|
|
/*
* Copyright (c) 1992-1995 Microsoft Corporation */
/*
* definition of interface functions to the adlib midi device type. * * These functions are called from midi.c when the kernel driver * has decreed that this is an adlib-compatible device. * * Geraint Davies, Dec 92 */
#include <windows.h>
#include <mmsystem.h>
#include <mmddk.h>
#include "driver.h"
#include "adlib.h"
/*
* overview * * The FM synthesis chip consists of 18 operator cells or 'slots'. Each slot * can produce a sine wave modified by a number of parameters such * as frequency, output level and envelope shape (attack/decay/sustain * release). Slots are arranged in pairs, with one slot modulating * the sine wave of another to produce the harmonics desired for * a given instrument sound. Thus one pair of slots is a 'voice' and can * play one note at a time. * * In percussive mode (which we always use), there are 6 melodic voices * available, and one voice for the base drum. The remaining four slots * are used singly rather than in pairs to produce four further percussive * voices. The 6 melodic voices will be changed to any given timbre * as needed. The five percussive voices are fixed to particular instrument * timbres: bass drum, snare, tom-tom, hi-hat and cymbal. * * To play a note, we first find a free voice of the appropriate type. If * there are none free, we use the oldest busy one. We then set the * parameters for both operator slots from the patch table - this table gives * parameter settings for the different instrument timbres available. * We adjust the output level and frequency depending on the * note played and the velocity it was played with, and then switch on the * note. */
/* --- typedefs ------------------------------------------------- */
#define NUMVOICES (11) // number of voices we have
#define NUMMELODIC (6) // number of melodic voices
#define NUMPERCUSSIVE (5) // number of percussive voices
#define MAXPATCH 180 // nr of patches (including drums)
#define MAXVOLUME 0x7f
#define NUMLOCPARAM 14 // number of loc params per slot
#define FIRSTDRUMNOTE 35
#define LASTDRUMNOTE 81
#define NUMDRUMNOTES (LASTDRUMNOTE - FIRSTDRUMNOTE + 1)
#define MAX_PITCH 0x3fff // maximum pitch bend value
#define MID_PITCH 0x2000 // mid pitch bend value (no shift)
#define PITCHRANGE 2 // total bend range +- 2 semitones
#define NR_STEP_PITCH 25 // steps per half-tone for pitch bend
#define MID_C 60 // MIDI standard mid C
#define CHIP_MID_C 48 // sound chip mid C
/*
* to write to the device, we write a SYNTH_DATA port,data pair * to the kernel driver. */ #define SndOutput(p,d) MidiSendFM(p, d)
/****************************************************************************
* * definitions of sound chip parameters */
// parameters of each voice
#define prmKsl 0 // key scale level (KSL) - level controller
#define prmMulti 1 // frequency multiplier (MULTI) - oscillator
#define prmFeedBack 2 // modulation feedback (FB) - oscillator
#define prmAttack 3 // attack rate (AR) - envelope generator
#define prmSustain 4 // sustain level (SL) - envelope generator
#define prmStaining 5 // sustaining sound (SS) - envelope generator
#define prmDecay 6 // decay rate (DR) - envelope generator
#define prmRelease 7 // release rate (RR) - envelope generator
#define prmLevel 8 // output level (OL) - level controller
#define prmAm 9 // amplitude vibrato (AM) - level controller
#define prmVib 10 // frequency vibrator (VIB) - oscillator
#define prmKsr 11 // envelope scaling (KSR) - envelope generator
#define prmFm 12 // fm=0, additive=1 (FM) (operator 0 only)
#define prmWaveSel 13 // wave select
// global parameters
#define prmAmDepth 14
#define prmVibDepth 15
#define prmNoteSel 16
#define prmPercussion 17
// percussive voice numbers (0-5 are melodic voices, 2 op):
#define BD 6 // bass drum (2 op)
#define SD 7 // snare drum (1 op)
#define TOM 8 // tom-tom (1 op)
#define CYMB 9 // cymbal (1 op)
#define HIHAT 10 // hi-hat (1 op)
// In percussive mode, the last 4 voices (SD TOM HH CYMB) are created
// using melodic voices 7 & 8. A noise generator uses channels 7 & 8
// frequency information for creating rhythm instruments. Best results
// are obtained by setting TOM two octaves below mid C and SD 7 half-tones
// above TOM. In this implementation, only the TOM pitch may vary, with the
// SD always set 7 half-tones above.
#define TOM_PITCH 24 // best frequency, in range of 0 to 95
#define TOM_TO_SD 7 // 7 half-tones between voice 7 & 8
#define SD_PITCH (TOM_PITCH + TOM_TO_SD)
/****************************************************************************
* * bank file support * ***************************************************************************/
#define BANK_SIG_LEN 6
#define BANK_FILLER_SIZE 8
typedef BYTE *HPBYTE; typedef BYTE NEAR * NPBYTE; typedef WORD NEAR * NPWORD;
// instrument bank file header
typedef struct { char majorVersion; char minorVersion; char sig[BANK_SIG_LEN]; // signature: "ADLIB-"
WORD nrDefined; // number of list entries used
WORD nrEntry; // number of total entries in list
long offsetIndex; // offset of start of list of names
long offsetTimbre; // offset of start of data
char filler[BANK_FILLER_SIZE]; // must be zero
} BANKHDR, NEAR *NPBANKHDR, FAR *LPBANKHDR;
// all the parameters for one slot
typedef struct { BYTE ksl; // KSL
BYTE freqMult; // MULTI
BYTE feedBack; // FB
BYTE attack; // AR
BYTE sustLevel; // SL
BYTE sustain; // SS
BYTE decay; // DR
BYTE release; // RR
BYTE output; // OL
BYTE am; // AM
BYTE vib; // VIB
BYTE ksr; // KSR
BYTE fm; // FM
} OPERATOR, NEAR *NPOPERATOR, FAR *LPOPERATOR;
// definition of a particular instrument sound or timbre -
// one of these per patch
typedef struct { BYTE mode; // 0 = melodic, 1 = percussive
BYTE percVoice; // if mode == 1, voice number to be used
OPERATOR op0; // params for slot 0
OPERATOR op1; // params for slot 1
BYTE wave0; // waveform for operator 0
BYTE wave1; // waveform for operator 1
} TIMBRE, NEAR *NPTIMBRE, FAR *LPTIMBRE;
typedef struct drumpatch_tag { BYTE patch; // the patch to use
BYTE note; // the note to play
} DRUMPATCH;
// format of drumkit.dat file
typedef struct drumfilepatch_tag { BYTE key; // the key to map
BYTE patch; // the patch to use
BYTE note; // the note to play
} DRUMFILEPATCH, *PDRUMFILEPATCH;
typedef struct _VOICE { BYTE alloc; // is voice allocated?
BYTE note; // note that is currently being played
BYTE channel; // channel that it is being played on
BYTE volume; // current volume setting of voice
DWORD dwTimeStamp; // time voice was allocated
} VOICE;
#define GetLocPrm(slot_num, prm) ((WORD)paramSlot[slot_num][prm])
/* --- module data ---------------------------------------------- */
// this table gives the offset of each slot within the chip.
BYTE offsetSlot[] = { 0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21 };
static BYTE percMasks[] = { 0x10, 0x08, 0x04, 0x02, 0x01 };
// voice number associated with each slot (melodic mode only)
static BYTE voiceSlot[] = { 0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 8, };
// slot numbers for percussive voices (0 indicates that there is only one slot)
static BYTE slotPerc[][2] = { {12, 15}, // Bass Drum
{16, 0}, // SD
{14, 0}, // TOM
{17, 0}, // TOP-CYM
{13, 0} // HH
};
// slot numbers as a function of the voice and the operator (melodic only)
static BYTE slotVoice[][2] = { {0, 3}, // voice 0
{1, 4}, // 1
{2, 5}, // 2
{6, 9}, // 3
{7, 10}, // 4
{8, 11}, // 5
{12, 15}, // 6
{13, 16}, // 7
{14, 17} // 8
};
// this table indicates if the slot is a modulator (0) or a carrier (1).
BYTE operSlot[] = { 0, 0, 0, // 1 2 3
1, 1, 1, // 4 5 6
0, 0, 0, // 7 8 9
1, 1, 1, // 10 11 12
0, 0, 0, // 13 14 15
1, 1, 1, // 16 17 18
};
// this array adjusts the octave of a note for certain patches.
static char patchKeyOffset[] = { 0, -12, 12, 0, 0, 12, -12, 0, 0, -24, // 0 - 9
0, 0, 0, 0, 0, 0, 0, 0, -12, 0, // 10 - 19
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20 - 29
0, 0, 12, 12, 12, 0, 0, 12, 12, 0, // 30 - 39
-12, -12, 0, 12, -12, -12, 0, 12, 0, 0, // 40 - 49
-12, 0, 0, 0, 12, 12, 0, 0, 12, 0, // 50 - 59
0, 0, 12, 0, 0, 0, 12, 12, 0, 12, // 60 - 69
0, 0, -12, 0, -12, -12, 0, 0, -12, -12, // 70 - 79
0, 0, 0, 0, 0, -12, -19, 0, 0, -12, // 80 - 89
0, 0, 0, 0, 0, 0, -31, -12, 0, 12, // 90 - 99
12, 12, 12, 0, 12, 0, 12, 0, 0, 0, // 100 - 109
0, 12, 0, 0, 0, 0, 12, 12, 12, 0, // 110 - 119
0, 0, 0, 0, -24, -36, 0, 0}; // 120 - 127
static BYTE loudervol[128] = { 0, 0, 65, 65, 66, 66, 67, 67, // 0 - 7
68, 68, 69, 69, 70, 70, 71, 71, // 8 - 15
72, 72, 73, 73, 74, 74, 75, 75, // 16 - 23
76, 76, 77, 77, 78, 78, 79, 79, // 24 - 31
80, 80, 81, 81, 82, 82, 83, 83, // 32 - 39
84, 84, 85, 85, 86, 86, 87, 87, // 40 - 47
88, 88, 89, 89, 90, 90, 91, 91, // 48 - 55
92, 92, 93, 93, 94, 94, 95, 95, // 56 - 63
96, 96, 97, 97, 98, 98, 99, 99, // 64 - 71
100, 100, 101, 101, 102, 102, 103, 103, // 72 - 79
104, 104, 105, 105, 106, 106, 107, 107, // 80 - 87
108, 108, 109, 109, 110, 110, 111, 111, // 88 - 95
112, 112, 113, 113, 114, 114, 115, 115, // 96 - 103
116, 116, 117, 117, 118, 118, 119, 119, // 104 - 111
120, 120, 121, 121, 122, 122, 123, 123, // 112 - 119
124, 124, 125, 125, 126, 126, 127, 127}; // 120 - 127
/*
* attenuation setting for each slot - combination * of the channel attenuation for this channel, and the * velocity (converted to attenuation). Combine with * global attenuation and timbre output attenuation before * writing to device. */ WORD slotAtten[18]; // vol-control attenuation of slots
WORD wSynthAtten; // overall volume setting
BYTE gbChanAtten[NUMCHANNELS]; // attenuation for each channel
VOICE voices[11]; // 9 voices if melodic mode or 11 if percussive
BYTE voiceKeyOn[11]; // keyOn bit for each voice (implicit 0 init)
BYTE paramSlot[18][NUMLOCPARAM]; // all the parameters of slots...
BYTE percBits; // control bits of percussive voices
WORD fNumNotes[NR_STEP_PITCH][12]; PWORD fNumFreqPtr[11]; // lines of fNumNotes table (one per voice)
int halfToneOffset[11]; // one per voice
BYTE notePitch[11]; // pitch value for each voice (implicit 0 init)
// patches - parameters for different instrument timbres
TIMBRE patches[MAXPATCH]; // patch data
DRUMPATCH drumpatch[NUMDRUMNOTES]; // drum kit data
DWORD dwAge = 0; // voice relative age
/* --- internal functions --------------------------------------- */
/* -- initialisation --- */ /****************************************************************************
* @doc INTERNAL * * @api int | LoadPatches | Reads the patch set from the BANK resource and * builds the <p patches> array. * * @rdesc Returns the number of patches loaded, or 0 if an error occurs. ***************************************************************************/ static BYTE PatchRes[] = { #include "adlib.dat"
};
int LoadPatches(void) { #ifdef WIN16
HANDLE hResInfo; HANDLE hResData; #endif
LPSTR lpRes; int iPatches; DWORD dwOffset; DWORD dwResSize; LPTIMBRE lpBankTimbre; LPTIMBRE lpPatchTimbre; LPBANKHDR lpBankHdr;
// find resource and get its size
#ifdef WIN16
hResInfo = FindResource(ghInstance, MAKEINTRESOURCE(DEFAULTBANK), MAKEINTRESOURCE(RT_BANK)); if (!hResInfo) { D1(("Default bank resource not found")); return 0; } dwResSize = (DWORD)SizeofResource(ghInstance, hResInfo);
// load and lock resource
hResData = LoadResource(ghInstance, hResInfo); if (!hResData) { D1(("Bank resource not loaded")); return 0; } lpRes = LockResource(hResData); if (!lpRes) { D1(("Bank resource not locked")); return 0; } #else
lpRes = PatchRes; dwResSize = sizeof(PatchRes); #endif
// read the bank resource, loading patches as we find them
D2(("loading patches")); lpBankHdr = (LPBANKHDR)lpRes; dwOffset = lpBankHdr->offsetTimbre; // point to first one
for (iPatches = 0; iPatches < MAXPATCH; iPatches++) {
lpBankTimbre = (LPTIMBRE)(lpRes + dwOffset); lpPatchTimbre = &patches[iPatches]; *lpPatchTimbre = *lpBankTimbre;
dwOffset += sizeof(TIMBRE); if (dwOffset + sizeof(TIMBRE) > dwResSize) { D1(("Attempt to read past end of bank resource")); break; } }
#ifdef WIN16
UnlockResource(hResData); FreeResource(hResData); #endif
return iPatches; }
/****************************************************************************
* @doc INTERNAL * * @api int | LoadDrumPatches | Reads the drum kit patch set from the * DRUMKIT resource and builds the <p drumpatch> array. * * @comm Each entry of the <t drumpatch> array (representing a key number * from the "drum patch") consists of a patch number and note number * from some other patch. * * @rdesc Returns the number of patches loaded, or 0 if an error occurs. ***************************************************************************/
static BYTE DrumRes[] = { #include "drumkit.dat"
};
int LoadDrumPatches(void) { #ifdef WIN16
HANDLE hResInfo; HANDLE hResData; #endif
LPSTR lpRes; int iPatches; int key; DWORD dwOffset; DWORD dwResSize; PDRUMFILEPATCH lpResPatch;
#ifdef WIN16
// find resource and get its size
hResInfo = FindResource(ghInstance, MAKEINTRESOURCE(DEFAULTDRUMKIT), MAKEINTRESOURCE(RT_DRUMKIT)); if (!hResInfo) { D1(("Default drum resource not found")); return 0; } dwResSize = (DWORD)SizeofResource(ghInstance, hResInfo);
// load and lock resource
hResData = LoadResource(ghInstance, hResInfo); if (!hResData) { D1(("Drum resource not loaded")); return 0; } lpRes = LockResource(hResData); if (!lpRes) { D1(("Drum resource not locked")); return 0; } #else
lpRes = DrumRes; dwResSize = sizeof(DrumRes); #endif
// read the drum resource, loading patches as we find them
D2(("reading drum data")); dwOffset = 0; for (iPatches = 0; iPatches < NUMDRUMNOTES; iPatches++) {
lpResPatch = (PDRUMFILEPATCH)(lpRes + dwOffset); key = lpResPatch->key; if ((key >= FIRSTDRUMNOTE) && (key <= LASTDRUMNOTE)) { drumpatch[key - FIRSTDRUMNOTE].patch = lpResPatch->patch; drumpatch[key - FIRSTDRUMNOTE].note = lpResPatch->note; } else { D1(("Drum patch key out of range")); }
dwOffset += sizeof(DRUMFILEPATCH); if (dwOffset > dwResSize) { D1(("Attempt to read past end of drum resource")); break; } }
#ifdef WIN16
UnlockResource(hResData); FreeResource(hResData); #endif
return iPatches; }
/****************************************************************************
* @doc INTERNAL * * @api long | CalcPremFNum | Calculates some magic number that is used in * setting the values in the <p fNumNotes> table. * * @parm int | numDeltaDemiTon | Numerator (-100 to +100). * * @parm int | denDeltaDemiTon | Denominator (1 to 100). * * @comm If the numerator (numDeltaDemiTon) is positive, the frequency is * increased; if negative, it is decreased. The function calculates: * f8 = Fb(1 + 0.06 num /den) (where Fb = 26044 * 2 / 25) * fNum8 = f8 * 65536 * 72 / 3.58e6 * * @rdesc Returns fNum8, which is the binary value of the frequency 260.44 (C) * shifted by +/- <p numdeltaDemiTon> / <p denDeltaDemiTon> * 8. ***************************************************************************/ long NEAR CalcPremFNum(int numDeltaDemiTon, int denDeltaDemiTon) { long f8; long fNum8; long d100;
d100 = denDeltaDemiTon * 100; f8 = (d100 + 6 * numDeltaDemiTon) * (26044L * 2L); f8 /= d100 * 25;
fNum8 = f8 * 16384; fNum8 *= 9L; fNum8 /= 179L * 625L;
return fNum8; }
/****************************************************************************
* @doc INTERNAL * * @api void | SetFNum | Initializes a line in the frequency table with * shifted frequency values. The values are shifted a fraction (num/den) * of a half-tone. * * @parm NPWORD | fNumVec | The line from the frequency table. * * @parm int | num | Numerator. * * @parm int | den | Denominator. * * @xref CalcPremFNum * * @rdesc There is no return value. ***************************************************************************/ void NEAR SetFNum(NPWORD fNumVec, int num, int den) { int i; long val;
*fNumVec++ = (WORD)((4 + (val = CalcPremFNum(num, den))) >> 3); for (i = 1; i < 12; i++) { val *= 106; *fNumVec++ = (WORD)((4 + (val /= 100)) >> 3); } }
/****************************************************************************
* @doc INTERNAL * * @api void | InitFNums | Initializes all lines of the frequency table * (the <p fNumNotes> array). Each line represents 12 half-tones shifted * by (n / NR_STEP_PITCH), where 'n' is the line number and ranges from * 1 to NR_STEP_PITCH. * * @rdesc There is no return value. ***************************************************************************/ void NEAR InitFNums(void) { WORD i; WORD num; // numerator
WORD numStep; // step value for numerator
WORD row; // row in the frequency table
// calculate each row in the fNumNotes table
numStep = 100 / NR_STEP_PITCH; for (num = row = 0; row < NR_STEP_PITCH; row++, num += numStep) SetFNum(fNumNotes[row], num, 100);
// fNumFreqPtr has an element for each voice, pointing to the
// appropriate row in the fNumNotes table. They're all initialized
// to the first row, which represents no pitch shift.
for (i = 0; i < 11; i++) { fNumFreqPtr[i] = fNumNotes[0]; halfToneOffset[i] = 0; } }
/****************************************************************************
* @doc INTERNAL * * @api void | SoundChut | Sets the frequency of voice <p voice> to 0 Hz. * * @parm BYTE | voice | Specifies which voice to set. * * @rdesc There is no return value. ***************************************************************************/ void NEAR SoundChut(BYTE voice) {
SndOutput((BYTE)(0xA0 | voice), 0); SndOutput((BYTE)(0xB0 | voice), 0); }
/* --- write parameters to chip ------------------------*/
/*
* switch chip to rhythm (percussive) mode, set the amplitude and * vibrato depth and switch on any percussion voices that are on */ void SndSAmVibRhythm(void) {
// we always set amdepth, vibdepth to 0 and perc mode on
// t1 = (BYTE)(amDepth ? 0x80 : 0);
// t1 |= vibDepth ? 0x40 : 0;
// t1 |= (percussionmode ? 0x20 : 0);
SndOutput((BYTE)0xBD, (BYTE)(0x20|percBits)); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSNoteSel | Sets the NoteSel value. * * @rdesc There is no return value. ***************************************************************************/ void SndSNoteSel(BOOL bNoteSel) { SndOutput(0x08, (BYTE)(bNoteSel ? 64 : 0)); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSKslLevel | Sets the KSL and LEVEL values. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndSKslLevel(BYTE slot) { WORD t1;
t1 = GetLocPrm(slot, prmLevel) & 0x3f;
t1 += slotAtten[slot]; t1 = min (t1, 0x3f); t1 |= GetLocPrm(slot, prmKsl) << 6; SndOutput((BYTE)(0x40 | offsetSlot[slot]), (BYTE) t1); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSAVEK | Sets the AM, VIB, EG-TYP (sustaining), KSR, and * MULTI values. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndSAVEK(BYTE slot) { BYTE t1;
t1 = (BYTE)(GetLocPrm(slot, prmAm) ? 0x80 : 0); t1 += GetLocPrm(slot, prmVib) ? 0x40 : 0; t1 += GetLocPrm(slot, prmStaining) ? 0x20 : 0; t1 += GetLocPrm(slot, prmKsr) ? 0x10 : 0; t1 += GetLocPrm(slot, prmMulti) & 0xf; SndOutput((BYTE)(0x20 | offsetSlot[slot]), t1); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSFeedFm | Sets the FEEDBACK and FM (connection) values. * Applicable only to operator 0 for melodic voices. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndSFeedFm(BYTE slot) { BYTE t1;
if (operSlot[slot]) return;
t1 = (BYTE)(GetLocPrm(slot, prmFeedBack) << 1); t1 |= GetLocPrm(slot, prmFm) ? 0 : 1; SndOutput((BYTE)(0xC0 | voiceSlot[slot]), t1); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSAttDecay | Sets the ATTACK and DECAY values. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndSAttDecay(BYTE slot) { BYTE t1;
t1 = (BYTE)(GetLocPrm(slot, prmAttack) << 4); t1 |= GetLocPrm(slot, prmDecay) & 0xf; SndOutput((BYTE)(0x60 | offsetSlot[slot]), t1); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSSusRelease | Sets the SUSTAIN and RELEASE values. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndSSusRelease(BYTE slot) { BYTE t1;
t1 = (BYTE)(GetLocPrm(slot, prmSustain) << 4); t1 |= GetLocPrm(slot, prmRelease) & 0xf; SndOutput((BYTE)(0x80 | offsetSlot[slot]), t1); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndWaveSelect | Sets the wave-select parameter. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndWaveSelect(BYTE slot) { BYTE wave;
wave = (BYTE)(GetLocPrm(slot, prmWaveSel) & 0x03);
SndOutput((BYTE)(0xE0 | offsetSlot[slot]), wave); }
/****************************************************************************
* @doc INTERNAL * * @api void | SndSetAllPrm | Transfers all the parameters from slot <p slot> * to the chip. * * @parm BYTE | slot | Specifies which slot to set. * * @rdesc There is no return value. ***************************************************************************/ void SndSetAllPrm(BYTE slot) {
/* global am-depth and vib-depth settings */ SndSAmVibRhythm();
/* note sel is always false */ SndSNoteSel(FALSE);
/* slot-specific parameters */
/* initialise volume to minimum to avoid clicks if the note is
* off but still playing (during decay phase). * * only applies to carrier slots. */ if (operSlot[slot]) { /* its a carrier slot */ slotAtten[slot] = 0x3f; // max attenuation
} SndSKslLevel(slot);
SndSFeedFm(slot); SndSAttDecay(slot); SndSSusRelease(slot); SndSAVEK(slot); SndWaveSelect(slot); }
/* --- setting slot parameters ------------------ */
/****************************************************************************
* @doc INTERNAL * * @api void | SetSlotParam | Sets the 14 parameters (13 in <p param>, * 1 in <p waveSel>) of slot <p slot>. Updates both the parameter array * and the chip. * * @parm BYTE | slot | Specifies which slot to set. * * @parm NPBYTE | param | Pointer to the new parameter array. * * @parm BYTE | waveSel | The new waveSel value. * * @rdesc There is no return value. ***************************************************************************/ void SetSlotParam(BYTE slot, NPOPERATOR pOper, BYTE waveSel) { LPBYTE ptr;
ptr = ¶mSlot[slot][0];
*ptr++ = pOper->ksl; *ptr++ = pOper->freqMult; *ptr++ = pOper->feedBack; *ptr++ = pOper->attack; *ptr++ = pOper->sustLevel; *ptr++ = pOper->sustain; *ptr++ = pOper->decay; *ptr++ = pOper->release; *ptr++ = pOper->output; *ptr++ = pOper->am; *ptr++ = pOper->vib; *ptr++ = pOper->ksr; *ptr++ = pOper->fm;
*ptr = waveSel & 0x3;
// set default volume settings
slotAtten[slot] = 0;
SndSetAllPrm(slot); }
/*
* set this voice up to the correct parameters for a timbre * copy the parameters to the slot array and write them to the * chip * */
void SetVoiceTimbre(BYTE voice, NPTIMBRE pTimbre) {
if (voice < BD) { // melodic only
SetSlotParam(slotVoice[voice][0], &pTimbre->op0, pTimbre->wave0); SetSlotParam(slotVoice[voice][1], &pTimbre->op1, pTimbre->wave1); } else if (voice == BD) { // bass drum
SetSlotParam(slotPerc[0][0], &pTimbre->op0, pTimbre->wave0); SetSlotParam(slotPerc[0][1], &pTimbre->op1, pTimbre->wave1); } else { // percussion, 1 slot
SetSlotParam(slotPerc[voice - BD][0], &pTimbre->op0, pTimbre->wave0); } }
/* --- frequency calculation -------------------- */
/* convert the given pitch (0 .. 95) into a frequency
* and write to the chip. * * this will turn the note on if keyon is true. */ VOID SetFreq(BYTE voice, BYTE pitch, BYTE keyOn) { WORD FNum; BYTE t1;
// remember the keyon and pitch of the voice
voiceKeyOn[voice] = keyOn; notePitch[voice] = pitch;
pitch += (BYTE)halfToneOffset[voice]; if (pitch > 95) pitch = 95;
// get the FNum for the voice
FNum = * (fNumFreqPtr[voice] + pitch % 12);
// output the FNum, KeyOn and Block values
SndOutput((BYTE)(0xA0 | voice), (BYTE)FNum); // FNum bits 0 - 7 (D0 - D7)
t1 = (BYTE)(keyOn ? 32 : 0); // Key On (D5)
t1 += (pitch / 12 << 2); // Block (D2 - D4)
t1 += (0x3 & (FNum >> 8)); // FNum bits 8 - 9 (D0 - D1)
SndOutput((BYTE)(0xB0 | voice), t1); }
/****************************************************************************
* @doc INTERNAL * * @api void | ChangePitch | This routine sets the <t halfToneOffset[]> and * <t fNumFreqPtr[]> arrays. These two global variables are used to * determine the frequency variation to use when a note is played. * * @parm BYTE | voice | Specifies which voice to use. * * @parm WORD | pitchBend | Specifies the pitch bend value (0 to 0x3fff, * where 0x2000 is exact tuning). * * @rdesc There is no return value. ***************************************************************************/ void ChangePitch(BYTE voice, WORD pitchBend) { int t1; int t2; int delta; int pitchrange;
/* pitch bend range 0-3fff is +-PITCHRANGE semitones. We move
* NR_STEP_PITCH steps per semitone. * so the bend range is +- (PITCHRANGE * NR_STEP_PITCH) steps. */ pitchrange = PITCHRANGE * NR_STEP_PITCH;
t1 = (int)(((long)((int)pitchBend - MID_PITCH) * pitchrange) / MID_PITCH);
if (t1 < 0) { t2 = NR_STEP_PITCH - 1 - t1; halfToneOffset[voice] = -(t2 / NR_STEP_PITCH); delta = (t2 - NR_STEP_PITCH + 1) % NR_STEP_PITCH; if (delta) { delta = NR_STEP_PITCH - delta; } } else { halfToneOffset[voice] = t1 / NR_STEP_PITCH; delta = t1 % NR_STEP_PITCH; } fNumFreqPtr[voice] = fNumNotes[delta];
}
/****************************************************************************
* @doc INTERNAL * * @api void | SetVoicePitch | Changes the pitch value of a voice. Does * not affect the percussive voices, except for the bass drum. The change * takes place immediately. * * @parm BYTE | voice | Specifies which voice to set. * * @parm WORD | pitchBend | Specifies the new pitch bend value (0 to 0x3fff, * where 0x2000 == exact tuning). * * @comm The variation in pitch is a function of the previous call to * <f SetPitchRange> and the value of <p pitchBend>. A value of 0 means * -half-tone * pitchRangeStep, 0x2000 means no variation (exact pitch) and * 0x3fff means +half-tone * pitchRangeStep. * * @rdesc There is no return value. ***************************************************************************/ void SetVoicePitch(BYTE voice, WORD pitchBend) { if (voice <= BD) { // melodic and bass drum voices
if (pitchBend > MAX_PITCH) { pitchBend = MAX_PITCH; } ChangePitch(voice, pitchBend); SetFreq(voice, notePitch[voice], voiceKeyOn[voice]); } }
/* --- volume calculation ------------------------ */
/*
* set the attenuation for a slot (combine the channel attenuation * setting with the key velocity). */ VOID SetVoiceAtten(BYTE voice, BYTE bChannel, BYTE bVelocity) { BYTE bAtten; BYTE slot; PBYTE slots;
// scale up the volume since the patch maps are too quiet
//bVelocity = loudervol[bVelocity];
/*
* set channel attenuation */ bAtten = gbVelocityAtten[bVelocity >> 2] + gbChanAtten[bChannel];
/*
* add on any global (volume-setting) attenuation */ bAtten += wSynthAtten;
/* save this for each non-modifier slot */
if (voice <= BD) { // melodic voice
slots = slotVoice[voice];
slotAtten[slots[1]] = bAtten; SndSKslLevel(slots[1]);
if (!GetLocPrm(slots[0], prmFm)) { // additive synthesis: set volume of first slot too
slotAtten[slots[0]] = bAtten; SndSKslLevel(slots[0]); } } else { // percussive voice
slot = slotPerc[voice - BD][0]; slotAtten[slot] = bAtten; SndSKslLevel(slot); } }
/* adjust each slot attenuation to allow for a global volume
* change - note that we only need to change the * carrier, not the modifier slots. * * change for channel bChannel, or all channels if bChannel is * 0xff */ VOID ChangeAtten(BYTE bChannel, int iChangeAtten) { BYTE voice; BYTE slot; PBYTE slots;
/* find voices using this channel */ for (voice = 0; voice < NUMVOICES; voice++) { if ((voices[voice].channel == bChannel) || (bChannel == 0xff)) {
if (voice <= BD) {
/* melodic voice */ slots = slotVoice[voice];
slotAtten[slots[1]] += (WORD)iChangeAtten; SndSKslLevel(slots[1]);
if (!GetLocPrm(slots[0], prmFm)) { // additive synthesis: set volume of first slot too
slotAtten[slots[0]] += (WORD)iChangeAtten; SndSKslLevel(slots[0]); } } else { slot = slotPerc[voice - BD][0]; slotAtten[slot] += (WORD)iChangeAtten; SndSKslLevel(slot); } } } }
/* --- note on/off ------------------------------- */
/* switch off the note a given voice is playing */ void NoteOff(BYTE voice) {
if (voice < BD) {
/* melodic voice */ SetFreq(voice, notePitch[voice], 0); } else { percBits &= ~percMasks[voice-BD]; SndSAmVibRhythm(); } }
/* switch on a voice at a given note (0 - 127, where 60 is middle c) */ void NoteOn(BYTE voice, BYTE bNote) { BYTE bPitch;
/* convert note to chip pitch */ if (bNote < (MID_C - CHIP_MID_C)) { bPitch = 0; } else { bPitch = bNote - (MID_C - CHIP_MID_C); }
if (voice < BD) { /* melodic voice */
/* set frequency and start note */ SetFreq(voice, bPitch, 1); } else { /*
* nb we don't change the pitch of some percussion instruments. * * also note that for percussive instruments (including BD), * the note-on setting should always be 0. You switch the percussion * on by writing to the AmVibRhythm register. */
if (voice == BD) { SetFreq(voice, bPitch, 0); } else if (voice == TOM) { /*
* for best sounds, we do change the TOM freq, but we always keep * the SD 7 semi-tones above TOM. */ SetFreq(TOM, bPitch, 0); SetFreq(SD, (BYTE)(bPitch + TOM_TO_SD), 0); } /* other instruments never change */
percBits |= percMasks[voice - BD]; SndSAmVibRhythm(); } }
/* -- voice allocation -------- */
/*
* find the voice that is currently playing a given channel/note pair * (if any) */ BYTE FindVoice(BYTE bNote, BYTE bChannel) { BYTE i;
for (i = 0; i < (BYTE)NUMVOICES; i++) { if ((voices[i].alloc) && (voices[i].note == bNote) && (voices[i].channel == bChannel)) { voices[i].dwTimeStamp = dwAge++; return(i); } }
/* no voice is playing this */ return(0xff); }
/*
* mark a voice as unused */ VOID FreeVoice(voice) { voices[voice].alloc = 0; }
/*
* GetNewVoice - allocate a voice to play this note. if no voices are * free, re-use the note with the oldest timestamp. */ BYTE GetNewVoice(BYTE patch, BYTE note, BYTE channel) { BYTE i; BYTE voice; BYTE bVoiceToUse, bVoiceSame, bVoiceOldest; DWORD dwOldestTime = dwAge + 1; // init to past current "time"
DWORD dwOldestSame = dwAge + 1; DWORD dwOldestOff = dwAge + 1;
if (patches[patch].mode) { // it's a percussive patch
voice = patches[patch].percVoice; // use fixed percussion voice
voices[voice].alloc = TRUE; voices[voice].note = note; voices[voice].channel = channel; voices[voice].dwTimeStamp = MAKELONG(patch, 0);
SetVoiceTimbre(voice, &patches[patch]);
return voice; }
bVoiceToUse = bVoiceSame = bVoiceOldest = 0xff;
// find a free melodic voice to use
for (i = 0; i < (BYTE)NUMMELODIC; i++) { // it's a melodic patch
if (!voices[i].alloc) {
if (voices[i].dwTimeStamp < dwOldestOff) { bVoiceToUse = i; dwOldestOff = voices[i].dwTimeStamp; }
} else if (voices[i].channel == channel) { if (voices[i].dwTimeStamp < dwOldestSame) { dwOldestSame = voices[i].dwTimeStamp; bVoiceSame = i; } } else if (voices[i].dwTimeStamp < dwOldestTime) { dwOldestTime = voices[i].dwTimeStamp; bVoiceOldest = i; // remember oldest one to steal
} }
// choose a free voice if we have found one. If not, choose the
// oldest voice of the same channel. if none, choose the oldest voice.
if (bVoiceToUse == 0xff) { if (bVoiceSame != 0xff) { bVoiceToUse = bVoiceSame; } else { bVoiceToUse = bVoiceOldest; } }
if (voices[bVoiceToUse].alloc) { // if we stole it, turn it off
NoteOff(bVoiceToUse); }
voices[bVoiceToUse].alloc = 1; voices[bVoiceToUse].note = note; voices[bVoiceToUse].channel = channel; voices[bVoiceToUse].dwTimeStamp = dwAge++;
SetVoiceTimbre(bVoiceToUse, &patches[patch]);
return bVoiceToUse; }
/* --- externally-called functions ------------------------------ */
/*
* Adlib_NoteOn - This turns a note on. (Including drums, with * a patch # of the drum Note + 128) * * inputs * BYTE bPatch - MIDI patch number * BYTE bNote - MIDI note number * BYTE bChannel - MIDI channel # * BYTE bVelocity - Velocity # * short iBend - current pitch bend from -32768, to 32767 * returns * none */ VOID NEAR PASCAL Adlib_NoteOn (BYTE bPatch, BYTE bNote, BYTE bChannel, BYTE bVelocity, short iBend) {
BYTE voice; WORD wBend;
if (bVelocity == 0) { // 0 velocity means note off
Adlib_NoteOff(bPatch, bNote, bChannel); return; }
// octave registration for melodic patches
if (bPatch < 128) { bNote += patchKeyOffset[bPatch]; if ((bNote < 0) || (bNote > 127)) { bNote -= patchKeyOffset[bPatch]; } }
if (bPatch >= 128) { /*
* it's a percussion note */
bNote = bPatch - 128;
if ((bNote < FIRSTDRUMNOTE) || (bNote > LASTDRUMNOTE)) { return; }
/* use the drum patch table to map the note to a given
* TIMBRE/note pair */ bPatch = drumpatch[bNote - FIRSTDRUMNOTE].patch; bNote = drumpatch[bNote - FIRSTDRUMNOTE].note;
/* each drum patch plays on one specific voice.
* find that voice */ voice = patches[bPatch].percVoice; /* switch note off if playing */ if (voices[voice].alloc) { NoteOff(voice); }
/* call GetNewVoice to set the voice params and timestamp
* even if we found it. */ voice = GetNewVoice(bPatch, bNote, bChannel);
} else {
/* switch note off if it's playing */ if ( (voice = FindVoice(bNote, bChannel)) != 0xFF ) { NoteOff(voice); } else { voice = GetNewVoice(bPatch, bNote, bChannel); } }
/* convert the velocity to an attenuation setting, and
* write that to the device */ SetVoiceAtten(voice, bChannel, bVelocity);
/*
* apply pitch bend. note that we are passed a pitch bend in the * range 8000-7fff, but our code assumes 0-3fff, so we convert here. */ wBend = (((WORD)iBend + 0x8000) >> 2) & 0x3fff; SetVoicePitch(voice, wBend);
// play the note
NoteOn(voice, bNote);
}
/* Adlib_NoteOff - This turns a note off. (Including drums,
* with a patch # of the drum note + 128) * * inputs * BYTE bPatch - MIDI patch # * BYTE bNote - MIDI note number * BYTE bChannel - MIDI channel # * returns * none */ VOID FAR PASCAL Adlib_NoteOff (BYTE bPatch, BYTE bNote, BYTE bChannel) { BYTE bVoice;
if (bPatch > 127) {
/* drum note. These all use a fixed voice */
if ((bNote < FIRSTDRUMNOTE) || (bNote > LASTDRUMNOTE)) { return; }
/* use the drum patch table to map the note to a given
* TIMBRE/note pair */ bPatch = drumpatch[bNote - FIRSTDRUMNOTE].patch; bNote = drumpatch[bNote - FIRSTDRUMNOTE].note; bVoice = patches[bPatch].percVoice; /* switch note off if playing our patch */ if (LOWORD(voices[bVoice].dwTimeStamp) == bPatch) { NoteOff(bVoice); } } else {
bVoice = FindVoice(bNote, bChannel); if (bVoice != 0xff) {
if (voices[bVoice].note) { NoteOff(bVoice); FreeVoice(bVoice); } } } }
/* Adlib_AllNotesOff - turn off all notes
* * inputs - none * returns - none */ VOID Adlib_AllNotesOff(void) {
BYTE i;
for (i = 0; i < NUMVOICES; i++) { NoteOff(i); } }
/* Adlib_NewVolume - This should be called if a volume level
* has changed. This will adjust the levels of all the playing * voices. * * inputs * WORD wLeft - left attenuation (1.5 db units) * WORD wRight - right attenuation (ignore if mono) * returns * none */ VOID FAR PASCAL Adlib_NewVolume (WORD wLeft, WORD wRight) { /* ignore the right attenuation since this is a mono device */ int iChange;
wLeft = min(wLeft, wRight) << 1; iChange = wLeft - wSynthAtten;
wSynthAtten = wLeft;
/* change attenuation for all channels */ ChangeAtten(0xff, iChange); }
/* Adlib_ChannelVolume - set the volume level for an individual channel.
* * inputs * BYTE bChannel - channel number to change * WORD wAtten - attenuation in 1.5 db units * * returns * none */ VOID FAR PASCAL Adlib_ChannelVolume(BYTE bChannel, WORD wAtten) { int iChange;
iChange = wAtten - gbChanAtten[bChannel];
gbChanAtten[bChannel] = (BYTE)wAtten;
/* change attenuation for this channel */ ChangeAtten(bChannel, iChange); }
/* Adlib_SetPan - set the left-right pan position.
* * inputs * BYTE bChannel - channel number to alter * BYTE bPan - 0 for left, 127 for right or somewhere in the middle. * * returns - none * * does nothing - this is a mono device */ VOID FAR PASCAL Adlib_SetPan(BYTE bChannel, BYTE bPan) {
/* do nothing */ }
/* Adlib_PitchBend - This pitch bends a channel.
* * inputs * BYTE bChannel - channel * short iBend - Values from -32768 to 32767, being * -2 to +2 half steps * returns * none */ VOID NEAR PASCAL Adlib_PitchBend (BYTE bChannel, short iBend) { BYTE i; WORD w;
/* note that our code expects 0 - 0x3fff not 0x8000 - 0x7fff */ w = (((WORD) iBend + 0x8000) >> 2) & 0x3fff;
for (i = 0; i < NUMVOICES; i++) { if ((voices[i].alloc) && (voices[i].channel == bChannel)) { SetVoicePitch(i, w); } } }
/* Adlib_BoardInit - initialise board and load patches as necessary.
* * inputs - none * returns - 0 for success or the error code */ WORD Adlib_BoardInit(void) { BYTE i;
wSynthAtten = 0;
/* build the freq table */ InitFNums();
/* silence and free all voices */ for (i = 0; i <= 8; i++) { SoundChut(i); FreeVoice(i); }
/* switch to percussive mode and set fixed frequencies */ SetFreq(TOM, TOM_PITCH, 0); SetFreq(SD, SD_PITCH, 0); percBits = 0; SndSAmVibRhythm();
/* init all slots to sine-wave */ for (i= 0; i < 18; i++) { SndOutput((BYTE)(0xE0 | offsetSlot[i]), 0); } /* enable wave-form selection */ SndOutput(1, 0x20);
LoadPatches(); LoadDrumPatches();
// don't initialise - the data is static and will thus
// be initialised to 0 at load time. no other change should be made
// since the mci sequencer will not re-send channel volume change
// messages.
//
// /* init all channels to loudest */
// for (i = 0; i < NUMCHANNELS; i++) {
// gbChanAtten[i] = 4;
// }
return(0); }
/*
* Adlib_BoardReset - silence the board and set all voices off. */ VOID Adlib_BoardReset(void) { BYTE i;
/* silence and free all voices */ for (i = 0; i <= 8; i++) { SoundChut(i); FreeVoice(i); }
/* switch to percussive mode and set fixed frequencies */ SetFreq(TOM, TOM_PITCH, 0); SetFreq(SD, SD_PITCH, 0); percBits = 0; SndSAmVibRhythm();
}
|