; aseg[iseg + 1].sectStart = ENDOFCHAIN; } else { aseg[iseg].sectStart = FREESECT; }
msfDebugOut((DEB_ITRACE,"Exiting Contig()\n"));
Err: return sc; }
|