|
|
//----------------------------------------------------------------------------
//
// Assemble X86 machine implementation.
//
// Copyright (C) Microsoft Corporation, 2000-2001.
//
//----------------------------------------------------------------------------
#include "ntsdp.hpp"
#include "i386_asm.h"
UCHAR asm386(ULONG, PUCHAR, PUCHAR);
UCHAR CheckData(void); PUCHAR ProcessOpcode(void); PUCHAR GetTemplate(PUCHAR); UCHAR MatchTemplate(PULONG); void CheckTemplate(void); UCHAR CheckPrefix(PUCHAR); void AssembleInstr(void); UCHAR MatchOperand(PASM_VALUE, UCHAR); void OutputInstr(void); void OutputValue(UCHAR size, PUCHAR pchValue);
extern UCHAR PeekAsmChar(void); extern ULONG PeekAsmToken(PULONG); extern void AcceptAsmToken(void);
extern void GetAsmExpr(PASM_VALUE, UCHAR); extern void GetAsmOperand(PASM_VALUE); extern PUCHAR X86SearchOpcode(PUCHAR); extern ULONG savedAsmClass; extern OPNDTYPE mapOpndType[];
// flags and values to build the assembled instruction
static UCHAR fWaitPrfx; // if set, use WAIT prefix for float instr
static UCHAR fOpndOvrd; // if set, use operand override prefix
static UCHAR fAddrOvrd; // if set, use address override prefix
static UCHAR segOvrd; // if nonzero, use segment override prefix
static UCHAR preOpcode; // if nonzero, use byte before opcode
static UCHAR inOpcode; // opcode of instruction
static UCHAR postOpcode; // if nonzero, use byte after opcode
static UCHAR fModrm; // if set, modrm byte is defined
static UCHAR modModrm; // if fModrm, mod component of modrm
static UCHAR regModrm; // if fModrm, reg component of modrm
static UCHAR rmModrm; // if fModrm, rm component of modrm
static UCHAR fSib; // if set, sib byte is defined
static UCHAR scaleSib; // if fSib, scale component of sib
static UCHAR indexSib; // if fSib, index component of sib
static UCHAR baseSib; // if fSib, base component of sib
static UCHAR fSegPtr; // if set, segment for far call defined
static USHORT segPtr; // if fSegPtr, value of far call segment
static UCHAR addrSize; // size of address: 0, 1, 2, 4
static LONG addrValue; // value of address, if used
static UCHAR immedSize; // size of immediate: 0, 1, 2, 4
static LONG immedValue; // value of immediate, if used
static UCHAR immedSize2; // size of second immediate, if used
static LONG immedValue2; // value of second immediate, if used
static ULONG addrAssem; // assembly address (formal)
static PUCHAR pchBin; // pointer to binary result string
// flags and values of the current instruction template being used
static UCHAR cntTmplOpnd; // count of operands in template
static UCHAR tmplType[3]; // operand types for current template
static UCHAR tmplSize[3]; // operand sizes for current template
static UCHAR fForceSize; // set if operand size must be specified
static UCHAR fAddToOp; // set if addition to opcode
static UCHAR fNextOpnd; // set if character exists for next operand
static UCHAR fSegOnly; // set if only segment is used for operand
static UCHAR fMpNext; // set on 'Mv' tmpl if next tmpl is 'Mp'
static UCHAR segIndex; // index of segment for PUSH/POP
// values describing the operands processed from the command line
static UCHAR cntInstOpnd; // count of operands read from input line
static UCHAR sizeOpnd; // size of operand for template with size v
static ASM_VALUE avInstOpnd[3]; // asm values from input line
PUCHAR pchAsmLine; // pointer to input line (formal)
UCHAR fDBit = TRUE; // set for 32-bit addr/operand mode
UCHAR segToOvrdByte[] = { 0x00, // segX
0x26, // segES
0x2e, // segCS
0x36, // segSS
0x3e, // segDS
0x64, // segFS
0x65 // segGS
};
void BaseX86MachineInfo::Assemble(PADDR paddr, PSTR pchInput) { ULONG length; UCHAR chBinary[60];
length = (ULONG)asm386((ULONG)Flat(*paddr), (PUCHAR)pchInput, chBinary);
if (length) { // printf("setting memory at addr: %s - count: %d\n",
// FormatAddr64(Flat(*paddr)), length);
if (length != SetMemString(paddr, chBinary, length)) { error(MEMORY); } AddrAdd(paddr,length); } }
UCHAR asm386 (ULONG addrAssemble, PUCHAR pchAssemble, PUCHAR pchBinary) { PUCHAR pchTemplate;
UCHAR index; // loop index and temp
ULONG temp; // general temporary value
UCHAR errIndex; // error index of all templates
ULONG errType; // error type of all templates
// initialize flags and state variables
addrAssem = addrAssemble; // make assembly address global
pchAsmLine = pchAssemble; // make input string pointer global
pchBin = pchBinary; // make binary string pointer global
savedAsmClass = (ULONG)-1; // no peeked token
segOvrd = 0; // no segment override
cntInstOpnd = 0; // no input operands read yet
fModrm = fSib = fSegPtr = FALSE; // no modrm, sib, or far seg
addrSize = immedSize = immedSize2 = 0; // no addr or immed
// check for data entry commands for byte (db), word (dw), dword (dd)
// if so, process multiple operands directly
if (!CheckData()) {
// from the string in pchAsmLine, parse and lookup the opcode
// to return a pointer to its template. check and process
// any prefixes, reading the next opcode for each prefix
do pchTemplate = ProcessOpcode(); while (CheckPrefix(pchTemplate));
// if a pending opcode to process, pchTemplate is not NULL
if (pchTemplate) {
// fNextOpnd is initially set on the condition of characters
// being available for the first operand on the input line
fNextOpnd = (UCHAR)(PeekAsmToken(&temp) != ASM_EOL_CLASS);
// continue until match occurs or last template read
errIndex = 0; // start with no error
do {
// get infomation on next template - return pointer to
// next template or NULL if last in list
pchTemplate = GetTemplate(pchTemplate);
// match the loaded template against the operands input
// if mismatch, index has the operand index + 1 of
// the error while temp has the error type.
index = MatchTemplate(&temp);
// determine the error to report as templates are matched
// update errIndex to index if later operand
// if same operand index, prioritize to give best error:
// high: SIZE, BADRANGE, OVERFLOW
// medium: OPERAND
// low: TOOFEW, TOOMANY
if (index > errIndex || (index == errIndex && (errType == TOOFEW || errType == TOOMANY || temp == SIZE || temp == BADRANGE || temp == OVERFLOW))) { errIndex = index; errType = temp; };
} while (index && pchTemplate);
// if error occured on template match, process it
if (index) error(errType);
// preliminary type and size matching has been
// successful on the current template.
// perform further checks for size ambiguity.
// at this point, the assembly is committed to the current
// template. either an error or a successful assembly
// follows.
CheckTemplate();
// from the template and operand information, set the field
// information of the assembled instruction
AssembleInstr();
// from the assembled instruction information, create the
// corresponding binary information
OutputInstr(); } }
// return the size of the binary string output (can be zero)
return (UCHAR)(pchBin - pchBinary); // length of binary string
}
UCHAR CheckData (void) { PUCHAR pchBinStart = pchBin; UCHAR ch; UCHAR size = 0; ASM_VALUE avItem; ULONG temp;
// perform an explicit parse for 'db', 'dw', and 'dd'
// and set size to that of the data item
ch = PeekAsmChar(); if (tolower(ch) == 'd') { ch = (UCHAR)tolower(*(pchAsmLine + 1)); if (ch == 'b') size = 1; if (ch == 'w') size = 2; if (ch == 'd') size = 4; if (size) { ch = *(pchAsmLine + 2); if (ch != ' ' && ch != '\t' && ch != '\0') size = 0; } }
// if a valid command entered, then size is nonzero
if (size) {
// move pointer over command and set loop condition
pchAsmLine += 2; temp = ASM_COMMA_CLASS;
// for each item in list:
// check for binary buffer overflow
// get expression value - error if not immediate value
// test for byte and word overflow, if applicable
// write the value to the binary buffer
// check for comma for next operand
while (temp == ASM_COMMA_CLASS) { if (pchBin >= pchBinStart + 40) error(LISTSIZE); GetAsmExpr(&avItem, FALSE); if (avItem.flags != fIMM) error(OPERAND); if (avItem.reloc > 1) error(RELOC); if ((size == 1 && ((LONG)avItem.value < -0x80L || (LONG)avItem.value > 0xffL)) || (size == 2 && ((LONG)avItem.value < -0x8000L || (LONG)avItem.value > 0xffffL))) error(OVERFLOW); OutputValue(size, (PUCHAR)&avItem.value);
temp = PeekAsmToken(&temp); if (temp == ASM_COMMA_CLASS) AcceptAsmToken(); else if (temp != ASM_EOL_CLASS) error(SYNTAX); }
// check for any remaining part after the last operand
if (PeekAsmChar() != '\0') error(SYNTAX); }
// return size of item listed (zero for none)
return size; }
PUCHAR ProcessOpcode (void) { UCHAR ch; UCHAR cbOpcode = 0; PUCHAR pchTemplate; UCHAR szOpcode[12];
// skip over any leading white space
do ch = *pchAsmLine++; while (ch == ' ' || ch == '\t');
// return NULL if end of line
if (ch == '\0') return NULL;
// parse out opcode - first string [a-z] [0-9] (case insensitive)
ch = (UCHAR)tolower(ch); while (((ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) && cbOpcode < 11) { szOpcode[cbOpcode++] = ch; ch = (UCHAR)tolower(*pchAsmLine); pchAsmLine++; }
// if empty or too long, then error
if (cbOpcode == 0 || cbOpcode == 11) error(BADOPCODE);
// allow opcode to have trailing colon and terminate
if (ch == ':') { szOpcode[cbOpcode++] = ch; ch = (UCHAR)tolower(*pchAsmLine); pchAsmLine++; } szOpcode[cbOpcode] = '\0'; pchAsmLine--;
// get pointer to template series for opcode found
pchTemplate = X86SearchOpcode(szOpcode); if (pchTemplate == NULL) error(BADOPCODE);
return pchTemplate; }
PUCHAR GetTemplate (PUCHAR pchTemplate) { UCHAR ch; UCHAR ftEnd; // set if tEnd for last template in list
UCHAR feEnd; // set if eEnd for last token in template
// initialize template variables and flags
cntTmplOpnd = segIndex = 0; tmplType[0] = tmplType[1] = tmplType[2] = typNULL; tmplSize[0] = tmplSize[1] = tmplSize[2] = sizeX; fForceSize = fAddToOp = fSegOnly = fMpNext = FALSE;
fWaitPrfx = FALSE; // no WAIT prefix
fOpndOvrd = fAddrOvrd = FALSE; // no operand or addr overrides
preOpcode = postOpcode = 0; // no pre- or post-opcode
regModrm = 0; // this is part of some opcodes
ch = *pchTemplate++;
// set pre-opcode for two-byte opcodes (0x0f??) and advance
// template if needed
if (ch == 0x0f) { preOpcode = ch; ch = *pchTemplate++; }
inOpcode = ch; // set opcode
// set post-opcode and advance template for floating-point
// instructions (0xd8 - 0xdf) using a second byte in
// the range 0xc0 - 0xff that is read from the template
if ((ch & ~0x7) == 0xd8) { ch = *pchTemplate; if (ch >= 0xc0) { postOpcode = ch; pchTemplate++; } }
// loop for each flag and/or operand token in template
// the last token in the list has the eEnd bit set.
do { // read the next template token
ch = *pchTemplate++;
// extract the tEnd and eEnd bits from the token
ftEnd = (UCHAR)(ch & tEnd); feEnd = (UCHAR)(ch & eEnd); ch &= ~(tEnd | eEnd);
// if extracted token is a flag, do the appropriate action
if (ch < asRegBase) switch (ch) { case as0x0a:
// the postOpcode is set for some decimal instructions
postOpcode = 0x0a; break;
case asOpRg:
// fAddToOp is set if the register index is added
// directly to the base opcode value
fAddToOp = TRUE; break;
case asSiz0:
// fOpndOvrd is set or cleared to force a 16-bit operand
fOpndOvrd = fDBit; break;
case asSiz1:
// fOpndOvrd is set or cleared to force a 32-bit operand
fOpndOvrd = (UCHAR)!fDBit; break;
case asWait:
// the flag fWaitPrfx is set to emit WAIT before the
// instruction
fWaitPrfx = TRUE; break;
case asSeg:
// in XLAT, the optional memory operand is used to
// just specify a segment override prefix
fSegOnly = TRUE; break;
case asFSiz:
// fForceSize is set when a specific size of a memory
// operand must be given for some floating instrs
fForceSize = TRUE; break;
case asMpNx:
// fMpNext is set when the next template operand is
// 'Mp' and is used to determine how to match
// 'Md' since it matches both 'Mp' and 'Mv'
fMpNext = TRUE; break; }
// if token is REG value bit, set the variable regModrm to
// set the opcode-dependent reg value in the modrm byte
else if (ch < opnBase) regModrm = (UCHAR)(ch - asRegBase);
// otherwise, token is operand descriptor.
// if segment operand, get segment number from template
// normalize and map to get operand type and size.
else { if (ch == opnSeg) segIndex = *pchTemplate++; ch -= opnBase; tmplType[cntTmplOpnd] = mapOpndType[ch].type; tmplSize[cntTmplOpnd++] = mapOpndType[ch].size; } } while (!ftEnd);
// return either the pointer to the next template or NULL if
// the last template for the opcode has been processed
return (feEnd ? NULL : pchTemplate); }
UCHAR MatchTemplate (PULONG pErrType) { UCHAR fMatch = TRUE; UCHAR index; ULONG temp; PASM_VALUE pavInstOpnd; // pointer to current operand from input
// process matching for each operand in the specified template
// stop at last operand or when mismatch occurs
for (index = 0; index < cntTmplOpnd && fMatch; index++) {
// set pointer to current instruction operand
pavInstOpnd = &avInstOpnd[index];
// if input operand has not yet been read, check flag
// for existence and process it.
if (index == cntInstOpnd) { fMatch = fNextOpnd; *pErrType = TOOFEW; if (fMatch) { cntInstOpnd++; GetAsmOperand(pavInstOpnd);
// recompute existence of next possible operand
// comma implies TRUE, EOL implies FALSE, else error
temp = PeekAsmToken(&temp); if (temp == ASM_COMMA_CLASS) { AcceptAsmToken(); fNextOpnd = TRUE; } else if (temp == ASM_EOL_CLASS) fNextOpnd = FALSE; else error(EXTRACHARS); // bad parse - immediate error
} }
if (fMatch) { fMatch = MatchOperand(pavInstOpnd, tmplType[index]); *pErrType = OPERAND; }
// if the template and operand type match, do preliminary
// check on size based solely on template size specified
if (fMatch) { if (tmplType[index] == typJmp) {
// for relative jumps, test if byte offset is
// sufficient by computing offset which is
// the target offset less the offset of the
// next instruction. (assume Jb instructions
// are two bytes in length.
temp = pavInstOpnd->value - (addrAssem + 2); fMatch = (UCHAR)(tmplSize[index] == sizeV || ((LONG)temp >= -0x80 && (LONG)temp <= 0x7f)); *pErrType = BADRANGE; }
else if (tmplType[index] == typImm) {
// for immediate operand,
// template sizeV matches sizeB, sizeW, sizeV (all)
// template sizeW matches sizeB, sizeW
// template sizeB matches sizeB
fMatch = (UCHAR)(tmplSize[index] == sizeV || pavInstOpnd->size == tmplSize[index] || pavInstOpnd->size == sizeB); *pErrType = OVERFLOW; } else {
// for nonimmediate operand,
// template sizeX (unspecified) matches all
// operand sizeX (unspecified) matches all
// same template and operand size matches
// template sizeV matches operand sizeW and sizeD
// (EXCEPT for sizeD when fMpNext and fDBit set)
// template sizeP matches operand sizeD and sizeF
// template sizeA matches operand sizeD and sizeQ
fMatch = (UCHAR)(tmplSize[index] == sizeX || pavInstOpnd->size == sizeX || tmplSize[index] == pavInstOpnd->size || (tmplSize[index] == sizeV && (pavInstOpnd->size == sizeW || (pavInstOpnd->size == sizeD && (!fMpNext || fDBit)))) || (tmplSize[index] == sizeP && (pavInstOpnd->size == sizeD || pavInstOpnd->size == sizeF)) || (tmplSize[index] == sizeA && (pavInstOpnd->size == sizeD || pavInstOpnd->size == sizeQ))); *pErrType = SIZE; } } }
// if more operands to read, then no match
if (fMatch & fNextOpnd) { fMatch = FALSE; index++; // next operand is in error
*pErrType = TOOMANY; }
return fMatch ? (UCHAR)0 : index; }
void CheckTemplate (void) { UCHAR index;
// if fForceSize is set, then the first (and only) operand is a
// memory type. return an error if its size is unspecified.
if (fForceSize && avInstOpnd[0].size == sizeX) error(OPERAND);
// test for template with leading entries of 'Xb', where
// 'X' includes all types except immediate ('I'). if any
// are defined, at least one operand must have a byte size.
// this handles the cases of byte or word/dword ambiguity for
// instructions with no register operands.
sizeOpnd = sizeX; for (index = 0; index < 2; index++) if (tmplType[index] != typImm && tmplSize[index] == sizeB) { if (avInstOpnd[index].size != sizeX) sizeOpnd = avInstOpnd[index].size; } else break; if (index != 0 && sizeOpnd == sizeX) error(SIZE);
// for templates with one entry of 'Xp', where 'X' is
// not 'A', allowable sizes are sizeX (unspecified),
// sizeD (dword), and sizeF (fword). process by
// mapping entry sizes 'p' -> 'v', sizeD -> sizeW,
// and sizeF -> sizeD
// (template 'Ap' is absolute with explicit segment and
// 'v'-sized offset - really treated as 'Av')
if (tmplSize[0] == sizeP) { tmplSize[0] = sizeV; if (avInstOpnd[0].size == sizeD) avInstOpnd[0].size = sizeW; if (avInstOpnd[0].size == sizeF) avInstOpnd[0].size = sizeD; }
// for templates with the second entry of 'Ma', the
// allowable sizes are sizeX (unspecified),
// sizeD (dword), and sizeQ (qword). process by
// mapping entry sizes 'a' -> 'v', sizeD -> sizeW,
// and sizeQ -> sizeD
// (template entry 'Ma' is used only with the BOUND instruction)
if (tmplSize[1] == sizeA) { tmplSize[1] = sizeV; if (avInstOpnd[1].size == sizeD) avInstOpnd[1].size = sizeW; if (avInstOpnd[1].size == sizeQ) avInstOpnd[1].size = sizeD; }
// test for template with leading entries of 'Xv' optionally
// followed by one 'Iv' entry. if two 'Xv' entries, set
// size error if one is word and the other is dword. if
// 'Iv' entry, test for overflow.
sizeOpnd = sizeX; for (index = 0; index < 3; index++) if (tmplSize[index] == sizeV) if (tmplType[index] != typImm) {
// template entry is 'Xv', set size and check size
if (avInstOpnd[index].size != sizeX) { if (sizeOpnd != sizeX && sizeOpnd != avInstOpnd[index].size) error(SIZE); sizeOpnd = avInstOpnd[index].size; } } else {
// template entry is 'Iv', set sizeOpnd to either
// sizeW or sizeD and check for overflow
if (sizeOpnd == sizeX) sizeOpnd = (UCHAR)(fDBit ? sizeD : sizeW); if (sizeOpnd == sizeW && avInstOpnd[index].size == sizeD) error(OVERFLOW); } }
UCHAR CheckPrefix (PUCHAR pchTemplate) { UCHAR fPrefix;
fPrefix = (UCHAR)(pchTemplate && *pchTemplate != 0x0f && (*pchTemplate & ~7) != 0xd8 && *(pchTemplate + 1) == (asPrfx + tEnd + eEnd)); if (fPrefix) *pchBin++ = *pchTemplate;
return fPrefix; }
void AssembleInstr (void) { UCHAR size; UCHAR index; PASM_VALUE pavInstOpnd;
// set operand override flag if operand size differs than fDBit
// (the flag may already be set due to opcode template flag)
if ((sizeOpnd == sizeW && fDBit) || (sizeOpnd == sizeD && !fDBit)) fOpndOvrd = TRUE;
// for each operand of the successfully matched template,
// build the assembled instruction
// for template entries with size 'v', sizeOpnd has the size
for (index = 0; index < cntTmplOpnd; index++) { pavInstOpnd = &avInstOpnd[index]; size = tmplSize[index]; if (size == sizeV) size = sizeOpnd;
switch (tmplType[index]) { case typExp: case typMem: if (!segOvrd) // first one only (movsb...)
segOvrd = segToOvrdByte[pavInstOpnd->segovr]; if (fSegOnly) break;
fModrm = TRUE; if (pavInstOpnd->flags == fREG) { modModrm = 3; rmModrm = pavInstOpnd->base; } else { addrValue = (LONG)pavInstOpnd->value;
// for 16-bit or 32-bit index off (E)BP, make
// zero displacement a byte one
if (addrValue == 0 && (pavInstOpnd->flags != fPTR16 || pavInstOpnd->base != 6) && (pavInstOpnd->flags != fPTR32 || pavInstOpnd->base != indBP)) modModrm = 0; else if (addrValue >= -0x80L && addrValue <= 0x7fL) { modModrm = 1; addrSize = 1; } else if (pavInstOpnd->flags == fPTR32 || (pavInstOpnd->flags == fPTR && fDBit)) { modModrm = 2; addrSize = 4; } else if (addrValue >= -0x8000L && addrValue <= 0xffffL) { modModrm = 2; addrSize = 2; } else error(OVERFLOW); if (pavInstOpnd->flags == fPTR) { modModrm = 0; addrSize = (UCHAR)((1 + fDBit) << 1); rmModrm = (UCHAR)(6 - fDBit); } else if (pavInstOpnd->flags == fPTR16) { fAddrOvrd = fDBit; rmModrm = pavInstOpnd->base; if (modModrm == 0 && rmModrm == 6) modModrm = 1; } else { fAddrOvrd = (UCHAR)!fDBit; if (pavInstOpnd->index == 0xff && pavInstOpnd->base != indSP) { rmModrm = pavInstOpnd->base; if (modModrm == 0 && rmModrm == 5) modModrm++; } else { rmModrm = 4; fSib = TRUE; if (pavInstOpnd->base != 0xff) { baseSib = pavInstOpnd->base; if (modModrm == 0 && baseSib == 5) modModrm++; } else baseSib = 5; if (pavInstOpnd->index != 0xff) { indexSib = pavInstOpnd->index; scaleSib = pavInstOpnd->scale; } else { indexSib = 4; scaleSib = 0; } } } } break;
case typGen: if (fAddToOp) inOpcode += pavInstOpnd->base; else regModrm = pavInstOpnd->base; break;
case typSgr: regModrm = (UCHAR)(pavInstOpnd->base - 1); // remove list offset
break;
case typReg: rmModrm = pavInstOpnd->base; break;
case typImm: if (immedSize == 0) { immedSize = size; immedValue = pavInstOpnd->value; } else { immedSize2 = size; immedValue2 = pavInstOpnd->value; } break;
case typJmp:
// compute displacment for byte offset instruction
// and test if in range
addrValue = pavInstOpnd->value - (addrAssem + 2); if (addrValue >= -0x80L && addrValue <= 0x7fL) addrSize = 1; else {
// too large for byte, compute for word offset
// and test again if in range
// also allow for two-byte opcode 0f xx
addrValue -= 1 + (preOpcode == 0x0f); if (!fDBit) { if (addrValue >= -0x8000L && addrValue <= 0x7fffL) addrSize = 2; else error(BADRANGE); } else {
// recompute again for dword offset instruction
addrValue -= 2; addrSize = 4; } } fOpndOvrd = FALSE; // operand size override is NOT set
break;
case typCtl: case typDbg: case typTrc: fModrm = TRUE; modModrm = 3; regModrm = pavInstOpnd->base; break;
case typSti: postOpcode += pavInstOpnd->base; break;
case typSeg: break;
case typXsi: case typYdi: fAddrOvrd = (UCHAR) ((UCHAR)(pavInstOpnd->flags == fPTR32) != fDBit); break;
case typOff: segOvrd = segToOvrdByte[pavInstOpnd->segovr]; goto jumpAssem;
case typAbs: fSegPtr = TRUE; segPtr = pavInstOpnd->segment; jumpAssem: addrValue = (LONG)pavInstOpnd->value; if (!fDBit) if (addrValue >= -0x8000L && addrValue <= 0xffffL) addrSize = 2; else error(OVERFLOW); else addrSize = 4; break; } } }
UCHAR MatchOperand (PASM_VALUE pavOpnd, UCHAR tmplType) { UCHAR fMatch;
// if immediate operand, set minimum unsigned size
if (pavOpnd->flags == fIMM) { if ((LONG)pavOpnd->value >= -0x80L && (LONG)pavOpnd->value <= 0xffL) pavOpnd->size = sizeB; else if ((LONG)pavOpnd->value >= -0x8000L && (LONG)pavOpnd->value <= 0xffffL) pavOpnd->size = sizeW; else pavOpnd->size = sizeD; }
// start matching of operands
// compare the template and input operand types
switch (tmplType) { case typAX: fMatch = (UCHAR)((pavOpnd->flags & fREG) && pavOpnd->index == regG && pavOpnd->base == indAX); break;
case typCL: fMatch = (UCHAR)((pavOpnd->flags & fREG) && pavOpnd->index == regG && pavOpnd->size == sizeB && pavOpnd->base == indCX); break;
case typDX: fMatch = (UCHAR)((pavOpnd->flags & fREG) && pavOpnd->index == regG && pavOpnd->size == sizeW && pavOpnd->base == indDX); break;
case typAbs: fMatch = (UCHAR)(pavOpnd->flags & fFPTR); break;
case typExp: fMatch = (UCHAR)((pavOpnd->flags == fREG && pavOpnd->index == regG) || (pavOpnd->flags == fIMM && pavOpnd->reloc == 1) || (pavOpnd->flags & (fPTR | fPTR16 | fPTR32)) != 0); break;
case typGen: case typReg: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regG); break;
case typIm1: fMatch = (UCHAR)(pavOpnd->flags == fIMM && pavOpnd->value == 1); break;
case typIm3: fMatch = (UCHAR)(pavOpnd->flags == fIMM && pavOpnd->value == 3); break;
case typImm: fMatch = (UCHAR)(pavOpnd->flags == fIMM && pavOpnd->reloc == 0); break;
case typJmp: fMatch = (UCHAR)(pavOpnd->flags == fIMM); break;
case typMem: fMatch = (UCHAR)((pavOpnd->flags == fIMM && pavOpnd->reloc == 1) || ((pavOpnd->flags & (fPTR | fPTR16 | fPTR32)) != 0)); break;
case typCtl: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regC); break;
case typDbg: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regD); break;
case typTrc: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regT); break;
case typSt: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regF); break;
case typSti: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regI); break;
case typSeg: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regS && pavOpnd->base == segIndex); break;
case typSgr: fMatch = (UCHAR)(pavOpnd->flags == fREG && pavOpnd->index == regS); break;
case typXsi: fMatch = (UCHAR)(((pavOpnd->flags == fPTR16 && pavOpnd->base == 4) || (pavOpnd->flags == fPTR32 && pavOpnd->base == indSI && pavOpnd->index == 0xff)) && pavOpnd->value == 0 && (pavOpnd->segovr == segX || pavOpnd->segovr == segDS)); break;
case typYdi: fMatch = (UCHAR)(((pavOpnd->flags == fPTR16 && pavOpnd->base == 5) || (pavOpnd->flags == fPTR32 && pavOpnd->base == indDI && pavOpnd->index == 0xff)) && pavOpnd->value == 0 && pavOpnd->segovr == segES); break;
case typOff: fMatch = (UCHAR)((pavOpnd->flags == fIMM && pavOpnd->reloc == 1) || pavOpnd->flags == fPTR); break;
default: fMatch = FALSE; break; }
return fMatch; }
void OutputInstr (void) { if (fWaitPrfx) *pchBin++ = 0x9b; if (fAddrOvrd) *pchBin++ = 0x67; if (fOpndOvrd) *pchBin++ = 0x66; if (segOvrd) *pchBin++ = segOvrd; if (preOpcode) *pchBin++ = preOpcode; *pchBin++ = inOpcode; if (postOpcode) *pchBin++ = postOpcode; if (fModrm) *pchBin++ = (UCHAR)((((modModrm << 3) + regModrm) << 3) + rmModrm); if (fSib) *pchBin++ = (UCHAR)((((scaleSib << 3) + indexSib) << 3) + baseSib);
OutputValue(addrSize, (PUCHAR)&addrValue); // size = 0, 1, 2, 4
OutputValue((UCHAR)(fSegPtr << 1), (PUCHAR)&segPtr); // size = 0, 2
OutputValue(immedSize, (PUCHAR)&immedValue); // size = 0, 1, 2, 4
OutputValue(immedSize2, (PUCHAR)&immedValue2); // size = 0, 1, 2, 4
}
void OutputValue (UCHAR size, PUCHAR pchValue) { while (size--) *pchBin++ = *pchValue++; }
|