|
|
/******************************Module*Header*******************************\
* * ******************* * * GDI SAMPLE CODE * * ******************* * * Module Name: fastfill.c * * Fast routine for drawing polygons that aren't complex in shape. * * Copyright (c) 1993-1998 Microsoft Corporation \**************************************************************************/
#include "precomp.h"
#define RIGHT 0
#define LEFT 1
typedef struct _TRAPEZOIDDATA TRAPEZOIDDATA; // Handy forward declaration
typedef VOID (FNTRAPEZOID)(TRAPEZOIDDATA*, LONG, LONG); // Prototype for trapezoid
// drawing routines
typedef struct _EDGEDATA { LONG x; // Current x position
LONG dx; // # pixels to advance x on each scan
LONG lError; // Current DDA error
LONG lErrorUp; // DDA error increment on each scan
LONG dN; // Signed delta-y in fixed point form (also known
// as the DDA error adjustment, and used to be
// called 'lErrorDown')
LONG dM; // Signed delta-x in fixed point form
POINTFIX* pptfx; // Points to start of current edge
LONG dptfx; // Delta (in bytes) from pptfx to next point
LONG cy; // Number of scans to go for this edge
LONG bNew; // Set to TRUE when a new DDA must be started
// for the edge.
} EDGEDATA; /* ed, ped */
typedef struct _TRAPEZOIDDATA { FNTRAPEZOID* pfnTrap; // Pointer to appropriate trapezoid drawing routine,
// or trapezoid clip routine
FNTRAPEZOID* pfnTrapClip;// Pointer to appropriate trapezoid drawing routine
// if doing clipping
PDEV* ppdev; // Pointer to PDEV
EDGEDATA aed[2]; // DDA information for both edges
POINTL ptlBrush; // Brush alignment
LONG yClipTop; // Top of clip rectangle
LONG yClipBottom;// Bottom of clip rectangle
} TRAPEZOIDDATA; /* td, ptd */
/******************************Public*Routine******************************\
* VOID vClipTrapezoid * * Clips a trapezoid. * * NOTE: This routine assumes that the polygon's dimensions are small * enough that its QUOTIENT_REMAINDER calculations won't overflow. * This means that large polygons must never make it here. * \**************************************************************************/
VOID vClipTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapTop, LONG cyTrapezoid) { LONG yTrapBottom; LONG dN; LONG lNum; LONG xDelta; LONG lError;
yTrapBottom = yTrapTop + cyTrapezoid;
if (yTrapTop < ptd->yClipTop) { if ((ptd->aed[LEFT].bNew) && (yTrapBottom + ptd->aed[LEFT].cy > ptd->yClipTop)) { dN = ptd->aed[LEFT].dN; lNum = ptd->aed[LEFT].dM * (ptd->yClipTop - yTrapTop) + (ptd->aed[LEFT].lError + dN);
if (lNum >= 0) { QUOTIENT_REMAINDER(lNum, dN, xDelta, lError); } else { lNum = -lNum;
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
xDelta = -xDelta; if (lError != 0) { xDelta--; lError = dN - lError; } }
ptd->aed[LEFT].x += xDelta; ptd->aed[LEFT].lError = lError - dN; }
if ((ptd->aed[RIGHT].bNew) && (yTrapBottom + ptd->aed[RIGHT].cy > ptd->yClipTop)) { dN = ptd->aed[RIGHT].dN; lNum = ptd->aed[RIGHT].dM * (ptd->yClipTop - yTrapTop) + (ptd->aed[RIGHT].lError + dN);
if (lNum >= 0) { QUOTIENT_REMAINDER(lNum, dN, xDelta, lError); } else { lNum = -lNum;
QUOTIENT_REMAINDER(lNum, dN, xDelta, lError);
xDelta = -xDelta; if (lError != 0) { xDelta--; lError = dN - lError; } }
ptd->aed[RIGHT].x += xDelta; ptd->aed[RIGHT].lError = lError - dN; } }
// If this trapezoid vertically intersects our clip rectangle, draw it:
if ((yTrapBottom > ptd->yClipTop) && (yTrapTop < ptd->yClipBottom)) { if (yTrapTop <= ptd->yClipTop) { yTrapTop = ptd->yClipTop;
// Have to let trapezoid drawer know that it has to load
// its DDAs for very first trapezoid drawn:
ptd->aed[RIGHT].bNew = TRUE; ptd->aed[LEFT].bNew = TRUE; }
if (yTrapBottom >= ptd->yClipBottom) { yTrapBottom = ptd->yClipBottom; }
ptd->pfnTrapClip(ptd, yTrapTop, yTrapBottom - yTrapTop); } }
/******************************Public*Routine******************************\
* VOID vIoSolidTrapezoid * * Draws a solid trapezoid using a software DDA. * \**************************************************************************/
VOID vIoSolidTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; LONG xOffset; LONG lLeftError; LONG xLeft; LONG lRightError; LONG xRight; LONG lTmp; EDGEDATA edTmp;
ppdev = ptd->ppdev;
xOffset = ppdev->xOffset; yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0)) { /////////////////////////////////////////////////////////////////
// Vertical-edge special case
xLeft = ptd->aed[LEFT].x + xOffset; xRight = ptd->aed[RIGHT].x + xOffset; if (xLeft > xRight) { SWAP(xLeft, xRight, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); }
if (xLeft < xRight) { IO_FIFO_WAIT(ppdev, 6);
IO_MAJ_AXIS_PCNT(ppdev, xRight - xLeft - 1); IO_MIN_AXIS_PCNT(ppdev, cyTrapezoid - 1); IO_ABS_CUR_Y(ppdev, yTrapezoid); IO_ABS_CUR_X(ppdev, xLeft); // Already absolute
IO_CMD(ppdev, (RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE)); IO_MIN_AXIS_PCNT(ppdev, 0); } } else { IO_FIFO_WAIT(ppdev, 1); IO_ABS_CUR_Y(ppdev, yTrapezoid);
yTrapezoid += cyTrapezoid + 1; // One past end scan
lLeftError = ptd->aed[LEFT].lError; xLeft = ptd->aed[LEFT].x + xOffset; lRightError = ptd->aed[RIGHT].lError; xRight = ptd->aed[RIGHT].x + xOffset;
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft < xRight) { IO_FIFO_WAIT(ppdev, 3); IO_MAJ_AXIS_PCNT(ppdev, xRight - xLeft - 1); IO_ABS_CUR_X(ppdev, xLeft); IO_CMD(ppdev, (RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE)); } else if (xLeft > xRight) { // We don't bother optimizing this case because we should
// rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves).
SWAP(xLeft, xRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); continue; } else { IO_FIFO_WAIT(ppdev, 1); IO_ABS_CUR_Y(ppdev, yTrapezoid - cyTrapezoid); }
// Advance the right wall:
xRight += ptd->aed[RIGHT].dx; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].dN; xRight++; }
// Advance the left wall:
xLeft += ptd->aed[LEFT].dx; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].dN; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].x = xLeft - xOffset; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].x = xRight - xOffset; } }
/******************************Public*Routine******************************\
* VOID vIoPatternTrapezoid * * Draws a patterned trapezoid using a software DDA. * \**************************************************************************/
VOID vIoPatternTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; LONG xOffset; LONG lLeftError; LONG xLeft; LONG lRightError; LONG xRight; LONG lTmp; EDGEDATA edTmp;
ppdev = ptd->ppdev;
xOffset = ppdev->xOffset; yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0)) { /////////////////////////////////////////////////////////////////
// Vertical-edge special case
xLeft = ptd->aed[LEFT].x + xOffset; xRight = ptd->aed[RIGHT].x + xOffset; if (xLeft > xRight) { SWAP(xLeft, xRight, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); }
if (xLeft < xRight) { IO_FIFO_WAIT(ppdev, 6);
IO_MAJ_AXIS_PCNT(ppdev, xRight - xLeft - 1); IO_MIN_AXIS_PCNT(ppdev, cyTrapezoid - 1); IO_ABS_DEST_Y(ppdev, yTrapezoid); IO_ABS_DEST_X(ppdev, xLeft); // Already absolute
IO_CMD(ppdev, (PATTERN_FILL | DRAWING_DIR_TBLRXM | DRAW | WRITE)); IO_MIN_AXIS_PCNT(ppdev, 0); } } else { IO_FIFO_WAIT(ppdev, 1); IO_ABS_DEST_Y(ppdev, yTrapezoid);
yTrapezoid += cyTrapezoid + 1; // One past end scan
lLeftError = ptd->aed[LEFT].lError; xLeft = ptd->aed[LEFT].x + xOffset; lRightError = ptd->aed[RIGHT].lError; xRight = ptd->aed[RIGHT].x + xOffset;
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft < xRight) { IO_FIFO_WAIT(ppdev, 3); IO_MAJ_AXIS_PCNT(ppdev, xRight - xLeft - 1); IO_ABS_DEST_X(ppdev, xLeft); IO_CMD(ppdev, (PATTERN_FILL | DRAWING_DIR_TBLRXM | DRAW | WRITE)); } else if (xLeft > xRight) { // We don't bother optimizing this case because we should
// rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves).
SWAP(xLeft, xRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); continue; } else { IO_FIFO_WAIT(ppdev, 1); IO_ABS_DEST_Y(ppdev, yTrapezoid - cyTrapezoid); }
// Advance the right wall:
xRight += ptd->aed[RIGHT].dx; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].dN; xRight++; }
// Advance the left wall:
xLeft += ptd->aed[LEFT].dx; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].dN; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].x = xLeft - xOffset; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].x = xRight - xOffset; } }
/******************************Public*Routine******************************\
* VOID vIoTrapezoidSetup * * Initialize the hardware and some state for doing trapezoids. * \**************************************************************************/
VOID vIoTrapezoidSetup( PDEV* ppdev, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, TRAPEZOIDDATA* ptd, RECTL* prclClip) // NULL if no clipping
{ ULONG ulHwForeMix; BRUSHENTRY* pbe;
ptd->ppdev = ppdev;
ulHwForeMix = gaulHwMixFromRop2[(rop4 >> 2) & 0xf];
if (iSolidColor != -1) { /////////////////////////////////////////////////////////////////
// Setup the hardware for solid colours
ptd->pfnTrap = vIoSolidTrapezoid;
// We initialize the hardware for the colour, mix, pixel operation,
// rectangle height of one, and the y position for the first scan:
if (DEPTH32(ppdev)) { IO_FIFO_WAIT(ppdev, 5); IO_FRGD_COLOR32(ppdev, iSolidColor); } else { IO_FIFO_WAIT(ppdev, 4); IO_FRGD_COLOR(ppdev, iSolidColor); }
IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | ulHwForeMix); IO_PIX_CNTL(ppdev, ALL_ONES); IO_MIN_AXIS_PCNT(ppdev, 0); } else { /////////////////////////////////////////////////////////////////
// Setup for patterns
BOOL bNotTransparent = (((rop4 >> 8) & 0xff) == (rop4 & 0xff));
ptd->pfnTrap = vIoPatternTrapezoid;
pbe = prb->pbe; if (bNotTransparent) { // Force normal brush at 24bpp on s3 968
// Normal brush:
IO_FIFO_WAIT(ppdev, 5);
IO_ABS_CUR_X(ppdev, pbe->x); IO_ABS_CUR_Y(ppdev, pbe->y); IO_PIX_CNTL(ppdev, ALL_ONES); IO_FRGD_MIX(ppdev, SRC_DISPLAY_MEMORY | ulHwForeMix); IO_MIN_AXIS_PCNT(ppdev, 0); } else { // Transparent brush:
if (DEPTH32(ppdev)) { IO_FIFO_WAIT(ppdev, 4); IO_FRGD_COLOR32(ppdev, prb->ulForeColor); IO_RD_MASK32(ppdev, 1); // Pick a plane, any plane
IO_FIFO_WAIT(ppdev, 6); } else { IO_FIFO_WAIT(ppdev, 8); IO_FRGD_COLOR(ppdev, prb->ulForeColor); IO_RD_MASK(ppdev, 1); // Pick a plane, any plane
}
IO_ABS_CUR_X(ppdev, pbe->x); IO_ABS_CUR_Y(ppdev, pbe->y); IO_PIX_CNTL(ppdev, DISPLAY_MEMORY); IO_FRGD_MIX(ppdev, FOREGROUND_COLOR | ulHwForeMix); IO_BKGD_MIX(ppdev, BACKGROUND_COLOR | LEAVE_ALONE); IO_MIN_AXIS_PCNT(ppdev, 0); } }
if (prclClip != NULL) { ptd->pfnTrapClip = ptd->pfnTrap; ptd->pfnTrap = vClipTrapezoid; ptd->yClipTop = prclClip->top; ptd->yClipBottom = prclClip->bottom;
IO_FIFO_WAIT(ppdev, 2); IO_ABS_SCISSORS_L(ppdev, ppdev->xOffset + prclClip->left); IO_ABS_SCISSORS_R(ppdev, ppdev->xOffset + prclClip->right - 1); } }
/******************************Public*Routine******************************\
* VOID vMmSolidTrapezoid * * Draws a solid trapezoid using a software DDA. * \**************************************************************************/
VOID vMmSolidTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; BYTE* pjMmBase; LONG xOffset; LONG lLeftError; LONG xLeft; LONG lRightError; LONG xRight; LONG lTmp; EDGEDATA edTmp; LONG cFifo;
ppdev = ptd->ppdev; pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset; yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0)) { /////////////////////////////////////////////////////////////////
// Vertical-edge special case
xLeft = ptd->aed[LEFT].x + xOffset; xRight = ptd->aed[RIGHT].x + xOffset; if (xLeft > xRight) { SWAP(xLeft, xRight, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); }
if (xLeft < xRight) {
// Bliter doesn't handle negative X's with clipping
// (at least at 24BPP on the 968).
// So do SW clipping at X=0
if (xRight > 0) { IO_FIFO_WAIT(ppdev, 6); if (xLeft <= 0) { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - 1); MM_ABS_CUR_X(ppdev, pjMmBase, 0); } else { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - xLeft - 1); MM_ABS_CUR_X(ppdev, pjMmBase, xLeft); // Already absolute
} MM_MIN_AXIS_PCNT(ppdev, pjMmBase, cyTrapezoid - 1); MM_ABS_CUR_Y(ppdev, pjMmBase, yTrapezoid); MM_CMD(ppdev, pjMmBase, (RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE)); MM_MIN_AXIS_PCNT(ppdev, pjMmBase, 0); } } } else { IO_ALL_EMPTY(ppdev); MM_ABS_CUR_Y(ppdev, pjMmBase, yTrapezoid);
cFifo = MM_ALL_EMPTY_FIFO_COUNT - 1; yTrapezoid += cyTrapezoid + 1; // One past end scan
lLeftError = ptd->aed[LEFT].lError; xLeft = ptd->aed[LEFT].x + xOffset; lRightError = ptd->aed[RIGHT].lError; xRight = ptd->aed[RIGHT].x + xOffset;
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft < xRight) { // Bliter doesn't handle negative X's with clipping
// (at least at 24BPP on the 968).
// So do SW clipping at X=0
if (xRight > 0) { // We get a little tricky here and try to amortize the cost
// of the read for checking the FIFO count on the S3.
cFifo -= 3; if (cFifo < 0) { IO_ALL_EMPTY(ppdev); cFifo = MM_ALL_EMPTY_FIFO_COUNT - 3; }
if (xLeft <= 0) { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - 1); MM_ABS_CUR_X(ppdev, pjMmBase, 0); } else { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - xLeft - 1); MM_ABS_CUR_X(ppdev, pjMmBase, xLeft); // Already absolute
} MM_CMD(ppdev, pjMmBase, (RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE)); } else { // SW clipping at X==0 skipped the blit completely but
// the Y value must still be updated
cFifo -= 1; if (cFifo < 0) { IO_ALL_EMPTY(ppdev); cFifo = MM_ALL_EMPTY_FIFO_COUNT - 1; } MM_ABS_CUR_Y(ppdev, pjMmBase, yTrapezoid - cyTrapezoid); } } else if (xLeft > xRight) { // We don't bother optimizing this case because we should
// rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves).
SWAP(xLeft, xRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); continue; } else { cFifo -= 1; if (cFifo < 0) { IO_ALL_EMPTY(ppdev); cFifo = MM_ALL_EMPTY_FIFO_COUNT - 1; } MM_ABS_CUR_Y(ppdev, pjMmBase, yTrapezoid - cyTrapezoid); }
// Advance the right wall:
xRight += ptd->aed[RIGHT].dx; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].dN; xRight++; }
// Advance the left wall:
xLeft += ptd->aed[LEFT].dx; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].dN; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].x = xLeft - xOffset; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].x = xRight - xOffset; } }
/******************************Public*Routine******************************\
* VOID vMmPatternTrapezoid * * Draws a patterned trapezoid using a software DDA. * \**************************************************************************/
VOID vMmPatternTrapezoid( TRAPEZOIDDATA* ptd, LONG yTrapezoid, LONG cyTrapezoid) { PDEV* ppdev; BYTE* pjMmBase; LONG xOffset; LONG lLeftError; LONG xLeft; LONG lRightError; LONG xRight; LONG lTmp; EDGEDATA edTmp; LONG cFifo;
ppdev = ptd->ppdev; pjMmBase = ppdev->pjMmBase;
xOffset = ppdev->xOffset; yTrapezoid += ppdev->yOffset;
// If the left and right edges are vertical, simply output as
// a rectangle:
if (((ptd->aed[LEFT].lErrorUp | ptd->aed[RIGHT].lErrorUp) == 0) && ((ptd->aed[LEFT].dx | ptd->aed[RIGHT].dx) == 0)) { /////////////////////////////////////////////////////////////////
// Vertical-edge special case
xLeft = ptd->aed[LEFT].x + xOffset; xRight = ptd->aed[RIGHT].x + xOffset; if (xLeft > xRight) { SWAP(xLeft, xRight, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); }
if (xLeft < xRight) {
// Bliter doesn't handle negative X's with clipping
// (at least at 24BPP on the 968).
// So do SW clipping at X=0
if (xRight > 0) { IO_FIFO_WAIT(ppdev, 6); if (xLeft <= 0) { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - 1); MM_ABS_DEST_X(ppdev, pjMmBase, 0); } else { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - xLeft - 1); MM_ABS_DEST_X(ppdev, pjMmBase, xLeft); // Already absolute
} MM_MIN_AXIS_PCNT(ppdev, pjMmBase, cyTrapezoid - 1); MM_ABS_DEST_Y(ppdev, pjMmBase, yTrapezoid); MM_CMD(ppdev, pjMmBase, (PATTERN_FILL | DRAWING_DIR_TBLRXM | DRAW | WRITE)); MM_MIN_AXIS_PCNT(ppdev, pjMmBase, 0); } } } else { IO_ALL_EMPTY(ppdev); MM_ABS_DEST_Y(ppdev, pjMmBase, yTrapezoid);
cFifo = MM_ALL_EMPTY_FIFO_COUNT - 1; yTrapezoid += cyTrapezoid + 1; // One past end scan
lLeftError = ptd->aed[LEFT].lError; xLeft = ptd->aed[LEFT].x + xOffset; lRightError = ptd->aed[RIGHT].lError; xRight = ptd->aed[RIGHT].x + xOffset;
while (TRUE) { /////////////////////////////////////////////////////////////////
// Run the DDAs
if (xLeft < xRight) { // Bliter doesn't handle negative X's with clipping
// (at least at 24BPP on the 968).
// So do SW clipping at X=0
if (xRight > 0) { // We get a little tricky here and try to amortize the cost
// of the read for checking the FIFO count on the S3.
cFifo -= 3; if (cFifo < 0) { IO_ALL_EMPTY(ppdev); cFifo = MM_ALL_EMPTY_FIFO_COUNT - 3; }
if (xLeft <= 0) { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - 1); MM_ABS_DEST_X(ppdev, pjMmBase, 0); } else { MM_MAJ_AXIS_PCNT(ppdev, pjMmBase, xRight - xLeft - 1); MM_ABS_DEST_X(ppdev, pjMmBase, xLeft); } MM_CMD(ppdev, pjMmBase, (PATTERN_FILL | DRAWING_DIR_TBLRXM | DRAW | WRITE)); } else { // SW clipping at X==0 skipped the blit completely but
// the Y value must still be updated
cFifo -= 1; if (cFifo < 0) { IO_ALL_EMPTY(ppdev); cFifo = MM_ALL_EMPTY_FIFO_COUNT - 1; } MM_ABS_DEST_Y(ppdev, pjMmBase, yTrapezoid - cyTrapezoid); } } else if (xLeft > xRight) { // We don't bother optimizing this case because we should
// rarely get self-intersecting polygons (if we're slow,
// the app gets what it deserves).
SWAP(xLeft, xRight, lTmp); SWAP(lLeftError, lRightError, lTmp); SWAP(ptd->aed[LEFT], ptd->aed[RIGHT], edTmp); continue; } else { cFifo -= 1; if (cFifo < 0) { IO_ALL_EMPTY(ppdev); cFifo = MM_ALL_EMPTY_FIFO_COUNT - 1; } MM_ABS_DEST_Y(ppdev, pjMmBase, yTrapezoid - cyTrapezoid); }
// Advance the right wall:
xRight += ptd->aed[RIGHT].dx; lRightError += ptd->aed[RIGHT].lErrorUp;
if (lRightError >= 0) { lRightError -= ptd->aed[RIGHT].dN; xRight++; }
// Advance the left wall:
xLeft += ptd->aed[LEFT].dx; lLeftError += ptd->aed[LEFT].lErrorUp;
if (lLeftError >= 0) { lLeftError -= ptd->aed[LEFT].dN; xLeft++; }
cyTrapezoid--; if (cyTrapezoid == 0) break; }
ptd->aed[LEFT].lError = lLeftError; ptd->aed[LEFT].x = xLeft - xOffset; ptd->aed[RIGHT].lError = lRightError; ptd->aed[RIGHT].x = xRight - xOffset; } }
/******************************Public*Routine******************************\
* VOID vMmTrapezoidSetup * * Initialize the hardware and some state for doing trapezoids. * \**************************************************************************/
VOID vMmTrapezoidSetup( PDEV* ppdev, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, TRAPEZOIDDATA* ptd, RECTL* prclClip) // NULL if no clipping
{ BYTE* pjMmBase; ULONG ulHwForeMix; BRUSHENTRY* pbe;
ptd->ppdev = ppdev;
pjMmBase = ppdev->pjMmBase; ulHwForeMix = gaulHwMixFromRop2[(rop4 >> 2) & 0xf];
if (iSolidColor != -1) { /////////////////////////////////////////////////////////////////
// Setup the hardware for solid colours
ptd->pfnTrap = vMmSolidTrapezoid;
// We initialize the hardware for the colour, mix, pixel operation,
// rectangle height of one, and the y position for the first scan:
IO_FIFO_WAIT(ppdev, 4); MM_FRGD_COLOR(ppdev, pjMmBase, iSolidColor); MM_FRGD_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | ulHwForeMix); MM_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); MM_MIN_AXIS_PCNT(ppdev, pjMmBase, 0); } else { /////////////////////////////////////////////////////////////////
// Setup for patterns
ptd->pfnTrap = vMmPatternTrapezoid;
pbe = prb->pbe; if (((rop4 >> 8) & 0xff) == (rop4 & 0xff)) { // Normal brush:
IO_FIFO_WAIT(ppdev, 5);
MM_ABS_CUR_X(ppdev, pjMmBase, pbe->x); MM_ABS_CUR_Y(ppdev, pjMmBase, pbe->y); MM_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); MM_FRGD_MIX(ppdev, pjMmBase, SRC_DISPLAY_MEMORY | ulHwForeMix); MM_MIN_AXIS_PCNT(ppdev, pjMmBase, 0); } else { // Transparent brush:
IO_FIFO_WAIT(ppdev, 8); MM_FRGD_COLOR(ppdev, pjMmBase, prb->ulForeColor); MM_RD_MASK(ppdev, pjMmBase, 1); // Pick a plane, any plane
MM_ABS_CUR_X(ppdev, pjMmBase, pbe->x); MM_ABS_CUR_Y(ppdev, pjMmBase, pbe->y); MM_PIX_CNTL(ppdev, pjMmBase, DISPLAY_MEMORY); MM_FRGD_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | ulHwForeMix); MM_BKGD_MIX(ppdev, pjMmBase, BACKGROUND_COLOR | LEAVE_ALONE); MM_MIN_AXIS_PCNT(ppdev, pjMmBase, 0); } }
if (prclClip != NULL) { ptd->pfnTrapClip = ptd->pfnTrap; ptd->pfnTrap = vClipTrapezoid; ptd->yClipTop = prclClip->top; ptd->yClipBottom = prclClip->bottom;
IO_FIFO_WAIT(ppdev, 2); MM_ABS_SCISSORS_L(ppdev, pjMmBase, ppdev->xOffset + prclClip->left); MM_ABS_SCISSORS_R(ppdev, pjMmBase, ppdev->xOffset + prclClip->right - 1); } }
/******************************Public*Routine******************************\
* BOOL bFastFill * * Draws a non-complex, unclipped polygon. 'Non-complex' is defined as * having only two edges that are monotonic increasing in 'y'. That is, * the polygon cannot have more than one disconnected segment on any given * scan. Note that the edges of the polygon can self-intersect, so hourglass * shapes are permissible. This restriction permits this routine to run two * simultaneous DDAs, and no sorting of the edges is required. * * Note that NT's fill convention is different from that of Win 3.1 or Win95. * With the additional complication of fractional end-points, our convention * is the same as in 'X-Windows'. But a DDA is a DDA is a DDA, so once you * figure out how we compute the DDA terms for NT, you're golden. * * This routine handles patterns only when the S3 hardware patterns can be * used. The reason for this is that once the S3 pattern initialization is * done, pattern fills appear to the programmer exactly the same as solid * fills (with the slight difference that different registers and commands * are used). Handling 'vIoFillPatSlow' style patterns in this routine * would be non-trivial... * * We take advantage of the fact that the S3 automatically advances the * current 'y' to the following scan whenever a rectangle is output so that * we have to write to the accelerator three times for every scan: one for * the new 'x', one for the new 'width', and one for the drawing command. * * Returns TRUE if the polygon was drawn; FALSE if the polygon was complex. * \**************************************************************************/
BOOL bFastFill( PDEV* ppdev, LONG cEdges, // Includes close figure edge
POINTFIX* pptfxFirst, ULONG rop4, ULONG iSolidColor, RBRUSH* prb, POINTL* pptlBrush, RECTL* prclClip) // NULL if no clipping
{ LONG yTrapezoid; // Top scan for next trapezoid
LONG cyTrapezoid; // Number of scans in current trapezoid
LONG yStart; // y-position of start point in current edge
LONG dM; // Edge delta in FIX units in x direction
LONG dN; // Edge delta in FIX units in y direction
LONG i; POINTFIX* pptfxLast; // Points to the last point in the polygon array
POINTFIX* pptfxTop; // Points to the top-most point in the polygon
POINTFIX* pptfxOld; // Start point in current edge
POINTFIX* pptfxScan; // Current edge pointer for finding pptfxTop
LONG cScanEdges; // Number of edges scanned to find pptfxTop
// (doesn't include the closefigure edge)
LONG iEdge; LONG lQuotient; LONG lRemainder; BYTE* pjBase;
TRAPEZOIDDATA td; // Edge data and stuff
EDGEDATA* ped; // Points to current edge being processed
/////////////////////////////////////////////////////////////////
// See if the polygon is convex
pptfxScan = pptfxFirst; pptfxTop = pptfxFirst; // Assume for now that the first
// point in path is the topmost
pptfxLast = pptfxFirst + cEdges - 1;
if (cEdges <= 2) goto ReturnTrue;
// 'pptfxScan' will always point to the first point in the current
// edge, and 'cScanEdges' will the number of edges remaining, including
// the current one:
cScanEdges = cEdges - 1; // The number of edges, not counting close figure
if ((pptfxScan + 1)->y > pptfxScan->y) { // Collect all downs:
do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if (--cScanEdges == 0) goto SetUpForFillingCheck; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
// Collect all downs:
pptfxTop = pptfxScan;
do { if ((pptfxScan + 1)->y > pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
goto ReturnFalse; } else { // Collect all ups:
do { pptfxTop++; // We increment this now because we
// want it to point to the very last
// point if we early out in the next
// statement...
if (--cScanEdges == 0) goto SetUpForFilling; } while ((pptfxTop + 1)->y <= pptfxTop->y);
// Collect all downs:
pptfxScan = pptfxTop; do { if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y >= pptfxScan->y);
// Collect all ups:
do { if ((pptfxScan + 1)->y < pptfxFirst->y) break;
if (--cScanEdges == 0) goto SetUpForFilling; pptfxScan++; } while ((pptfxScan + 1)->y <= pptfxScan->y);
goto ReturnFalse; }
SetUpForFillingCheck:
// We check to see if the end of the current edge is higher
// than the top edge we've found so far:
if ((pptfxScan + 1)->y < pptfxTop->y) pptfxTop = pptfxScan + 1;
SetUpForFilling:
/////////////////////////////////////////////////////////////////
// Some Initialization
td.aed[LEFT].pptfx = pptfxTop; td.aed[RIGHT].pptfx = pptfxTop;
yTrapezoid = (pptfxTop->y + 15) >> 4;
// Make sure we initialize the DDAs appropriately:
td.aed[LEFT].cy = 0; td.aed[RIGHT].cy = 0;
// Guess as to the ordering of the points:
td.aed[LEFT].dptfx = sizeof(POINTFIX); td.aed[RIGHT].dptfx = -(LONG) sizeof(POINTFIX);
if ((ppdev->flCaps & (CAPS_MM_IO | CAPS_16_ENTRY_FIFO)) == (CAPS_MM_IO | CAPS_16_ENTRY_FIFO)) { vMmTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td, prclClip); } else { vIoTrapezoidSetup(ppdev, rop4, iSolidColor, prb, pptlBrush, &td, prclClip); }
NewTrapezoid:
/////////////////////////////////////////////////////////////////
// DDA initialization
for (iEdge = 1; iEdge >= 0; iEdge--) { ped = &td.aed[iEdge]; ped->bNew = FALSE; if (ped->cy == 0) { // Our trapezoid drawing routine may want to be notified when
// it will have to reset its DDA to start a new edge:
ped->bNew = TRUE;
// Need a new DDA:
do { cEdges--; if (cEdges < 0) goto ResetClippingAndReturnTrue;
// Find the next left edge, accounting for wrapping:
pptfxOld = ped->pptfx; ped->pptfx = (POINTFIX*) ((BYTE*) ped->pptfx + ped->dptfx);
if (ped->pptfx < pptfxFirst) ped->pptfx = pptfxLast; else if (ped->pptfx > pptfxLast) ped->pptfx = pptfxFirst;
// Have to find the edge that spans yTrapezoid:
ped->cy = ((ped->pptfx->y + 15) >> 4) - yTrapezoid;
// With fractional coordinate end points, we may get edges
// that don't cross any scans, in which case we try the
// next one:
} while (ped->cy <= 0);
// 'pptfx' now points to the end point of the edge spanning
// the scan 'yTrapezoid'.
dN = ped->pptfx->y - pptfxOld->y; dM = ped->pptfx->x - pptfxOld->x;
ASSERTDD(dN > 0, "Should be going down only");
// Compute the DDA increment terms:
ped->dM = dM; // Not used for software trapezoid
if (dM < 0) { dM = -dM; if (dM < dN) // Can't be '<='
{ ped->dx = -1; ped->lErrorUp = dN - dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = -lQuotient; // - dM / dN
ped->lErrorUp = lRemainder; // dM % dN
if (ped->lErrorUp > 0) { ped->dx--; ped->lErrorUp = dN - ped->lErrorUp; } } } else { if (dM < dN) // Can't be '<='
{ ped->dx = 0; ped->lErrorUp = dM; } else { QUOTIENT_REMAINDER(dM, dN, lQuotient, lRemainder);
ped->dx = lQuotient; // dM / dN
ped->lErrorUp = lRemainder; // dM % dN
} }
ped->dN = dN; // DDA limit
ped->lError = -1; // Error is initially zero (add dN - 1 for
// the ceiling, but subtract off dN so that
// we can check the sign instead of comparing
// to dN)
ped->x = pptfxOld->x; yStart = pptfxOld->y;
if ((yStart & 15) != 0) { // Advance to the next integer y coordinate
for (i = 16 - (yStart & 15); i != 0; i--) { ped->x += ped->dx; ped->lError += ped->lErrorUp; if (ped->lError >= 0) { ped->lError -= ped->dN; ped->x++; } } }
if ((ped->x & 15) != 0) { ped->lError -= ped->dN * (16 - (ped->x & 15)); ped->x += 15; // We'll want the ceiling in just a bit...
}
// Chop off those fractional bits:
ped->x >>= 4; ped->lError >>= 4; } }
cyTrapezoid = min(td.aed[LEFT].cy, td.aed[RIGHT].cy); // # of scans in this trap
td.aed[LEFT].cy -= cyTrapezoid; td.aed[RIGHT].cy -= cyTrapezoid;
td.pfnTrap(&td, yTrapezoid, cyTrapezoid);
yTrapezoid += cyTrapezoid;
goto NewTrapezoid;
ResetClippingAndReturnTrue:
if (prclClip != NULL) { vResetClipping(ppdev); }
ReturnTrue:
return(TRUE);
ReturnFalse:
return(FALSE); }
|