|
|
//----------------------------------------------------------------------------
//
// Register portions of X86 machine implementation.
//
// Copyright (C) Microsoft Corporation, 2000-2001.
//
//----------------------------------------------------------------------------
#include "ntsdp.hpp"
// XXX drewb - Temporary log to try and catch some
// SET_OF_INVALID_CONTEXT bugchecks occurring randomly on x86.
ULONG g_EspLog[64]; PULONG g_EspLogCur = g_EspLog;
// See Get/SetRegVal comments in machine.hpp.
#define RegValError Do_not_use_GetSetRegVal_in_machine_implementations
#define GetRegVal(index, val) RegValError
#define GetRegVal32(index) RegValError
#define GetRegVal64(index) RegValError
#define SetRegVal(index, val) RegValError
#define SetRegVal32(index, val) RegValError
#define SetRegVal64(index, val) RegValError
#define X86_RPL_MASK 3
BOOL g_X86InCode16; BOOL g_X86InVm86;
#define REGALL_SEGREG REGALL_EXTRA0
#define REGALL_MMXREG REGALL_EXTRA1
#define REGALL_DREG REGALL_EXTRA2
REGALLDESC g_X86AllExtraDesc[] = { REGALL_SEGREG, "Segment registers", REGALL_MMXREG, "MMX registers", REGALL_DREG, "Debug registers and, in kernel, CR4", REGALL_XMMREG, "SSE XMM registers", 0, NULL, };
#define REGALL_CREG REGALL_EXTRA4
#define REGALL_DESC REGALL_EXTRA5
REGALLDESC g_X86KernelExtraDesc[] = { REGALL_CREG, "CR0, CR2 and CR3", REGALL_DESC, "Descriptor and task state", 0, NULL, };
char g_Gs[] = "gs"; char g_Fs[] = "fs"; char g_Es[] = "es"; char g_Ds[] = "ds"; char g_Edi[] = "edi"; char g_Esi[] = "esi"; char g_Ebx[] = "ebx"; char g_Edx[] = "edx"; char g_Ecx[] = "ecx"; char g_Eax[] = "eax"; char g_Ebp[] = "ebp"; char g_Eip[] = "eip"; char g_Cs[] = "cs"; char g_Efl[] = "efl"; char g_Esp[] = "esp"; char g_Ss[] = "ss"; char g_Dr0[] = "dr0"; char g_Dr1[] = "dr1"; char g_Dr2[] = "dr2"; char g_Dr3[] = "dr3"; char g_Dr6[] = "dr6"; char g_Dr7[] = "dr7"; char g_Cr0[] = "cr0"; char g_Cr2[] = "cr2"; char g_Cr3[] = "cr3"; char g_Cr4[] = "cr4"; char g_Gdtr[] = "gdtr"; char g_Gdtl[] = "gdtl"; char g_Idtr[] = "idtr"; char g_Idtl[] = "idtl"; char g_Tr[] = "tr"; char g_Ldtr[] = "ldtr"; char g_Di[] = "di"; char g_Si[] = "si"; char g_Bx[] = "bx"; char g_Dx[] = "dx"; char g_Cx[] = "cx"; char g_Ax[] = "ax"; char g_Bp[] = "bp"; char g_Ip[] = "ip"; char g_Fl[] = "fl"; char g_Sp[] = "sp"; char g_Bl[] = "bl"; char g_Dl[] = "dl"; char g_Cl[] = "cl"; char g_Al[] = "al"; char g_Bh[] = "bh"; char g_Dh[] = "dh"; char g_Ch[] = "ch"; char g_Ah[] = "ah"; char g_Iopl[] = "iopl"; char g_Of[] = "of"; char g_Df[] = "df"; char g_If[] = "if"; char g_Tf[] = "tf"; char g_Sf[] = "sf"; char g_Zf[] = "zf"; char g_Af[] = "af"; char g_Pf[] = "pf"; char g_Cf[] = "cf"; char g_Vip[] = "vip"; char g_Vif[] = "vif";
char g_Fpcw[] = "fpcw"; char g_Fpsw[] = "fpsw"; char g_Fptw[] = "fptw"; char g_St0[] = "st0"; char g_St1[] = "st1"; char g_St2[] = "st2"; char g_St3[] = "st3"; char g_St4[] = "st4"; char g_St5[] = "st5"; char g_St6[] = "st6"; char g_St7[] = "st7";
char g_Mm0[] = "mm0"; char g_Mm1[] = "mm1"; char g_Mm2[] = "mm2"; char g_Mm3[] = "mm3"; char g_Mm4[] = "mm4"; char g_Mm5[] = "mm5"; char g_Mm6[] = "mm6"; char g_Mm7[] = "mm7";
char g_Mxcsr[] = "mxcsr"; char g_Xmm0[] = "xmm0"; char g_Xmm1[] = "xmm1"; char g_Xmm2[] = "xmm2"; char g_Xmm3[] = "xmm3"; char g_Xmm4[] = "xmm4"; char g_Xmm5[] = "xmm5"; char g_Xmm6[] = "xmm6"; char g_Xmm7[] = "xmm7";
REGDEF g_X86Defs[] = { { g_Gs, X86_GS }, { g_Fs, X86_FS }, { g_Es, X86_ES }, { g_Ds, X86_DS }, { g_Edi, X86_EDI }, { g_Esi, X86_ESI }, { g_Ebx, X86_EBX }, { g_Edx, X86_EDX }, { g_Ecx, X86_ECX }, { g_Eax, X86_EAX }, { g_Ebp, X86_EBP }, { g_Eip, X86_EIP }, { g_Cs, X86_CS }, { g_Efl, X86_EFL }, { g_Esp, X86_ESP }, { g_Ss, X86_SS }, { g_Dr0, X86_DR0 }, { g_Dr1, X86_DR1 }, { g_Dr2, X86_DR2 }, { g_Dr3, X86_DR3 }, { g_Dr6, X86_DR6 }, { g_Dr7, X86_DR7 }, { g_Di, X86_DI }, { g_Si, X86_SI }, { g_Bx, X86_BX }, { g_Dx, X86_DX }, { g_Cx, X86_CX }, { g_Ax, X86_AX }, { g_Bp, X86_BP }, { g_Ip, X86_IP }, { g_Fl, X86_FL }, { g_Sp, X86_SP }, { g_Bl, X86_BL }, { g_Dl, X86_DL }, { g_Cl, X86_CL }, { g_Al, X86_AL }, { g_Bh, X86_BH }, { g_Dh, X86_DH }, { g_Ch, X86_CH }, { g_Ah, X86_AH }, { g_Fpcw, X86_FPCW }, { g_Fpsw, X86_FPSW }, { g_Fptw, X86_FPTW }, { g_St0, X86_ST0 }, { g_St1, X86_ST1 }, { g_St2, X86_ST2 }, { g_St3, X86_ST3 }, { g_St4, X86_ST4 }, { g_St5, X86_ST5 }, { g_St6, X86_ST6 }, { g_St7, X86_ST7 }, { g_Mm0, X86_MM0 }, { g_Mm1, X86_MM1 }, { g_Mm2, X86_MM2 }, { g_Mm3, X86_MM3 }, { g_Mm4, X86_MM4 }, { g_Mm5, X86_MM5 }, { g_Mm6, X86_MM6 }, { g_Mm7, X86_MM7 }, { g_Mxcsr, X86_MXCSR}, { g_Xmm0, X86_XMM0 }, { g_Xmm1, X86_XMM1 }, { g_Xmm2, X86_XMM2 }, { g_Xmm3, X86_XMM3 }, { g_Xmm4, X86_XMM4 }, { g_Xmm5, X86_XMM5 }, { g_Xmm6, X86_XMM6 }, { g_Xmm7, X86_XMM7 }, { g_Iopl, X86_IOPL }, { g_Of, X86_OF }, { g_Df, X86_DF }, { g_If, X86_IF }, { g_Tf, X86_TF }, { g_Sf, X86_SF }, { g_Zf, X86_ZF }, { g_Af, X86_AF }, { g_Pf, X86_PF }, { g_Cf, X86_CF }, { g_Vip, X86_VIP }, { g_Vif, X86_VIF }, { NULL, REG_ERROR }, };
REGDEF g_X86KernelReg[] = { { g_Cr0, X86_CR0 }, { g_Cr2, X86_CR2 }, { g_Cr3, X86_CR3 }, { g_Cr4, X86_CR4 }, { g_Gdtr, X86_GDTR }, { g_Gdtl, X86_GDTL }, { g_Idtr, X86_IDTR }, { g_Idtl, X86_IDTL }, { g_Tr, X86_TR }, { g_Ldtr, X86_LDTR }, { NULL, REG_ERROR }, };
REGSUBDEF g_X86SubDefs[] = { { X86_DI, X86_EDI, 0, 0xffff }, // DI register
{ X86_SI, X86_ESI, 0, 0xffff }, // SI register
{ X86_BX, X86_EBX, 0, 0xffff }, // BX register
{ X86_DX, X86_EDX, 0, 0xffff }, // DX register
{ X86_CX, X86_ECX, 0, 0xffff }, // CX register
{ X86_AX, X86_EAX, 0, 0xffff }, // AX register
{ X86_BP, X86_EBP, 0, 0xffff }, // BP register
{ X86_IP, X86_EIP, 0, 0xffff }, // IP register
{ X86_FL, X86_EFL, 0, 0xffff }, // FL register
{ X86_SP, X86_ESP, 0, 0xffff }, // SP register
{ X86_BL, X86_EBX, 0, 0xff }, // BL register
{ X86_DL, X86_EDX, 0, 0xff }, // DL register
{ X86_CL, X86_ECX, 0, 0xff }, // CL register
{ X86_AL, X86_EAX, 0, 0xff }, // AL register
{ X86_BH, X86_EBX, 8, 0xff }, // BH register
{ X86_DH, X86_EDX, 8, 0xff }, // DH register
{ X86_CH, X86_ECX, 8, 0xff }, // CH register
{ X86_AH, X86_EAX, 8, 0xff }, // AH register
{ X86_IOPL, X86_EFL,12, 3 }, // IOPL level value
{ X86_OF, X86_EFL,11, 1 }, // OF (overflow flag)
{ X86_DF, X86_EFL,10, 1 }, // DF (direction flag)
{ X86_IF, X86_EFL, 9, 1 }, // IF (interrupt enable flag)
{ X86_TF, X86_EFL, 8, 1 }, // TF (trace flag)
{ X86_SF, X86_EFL, 7, 1 }, // SF (sign flag)
{ X86_ZF, X86_EFL, 6, 1 }, // ZF (zero flag)
{ X86_AF, X86_EFL, 4, 1 }, // AF (aux carry flag)
{ X86_PF, X86_EFL, 2, 1 }, // PF (parity flag)
{ X86_CF, X86_EFL, 0, 1 }, // CF (carry flag)
{ X86_VIP, X86_EFL,20, 1 }, // VIP (virtual interrupt pending)
{ X86_VIF, X86_EFL,19, 1 }, // VIF (virtual interrupt flag)
{ REG_ERROR, REG_ERROR, 0, 0 } };
RegisterGroup g_X86BaseGroup = { NULL, 0, g_X86Defs, g_X86SubDefs, g_X86AllExtraDesc }; RegisterGroup g_X86KernelGroup = { NULL, 0, g_X86KernelReg, NULL, g_X86KernelExtraDesc };
// First ExecTypes entry must be the actual processor type.
ULONG g_X86ExecTypes[] = { IMAGE_FILE_MACHINE_I386 };
X86MachineInfo g_X86Machine;
HRESULT X86MachineInfo::InitializeConstants(void) { m_FullName = "x86 compatible"; m_AbbrevName = "x86"; m_PageSize = X86_PAGE_SIZE; m_PageShift = X86_PAGE_SHIFT; m_NumExecTypes = 1; m_ExecTypes = g_X86ExecTypes; m_Ptr64 = FALSE; m_AllMask = REGALL_INT32 | REGALL_SEGREG, m_MaxDataBreakpoints = 4; m_SymPrefix = NULL;
m_SupportsBranchTrace = FALSE; return MachineInfo::InitializeConstants(); }
HRESULT X86MachineInfo::InitializeForTarget(void) { m_Groups = &g_X86BaseGroup; g_X86BaseGroup.Next = NULL; if (IS_KERNEL_TARGET()) { g_X86BaseGroup.Next = &g_X86KernelGroup; } m_OffsetPrcbProcessorState = FIELD_OFFSET(X86_PARTIAL_KPRCB, ProcessorState); m_OffsetPrcbNumber = FIELD_OFFSET(X86_PARTIAL_KPRCB, Number); m_TriagePrcbOffset = EXTEND64(X86_TRIAGE_PRCB_ADDRESS); if (g_SystemVersion > NT_SVER_NT4) { m_SizePrcb = X86_NT5_KPRCB_SIZE; } else { m_SizePrcb = X86_NT4_KPRCB_SIZE; } m_OffsetKThreadApcProcess = FIELD_OFFSET(CROSS_PLATFORM_THREAD, X86Thread.ApcState.Process); m_OffsetKThreadTeb = FIELD_OFFSET(CROSS_PLATFORM_THREAD, X86Thread.Teb); m_OffsetKThreadInitialStack = FIELD_OFFSET(CROSS_PLATFORM_THREAD, X86Thread.InitialStack); m_OffsetEprocessPeb = g_SystemVersion > NT_SVER_NT4 ? X86_PEB_IN_EPROCESS : X86_NT4_PEB_IN_EPROCESS; m_OffsetEprocessDirectoryTableBase = X86_DIRECTORY_TABLE_BASE_IN_EPROCESS;
if (g_TargetBuildNumber > 2407) { m_OffsetKThreadNextProcessor = X86_NT51_KTHREAD_NEXTPROCESSOR_OFFSET; } else if (g_TargetBuildNumber > 2230) { m_OffsetKThreadNextProcessor = X86_2230_KTHREAD_NEXTPROCESSOR_OFFSET; } else { m_OffsetKThreadNextProcessor = X86_KTHREAD_NEXTPROCESSOR_OFFSET; }
if (g_SystemVersion > NT_SVER_NT4) { m_SizeTargetContext = sizeof(X86_NT5_CONTEXT); m_OffsetTargetContextFlags = FIELD_OFFSET(X86_NT5_CONTEXT, ContextFlags); } else { m_SizeTargetContext = sizeof(X86_CONTEXT); m_OffsetTargetContextFlags = FIELD_OFFSET(X86_CONTEXT, ContextFlags); } m_SizeCanonicalContext = sizeof(X86_NT5_CONTEXT); m_SverCanonicalContext = NT_SVER_W2K; m_SizeControlReport = sizeof(X86_DBGKD_CONTROL_REPORT);
if (g_TargetBuildNumber > 2407) { m_SizeEThread = X86_NT51_ETHREAD_SIZE; } else { m_SizeEThread = X86_ETHREAD_SIZE; }
m_SizeEProcess = g_SystemVersion > NT_SVER_W2K ? X86_NT51_EPROCESS_SIZE : X86_NT5_EPROCESS_SIZE; m_OffsetSpecialRegisters = m_SizeTargetContext; m_SizeKspecialRegisters = sizeof(X86_KSPECIAL_REGISTERS); m_SizePartialKThread = sizeof(X86_THREAD); m_SharedUserDataOffset = IS_KERNEL_TARGET() ? EXTEND64(X86_KI_USER_SHARED_DATA) : MM_SHARED_USER_DATA_VA;
return MachineInfo::InitializeForTarget(); }
HRESULT X86MachineInfo::InitializeForProcessor(void) { if (!strcmp(g_InitProcessorId.X86.VendorString, "GenuineIntel")) { // Branch trace support was added for the Pentium Pro.
m_SupportsBranchTrace = g_InitProcessorId.X86.Family >= 6; } return MachineInfo::InitializeForProcessor(); }
void X86MachineInfo:: InitializeContext(ULONG64 Pc, PDBGKD_ANY_CONTROL_REPORT ControlReport) { ULONG Pc32 = (ULONG)Pc;
m_Context.X86Nt5Context.Eip = Pc32; m_ContextState = Pc32 ? MCTX_PC : MCTX_NONE;
if (ControlReport != NULL) { BpOut("InitializeContext(%d) DR6 %X DR7 %X\n", g_RegContextProcessor, ControlReport->X86ControlReport.Dr6, ControlReport->X86ControlReport.Dr7); m_Context.X86Nt5Context.Dr6 = ControlReport->X86ControlReport.Dr6; m_Context.X86Nt5Context.Dr7 = ControlReport->X86ControlReport.Dr7; m_ContextState = MCTX_DR67_REPORT;
if (ControlReport->X86ControlReport.ReportFlags & X86_REPORT_INCLUDES_SEGS) { //
// This is for backwards compatibility - older kernels
// won't pass these registers in the report record.
//
m_Context.X86Nt5Context.SegCs = ControlReport->X86ControlReport.SegCs; m_Context.X86Nt5Context.SegDs = ControlReport->X86ControlReport.SegDs; m_Context.X86Nt5Context.SegEs = ControlReport->X86ControlReport.SegEs; m_Context.X86Nt5Context.SegFs = ControlReport->X86ControlReport.SegFs; m_Context.X86Nt5Context.EFlags = ControlReport->X86ControlReport.EFlags; m_ContextState = MCTX_REPORT; } }
if (!IS_CONTEXT_POSSIBLE()) { g_X86InVm86 = FALSE; g_X86InCode16 = FALSE; } else { // Check whether we're currently in V86 mode or 16-bit code.
g_X86InVm86 = X86_IS_VM86(GetIntReg(X86_EFL)); if (IS_KERNEL_TARGET() && !g_X86InVm86) { if (ControlReport == NULL || (ControlReport->X86ControlReport.ReportFlags & X86_REPORT_STANDARD_CS) == 0) { DESCRIPTOR64 Desc; if (GetSegRegDescriptor(SEGREG_CODE, &Desc) != S_OK) { WarnOut("CS descriptor lookup failed\n"); g_X86InCode16 = FALSE; } else { g_X86InCode16 = (Desc.Flags & X86_DESC_DEFAULT_BIG) == 0; } } else { g_X86InCode16 = FALSE;
// We're in a standard code segment so cache
// a default descriptor for CS to avoid further
// CS lookups.
EmulateNtSelDescriptor(this, m_Context.X86Nt5Context.SegCs, &m_SegRegDesc[SEGREG_CODE]); } } }
// Add instructions to cache only if we're in 32-bit flat mode.
if (Pc32 && ControlReport != NULL && !g_X86InVm86 && !g_X86InCode16) { CacheReportInstructions (Pc, ControlReport->X86ControlReport.InstructionCount, ControlReport->X86ControlReport.InstructionStream); } }
HRESULT X86MachineInfo::KdGetContextState(ULONG State) { HRESULT Status; if (State >= MCTX_CONTEXT && m_ContextState < MCTX_CONTEXT) { Status = g_Target->GetContext(g_RegContextThread->Handle, &m_Context); if (Status != S_OK) { return Status; }
// XXX drewb - Temporary log to try and catch some
// SET_OF_INVALID_CONTEXT bugchecks occurring randomly on x86.
*g_EspLogCur++ = g_RegContextProcessor | 0x80000000; *g_EspLogCur++ = m_Context.X86Nt5Context.Esp; if (g_EspLogCur >= g_EspLog + 64) { g_EspLogCur = g_EspLog; } m_ContextState = MCTX_CONTEXT; }
if (State >= MCTX_FULL && m_ContextState < MCTX_FULL) { Status = g_Target->GetTargetSpecialRegisters (g_RegContextThread->Handle, (PCROSS_PLATFORM_KSPECIAL_REGISTERS) &m_SpecialRegContext); if (Status != S_OK) { return Status; } Status = g_Target->GetTargetSegRegDescriptors (g_RegContextThread->Handle, 0, SEGREG_COUNT, m_SegRegDesc); if (Status != S_OK) { return Status; }
m_ContextState = MCTX_FULL; KdSetSpecialRegistersInContext();
BpOut("GetContextState(%d) DR6 %X DR7 %X DR0 %X\n", g_RegContextProcessor, m_SpecialRegContext.KernelDr6, m_SpecialRegContext.KernelDr7, m_SpecialRegContext.KernelDr0); }
return S_OK; }
HRESULT X86MachineInfo::KdSetContext(void) { HRESULT Status; // XXX drewb - Temporary log to try and catch some
// SET_OF_INVALID_CONTEXT bugchecks occurring randomly on x86.
*g_EspLogCur++ = g_RegContextProcessor | 0xC0000000; *g_EspLogCur++ = m_Context.X86Nt5Context.Esp; if (g_EspLogCur >= g_EspLog + 64) { g_EspLogCur = g_EspLog; } Status = g_Target->SetContext(g_RegContextThread->Handle, &m_Context); if (Status != S_OK) { return Status; }
KdGetSpecialRegistersFromContext(); Status = g_Target->SetTargetSpecialRegisters (g_RegContextThread->Handle, (PCROSS_PLATFORM_KSPECIAL_REGISTERS) &m_SpecialRegContext); if (Status != S_OK) { return Status; } BpOut("SetContext(%d) DR6 %X DR7 %X DR0 %X\n", g_RegContextProcessor, m_SpecialRegContext.KernelDr6, m_SpecialRegContext.KernelDr7, m_SpecialRegContext.KernelDr0); return S_OK; }
HRESULT X86MachineInfo::ConvertContextFrom(PCROSS_PLATFORM_CONTEXT Context, ULONG FromSver, ULONG FromSize, PVOID From) { if (FromSver <= NT_SVER_NT4) { if (FromSize < sizeof(X86_CONTEXT)) { return E_INVALIDARG; }
memcpy(Context, From, sizeof(X86_CONTEXT)); ZeroMemory(Context->X86Nt5Context.ExtendedRegisters, sizeof(Context->X86Nt5Context.ExtendedRegisters)); } else if (FromSize >= sizeof(X86_NT5_CONTEXT)) { memcpy(Context, From, sizeof(X86_NT5_CONTEXT)); } else { return E_INVALIDARG; }
return S_OK; }
HRESULT X86MachineInfo::ConvertContextTo(PCROSS_PLATFORM_CONTEXT Context, ULONG ToSver, ULONG ToSize, PVOID To) { if (ToSver <= NT_SVER_NT4) { if (ToSize < sizeof(X86_CONTEXT)) { return E_INVALIDARG; }
memcpy(To, Context, sizeof(X86_CONTEXT)); } else if (ToSize >= sizeof(X86_NT5_CONTEXT)) { memcpy(To, Context, sizeof(X86_NT5_CONTEXT)); } else { return E_INVALIDARG; }
return S_OK; }
void X86MachineInfo::InitializeContextFlags(PCROSS_PLATFORM_CONTEXT Context, ULONG Version) { ULONG ContextFlags; ContextFlags = VDMCONTEXT_CONTROL | VDMCONTEXT_INTEGER | VDMCONTEXT_SEGMENTS | VDMCONTEXT_FLOATING_POINT; if (IS_USER_TARGET()) { ContextFlags |= VDMCONTEXT_DEBUG_REGISTERS; } if (Version <= NT_SVER_NT4) { Context->X86Context.ContextFlags = ContextFlags; } else { Context->X86Nt5Context.ContextFlags = ContextFlags | VDMCONTEXT_EXTENDED_REGISTERS; } }
HRESULT X86MachineInfo::GetContextFromThreadStack(ULONG64 ThreadBase, PCROSS_PLATFORM_THREAD Thread, PCROSS_PLATFORM_CONTEXT Context, PDEBUG_STACK_FRAME Frame, PULONG RunningOnProc) { HRESULT Status; UCHAR Proc;
//
// Check to see if the thread is currently running.
//
if (Thread->X86Thread.State == 2) { if ((Status = g_Target->ReadAllVirtual (ThreadBase + m_OffsetKThreadNextProcessor, &Proc, sizeof(Proc))) != S_OK) { return Status; }
*RunningOnProc = Proc; return S_FALSE; }
//
// The thread isn't running so read its stored context information.
//
X86_KSWITCHFRAME SwitchFrame;
if ((Status = g_Target->ReadAllVirtual(Thread->X86Thread.KernelStack, &SwitchFrame, sizeof(SwitchFrame))) != S_OK) { return Status; } Frame->InstructionOffset = EXTEND64(SwitchFrame.RetAddr); Frame->StackOffset = Thread->X86Thread.KernelStack + sizeof(SwitchFrame);
if ((Status = g_Target->ReadPointer(this, Frame->StackOffset, &Frame->FrameOffset)) != S_OK) { return Status; }
Context->X86Context.Ebp = (ULONG)Frame->FrameOffset; Context->X86Context.Esp = (ULONG)Frame->StackOffset; // Fill the segments in from current information
// instead of just leaving them blank.
Context->X86Context.SegSs = GetIntReg(X86_SS); Context->X86Context.SegCs = GetIntReg(X86_CS); Context->X86Context.Eip = (ULONG)Frame->InstructionOffset;
return S_OK; }
HRESULT X86MachineInfo::GetExdiContext(IUnknown* Exdi, PEXDI_CONTEXT Context) { // Always ask for everything.
Context->X86Context.RegGroupSelection.fSegmentRegs = TRUE; Context->X86Context.RegGroupSelection.fControlRegs = TRUE; Context->X86Context.RegGroupSelection.fIntegerRegs = TRUE; Context->X86Context.RegGroupSelection.fFloatingPointRegs = TRUE; Context->X86Context.RegGroupSelection.fDebugRegs = TRUE; return ((IeXdiX86Context*)Exdi)->GetContext(&Context->X86Context); }
HRESULT X86MachineInfo::SetExdiContext(IUnknown* Exdi, PEXDI_CONTEXT Context) { // Don't change the existing group selections on the assumption
// that there was a full get prior to any modifications so
// all groups are valid.
return ((IeXdiX86Context*)Exdi)->SetContext(Context->X86Context); }
void X86MachineInfo::ConvertExdiContextFromContext(PCROSS_PLATFORM_CONTEXT Context, PEXDI_CONTEXT ExdiContext) { if (Context->X86Nt5Context.ContextFlags & VDMCONTEXT_SEGMENTS) { ExdiContext->X86Context.SegGs = (USHORT)Context->X86Nt5Context.SegGs; ExdiContext->X86Context.SegFs = (USHORT)Context->X86Nt5Context.SegFs; ExdiContext->X86Context.SegEs = (USHORT)Context->X86Nt5Context.SegEs; ExdiContext->X86Context.SegDs = (USHORT)Context->X86Nt5Context.SegDs; }
if (Context->X86Nt5Context.ContextFlags & VDMCONTEXT_CONTROL) { ExdiContext->X86Context.Ebp = Context->X86Nt5Context.Ebp; ExdiContext->X86Context.Eip = Context->X86Nt5Context.Eip; ExdiContext->X86Context.SegCs = (USHORT)Context->X86Nt5Context.SegCs; ExdiContext->X86Context.EFlags = Context->X86Nt5Context.EFlags; ExdiContext->X86Context.Esp = Context->X86Nt5Context.Esp; ExdiContext->X86Context.SegSs = (USHORT)Context->X86Nt5Context.SegSs; } if (Context->X86Nt5Context.ContextFlags & VDMCONTEXT_INTEGER) { ExdiContext->X86Context.Eax = Context->X86Nt5Context.Eax; ExdiContext->X86Context.Ebx = Context->X86Nt5Context.Ebx; ExdiContext->X86Context.Ecx = Context->X86Nt5Context.Ecx; ExdiContext->X86Context.Edx = Context->X86Nt5Context.Edx; ExdiContext->X86Context.Esi = Context->X86Nt5Context.Esi; ExdiContext->X86Context.Edi = Context->X86Nt5Context.Edi; }
if (Context->X86Nt5Context.ContextFlags & VDMCONTEXT_FLOATING_POINT) { C_ASSERT(sizeof(X86_FLOATING_SAVE_AREA) == FIELD_OFFSET(CONTEXT_X86, Dr0) - FIELD_OFFSET(CONTEXT_X86, ControlWord)); memcpy(&ExdiContext->X86Context.ControlWord, &Context->X86Nt5Context.FloatSave, sizeof(X86_FLOATING_SAVE_AREA)); } if (Context->X86Nt5Context.ContextFlags & VDMCONTEXT_DEBUG_REGISTERS) { ExdiContext->X86Context.Dr0 = Context->X86Nt5Context.Dr0; ExdiContext->X86Context.Dr1 = Context->X86Nt5Context.Dr1; ExdiContext->X86Context.Dr2 = Context->X86Nt5Context.Dr2; ExdiContext->X86Context.Dr3 = Context->X86Nt5Context.Dr3; ExdiContext->X86Context.Dr6 = Context->X86Nt5Context.Dr6; ExdiContext->X86Context.Dr7 = Context->X86Nt5Context.Dr7; } }
void X86MachineInfo::ConvertExdiContextToContext(PEXDI_CONTEXT ExdiContext, PCROSS_PLATFORM_CONTEXT Context) { Context->X86Nt5Context.SegCs = ExdiContext->X86Context.SegCs; Context->X86Nt5Context.SegSs = ExdiContext->X86Context.SegSs; Context->X86Nt5Context.SegGs = ExdiContext->X86Context.SegGs; Context->X86Nt5Context.SegFs = ExdiContext->X86Context.SegFs; Context->X86Nt5Context.SegEs = ExdiContext->X86Context.SegEs; Context->X86Nt5Context.SegDs = ExdiContext->X86Context.SegDs;
Context->X86Nt5Context.EFlags = ExdiContext->X86Context.EFlags; Context->X86Nt5Context.Ebp = ExdiContext->X86Context.Ebp; Context->X86Nt5Context.Eip = ExdiContext->X86Context.Eip; Context->X86Nt5Context.Esp = ExdiContext->X86Context.Esp; Context->X86Nt5Context.Eax = ExdiContext->X86Context.Eax; Context->X86Nt5Context.Ebx = ExdiContext->X86Context.Ebx; Context->X86Nt5Context.Ecx = ExdiContext->X86Context.Ecx; Context->X86Nt5Context.Edx = ExdiContext->X86Context.Edx; Context->X86Nt5Context.Esi = ExdiContext->X86Context.Esi; Context->X86Nt5Context.Edi = ExdiContext->X86Context.Edi;
C_ASSERT(sizeof(X86_FLOATING_SAVE_AREA) == FIELD_OFFSET(CONTEXT_X86, Dr0) - FIELD_OFFSET(CONTEXT_X86, ControlWord)); memcpy(&Context->X86Nt5Context.FloatSave, &ExdiContext->X86Context.ControlWord, sizeof(X86_FLOATING_SAVE_AREA));
Context->X86Nt5Context.Dr0 = ExdiContext->X86Context.Dr0; Context->X86Nt5Context.Dr1 = ExdiContext->X86Context.Dr1; Context->X86Nt5Context.Dr2 = ExdiContext->X86Context.Dr2; Context->X86Nt5Context.Dr3 = ExdiContext->X86Context.Dr3; Context->X86Nt5Context.Dr6 = ExdiContext->X86Context.Dr6; Context->X86Nt5Context.Dr7 = ExdiContext->X86Context.Dr7; }
void X86MachineInfo::ConvertExdiContextToSegDescs(PEXDI_CONTEXT ExdiContext, ULONG Start, ULONG Count, PDESCRIPTOR64 Descs) { // XXX drewb - Temporary hack to report boot-time 16-bit
// segment state. The new x86 context should report
// segment descriptors.
while (Count-- > 0) { ULONG Type; if (Start == SEGREG_CODE) { Descs->Base = EXTEND64(0xffff0000); Type = 0x13; } else { Descs->Base = 0; Type = 0x1b; }
Descs->Limit = 0xfffff; Descs->Flags = X86_DESC_PRESENT | Type; Descs++;
Start++; } }
void X86MachineInfo::ConvertExdiContextFromSpecial (PCROSS_PLATFORM_KSPECIAL_REGISTERS Special, PEXDI_CONTEXT ExdiContext) { // XXX drewb - Implement when the new x86 context is
// available and provides the appropriate information.
}
void X86MachineInfo::ConvertExdiContextToSpecial (PEXDI_CONTEXT ExdiContext, PCROSS_PLATFORM_KSPECIAL_REGISTERS Special) { // XXX drewb - Implement when the new x86 context is
// available and provides the appropriate information.
}
int X86MachineInfo::GetType(ULONG regnum) { if (regnum >= X86_MM_FIRST && regnum <= X86_MM_LAST) { return REGVAL_INT64; } else if (regnum >= X86_XMM_FIRST && regnum <= X86_XMM_LAST) { return REGVAL_VECTOR128; } else if (regnum >= X86_ST_FIRST && regnum <= X86_ST_LAST) { return REGVAL_FLOAT10; } else if (regnum < X86_FLAGBASE) { return REGVAL_INT32; } else { return REGVAL_SUB32; } }
/*** X86GetVal - get register value
* * Purpose: * Return the value of the specified register. * * Input: * regnum - register specification * * Returns: * Value of register. * *************************************************************************/
BOOL X86MachineInfo::GetVal ( ULONG regnum, REGVAL *val ) { if (regnum >= X86_MM_FIRST && regnum <= X86_MM_LAST) { val->type = REGVAL_VECTOR64; GetMmxReg(regnum, val); } else if (regnum >= X86_XMM_FIRST && regnum <= X86_XMM_LAST) { if (GetContextState(MCTX_CONTEXT) != S_OK) { return FALSE; } val->type = REGVAL_VECTOR128; memcpy(val->bytes, m_Context.X86Nt5Context.FxSave.Reserved3 + (regnum - X86_XMM_FIRST) * 16, 16); } else if (regnum >= X86_ST_FIRST && regnum <= X86_ST_LAST) { val->type = REGVAL_FLOAT10; GetFloatReg(regnum, val); } else if (regnum < X86_FLAGBASE) { val->type = REGVAL_INT32; val->i64 = (ULONG64)(LONG64)(LONG)GetIntReg(regnum); } else { ErrOut("X86MachineInfo::GetVal: " "unknown register %lx requested\n", regnum); return FALSE; }
return TRUE; }
/*** X86SetVal - set register value
* * Purpose: * Set the value of the specified register. * * Input: * regnum - register specification * val - new register value * * Output: * None. * * Notes: * *************************************************************************/
BOOL X86MachineInfo::SetVal (ULONG regnum, REGVAL *val) { if (m_ContextIsReadOnly) { return FALSE; } if (regnum >= X86_FLAGBASE) { return FALSE; }
// Optimize away some common cases where registers are
// set to their current value.
if ((m_ContextState >= MCTX_PC && regnum == X86_EIP && val->i32 == m_Context.X86Nt5Context.Eip) || (((m_ContextState >= MCTX_DR67_REPORT && m_ContextState <= MCTX_REPORT) || m_ContextState >= MCTX_FULL) && regnum == X86_DR7 && val->i32 == m_Context.X86Nt5Context.Dr7)) { return TRUE; } if (GetContextState(MCTX_DIRTY) != S_OK) { return FALSE; }
if (regnum >= X86_MM_FIRST && regnum <= X86_MM_LAST) { *(ULONG64 UNALIGNED *)GetMmxRegSlot(regnum) = val->i64; goto Notify; } else if (regnum >= X86_XMM_FIRST && regnum <= X86_XMM_LAST) { memcpy(m_Context.X86Nt5Context.FxSave.Reserved3 + (regnum - X86_XMM_FIRST) * 16, val->bytes, 16); goto Notify; } else if (regnum >= X86_ST_FIRST && regnum <= X86_ST_LAST) { memcpy(m_Context.X86Nt5Context.FloatSave.RegisterArea + 10 * (regnum - X86_ST_FIRST), val->f10, sizeof(val->f10)); goto Notify; }
BOOL Recognized;
Recognized = TRUE; switch (regnum) { case X86_GS: m_Context.X86Nt5Context.SegGs = val->i16; m_SegRegDesc[SEGREG_GS].Flags = SEGDESC_INVALID; break; case X86_FS: m_Context.X86Nt5Context.SegFs = val->i16; m_SegRegDesc[SEGREG_FS].Flags = SEGDESC_INVALID; break; case X86_ES: m_Context.X86Nt5Context.SegEs = val->i16; m_SegRegDesc[SEGREG_ES].Flags = SEGDESC_INVALID; break; case X86_DS: m_Context.X86Nt5Context.SegDs = val->i16; m_SegRegDesc[SEGREG_DATA].Flags = SEGDESC_INVALID; break; case X86_EDI: m_Context.X86Nt5Context.Edi = val->i32; break; case X86_ESI: m_Context.X86Nt5Context.Esi = val->i32; break; case X86_EBX: m_Context.X86Nt5Context.Ebx = val->i32; break; case X86_EDX: m_Context.X86Nt5Context.Edx = val->i32; break; case X86_ECX: m_Context.X86Nt5Context.Ecx = val->i32; break; case X86_EAX: m_Context.X86Nt5Context.Eax = val->i32; break; case X86_EBP: m_Context.X86Nt5Context.Ebp = val->i32; break; case X86_EIP: m_Context.X86Nt5Context.Eip = val->i32; break; case X86_CS: m_Context.X86Nt5Context.SegCs = val->i16; m_SegRegDesc[SEGREG_CODE].Flags = SEGDESC_INVALID; break; case X86_EFL: if (IS_KERNEL_TARGET()) { // leave TF clear
m_Context.X86Nt5Context.EFlags = val->i32 & ~0x100; } else { // allow TF set
m_Context.X86Nt5Context.EFlags = val->i32; } break; case X86_ESP: m_Context.X86Nt5Context.Esp = val->i32; break; case X86_SS: m_Context.X86Nt5Context.SegSs = val->i16; m_SegRegDesc[SEGREG_STACK].Flags = SEGDESC_INVALID; break;
case X86_DR0: m_Context.X86Nt5Context.Dr0 = val->i32; break; case X86_DR1: m_Context.X86Nt5Context.Dr1 = val->i32; break; case X86_DR2: m_Context.X86Nt5Context.Dr2 = val->i32; break; case X86_DR3: m_Context.X86Nt5Context.Dr3 = val->i32; break; case X86_DR6: m_Context.X86Nt5Context.Dr6 = val->i32; break; case X86_DR7: m_Context.X86Nt5Context.Dr7 = val->i32; break;
case X86_FPCW: m_Context.X86Nt5Context.FloatSave.ControlWord = (m_Context.X86Nt5Context.FloatSave.ControlWord & 0xffff0000) | (val->i32 & 0xffff); break; case X86_FPSW: m_Context.X86Nt5Context.FloatSave.StatusWord = (m_Context.X86Nt5Context.FloatSave.StatusWord & 0xffff0000) | (val->i32 & 0xffff); break; case X86_FPTW: m_Context.X86Nt5Context.FloatSave.TagWord = (m_Context.X86Nt5Context.FloatSave.TagWord & 0xffff0000) | (val->i32 & 0xffff); break; case X86_MXCSR: m_Context.X86Nt5Context.FxSave.MXCsr = val->i32; break; default: Recognized = FALSE; break; } if (!Recognized && IS_KERNEL_TARGET()) { Recognized = TRUE; switch(regnum) { case X86_CR0: m_SpecialRegContext.Cr0 = val->i32; break; case X86_CR2: m_SpecialRegContext.Cr2 = val->i32; break; case X86_CR3: m_SpecialRegContext.Cr3 = val->i32; break; case X86_CR4: m_SpecialRegContext.Cr4 = val->i32; break; case X86_GDTR: m_SpecialRegContext.Gdtr.Base = val->i32; break; case X86_GDTL: m_SpecialRegContext.Gdtr.Limit = (USHORT)val->i32; break; case X86_IDTR: m_SpecialRegContext.Idtr.Base = val->i32; break; case X86_IDTL: m_SpecialRegContext.Idtr.Limit = (USHORT)val->i32; break; case X86_TR: m_SpecialRegContext.Tr = (USHORT)val->i32; break; case X86_LDTR: m_SpecialRegContext.Ldtr = (USHORT)val->i32; break;
default: Recognized = FALSE; break; } }
if (!Recognized) { ErrOut("X86MachineInfo::SetVal: " "unknown register %lx requested\n", regnum); return FALSE; }
Notify: NotifyChangeDebuggeeState(DEBUG_CDS_REGISTERS, RegCountFromIndex(regnum)); return TRUE; }
void X86MachineInfo::GetPC (PADDR Address) { FormAddr(SEGREG_CODE, EXTEND64(GetIntReg(X86_EIP)), FORM_CODE | FORM_SEGREG | X86_FORM_VM86(GetIntReg(X86_EFL)), Address); }
void X86MachineInfo::SetPC (PADDR paddr) { REGVAL val;
// We set the EIP to the offset (the non-translated value),
// because we may not be in "flat" mode !!!
val.type = REGVAL_INT32; val.i32 = (ULONG)Off(*paddr); SetVal(X86_EIP, &val); }
void X86MachineInfo::GetFP(PADDR Addr) { FormAddr(SEGREG_STACK, EXTEND64(GetIntReg(X86_EBP)), FORM_SEGREG | X86_FORM_VM86(GetIntReg(X86_EFL)), Addr); }
void X86MachineInfo::GetSP(PADDR Addr) { FormAddr(SEGREG_STACK, EXTEND64(GetIntReg(X86_ESP)), FORM_SEGREG | X86_FORM_VM86(GetIntReg(X86_EFL)), Addr); }
ULONG64 X86MachineInfo::GetArgReg(void) { return (ULONG64)(LONG64)(LONG)GetIntReg(X86_EAX); }
ULONG X86MachineInfo::GetSegRegNum(ULONG SegReg) { switch(SegReg) { case SEGREG_CODE: return X86_CS; case SEGREG_DATA: return X86_DS; case SEGREG_STACK: return X86_SS; case SEGREG_ES: return X86_ES; case SEGREG_FS: return X86_FS; case SEGREG_GS: return X86_GS; case SEGREG_LDT: return X86_LDTR; }
return 0; }
HRESULT X86MachineInfo::GetSegRegDescriptor(ULONG SegReg, PDESCRIPTOR64 Desc) { if (SegReg == SEGREG_GDT) { Desc->Base = EXTEND64(GetIntReg(X86_GDTR)); Desc->Limit = GetIntReg(X86_GDTL); Desc->Flags = 0; return S_OK; }
// Check and see if we already have a cached descriptor.
if (m_SegRegDesc[SegReg].Flags != SEGDESC_INVALID) { *Desc = m_SegRegDesc[SegReg]; return S_OK; }
HRESULT Status;
// Attempt to retrieve segment descriptors directly.
if ((Status = GetContextState(MCTX_FULL)) != S_OK) { return Status; } // Check and see if we now have a cached descriptor.
if (m_SegRegDesc[SegReg].Flags != SEGDESC_INVALID) { *Desc = m_SegRegDesc[SegReg]; return S_OK; }
//
// Direct information is not available so look things up
// in the descriptor tables.
//
ULONG RegNum = GetSegRegNum(SegReg); if (RegNum == 0) { return E_INVALIDARG; }
// Do a quick sanity test to prevent bad values
// from causing problems.
ULONG Selector = GetIntReg(RegNum); if (SegReg == SEGREG_LDT && (Selector & 4)) { // The ldtr selector says that it's an LDT selector,
// which is invalid. An LDT selector should always
// reference the GDT.
ErrOut("Invalid LDTR contents: %04X\n", Selector); return E_FAIL; } return g_Target->GetSelDescriptor(this, g_RegContextThread->Handle, Selector, Desc); }
/*** X86OutputAll - output all registers and present instruction
* * Purpose: * To output the current register state of the processor. * All integer registers are output as well as processor status * registers. Important flag fields are also output separately. * * Input: * Mask - Which information to display. * * Output: * None. * *************************************************************************/
void X86MachineInfo::OutputAll(ULONG Mask, ULONG OutMask) { if (GetContextState(MCTX_FULL) != S_OK) { ErrOut("Unable to retrieve register information\n"); return; } if (Mask & (REGALL_INT32 | REGALL_INT64)) { ULONG efl;
MaskOut(OutMask, "eax=%08lx ebx=%08lx ecx=%08lx " "edx=%08lx esi=%08lx edi=%08lx\n", GetIntReg(X86_EAX), GetIntReg(X86_EBX), GetIntReg(X86_ECX), GetIntReg(X86_EDX), GetIntReg(X86_ESI), GetIntReg(X86_EDI));
efl = GetIntReg(X86_EFL); MaskOut(OutMask, "eip=%08lx esp=%08lx ebp=%08lx iopl=%1lx " "%s %s %s %s %s %s %s %s %s %s\n", GetIntReg(X86_EIP), GetIntReg(X86_ESP), GetIntReg(X86_EBP), ((efl >> X86_SHIFT_FLAGIOPL) & X86_BIT_FLAGIOPL), (efl & X86_BIT_FLAGVIP) ? "vip" : " ", (efl & X86_BIT_FLAGVIF) ? "vif" : " ", (efl & X86_BIT_FLAGOF) ? "ov" : "nv", (efl & X86_BIT_FLAGDF) ? "dn" : "up", (efl & X86_BIT_FLAGIF) ? "ei" : "di", (efl & X86_BIT_FLAGSF) ? "ng" : "pl", (efl & X86_BIT_FLAGZF) ? "zr" : "nz", (efl & X86_BIT_FLAGAF) ? "ac" : "na", (efl & X86_BIT_FLAGPF) ? "po" : "pe", (efl & X86_BIT_FLAGCF) ? "cy" : "nc"); }
if (Mask & REGALL_SEGREG) { MaskOut(OutMask, "cs=%04lx ss=%04lx ds=%04lx es=%04lx fs=%04lx " "gs=%04lx efl=%08lx\n", GetIntReg(X86_CS), GetIntReg(X86_SS), GetIntReg(X86_DS), GetIntReg(X86_ES), GetIntReg(X86_FS), GetIntReg(X86_GS), GetIntReg(X86_EFL)); }
if (Mask & REGALL_FLOAT) { ULONG i; REGVAL val; char buf[32];
MaskOut(OutMask, "fpcw=%04X fpsw=%04X fptw=%04X\n", GetIntReg(X86_FPCW), GetIntReg(X86_FPSW), GetIntReg(X86_FPTW)); for (i = X86_ST_FIRST; i <= X86_ST_LAST; i++) { GetFloatReg(i, &val); _uldtoa((_ULDOUBLE *)&val.f10, sizeof(buf), buf); MaskOut(OutMask, "st%d=%s ", i - X86_ST_FIRST, buf); i++; GetFloatReg(i, &val); _uldtoa((_ULDOUBLE *)&val.f10, sizeof(buf), buf); MaskOut(OutMask, "st%d=%s\n", i - X86_ST_FIRST, buf); } }
if (Mask & REGALL_MMXREG) { ULONG i; REGVAL val;
for (i = X86_MM_FIRST; i <= X86_MM_LAST; i++) { GetMmxReg(i, &val); MaskOut(OutMask, "mm%d=%08x%08x ", i - X86_MM_FIRST, val.i64Parts.high, val.i64Parts.low); i++; GetMmxReg(i, &val); MaskOut(OutMask, "mm%d=%08x%08x\n", i - X86_MM_FIRST, val.i64Parts.high, val.i64Parts.low); } }
if (Mask & REGALL_XMMREG) { ULONG i; REGVAL Val;
for (i = X86_XMM_FIRST; i <= X86_XMM_LAST; i++) { GetVal(i, &Val); MaskOut(OutMask, "xmm%d=%hg %hg %hg %hg\n", i - X86_XMM_FIRST, *(float *)&Val.bytes[3 * sizeof(float)], *(float *)&Val.bytes[2 * sizeof(float)], *(float *)&Val.bytes[1 * sizeof(float)], *(float *)&Val.bytes[0 * sizeof(float)]); } }
if (Mask & REGALL_CREG) { MaskOut(OutMask, "cr0=%08lx cr2=%08lx cr3=%08lx\n", GetIntReg(X86_CR0), GetIntReg(X86_CR2), GetIntReg(X86_CR3)); }
if (Mask & REGALL_DREG) { MaskOut(OutMask, "dr0=%08lx dr1=%08lx dr2=%08lx\n", GetIntReg(X86_DR0), GetIntReg(X86_DR1), GetIntReg(X86_DR2)); MaskOut(OutMask, "dr3=%08lx dr6=%08lx dr7=%08lx", GetIntReg(X86_DR3), GetIntReg(X86_DR6), GetIntReg(X86_DR7)); if (IS_USER_TARGET()) { MaskOut(OutMask, "\n"); } else { MaskOut(OutMask, " cr4=%08lx\n", GetIntReg(X86_CR4)); } }
if (Mask & REGALL_DESC) { MaskOut(OutMask, "gdtr=%08lx gdtl=%04lx idtr=%08lx idtl=%04lx " "tr=%04lx ldtr=%04x\n", GetIntReg(X86_GDTR), GetIntReg(X86_GDTL), GetIntReg(X86_IDTR), GetIntReg(X86_IDTL), GetIntReg(X86_TR), GetIntReg(X86_LDTR)); } }
TRACEMODE X86MachineInfo::GetTraceMode (void) { if (IS_KERNEL_TARGET()) { return m_TraceMode; } else { return ((GetIntReg(X86_EFL) & X86_BIT_FLAGTF) != 0) ? TRACE_INSTRUCTION : TRACE_NONE; } }
void X86MachineInfo::SetTraceMode (TRACEMODE Mode) { DBG_ASSERT(Mode == TRACE_NONE || Mode == TRACE_INSTRUCTION || (IS_KERNEL_TARGET() && m_SupportsBranchTrace && Mode == TRACE_TAKEN_BRANCH));
if (IS_KERNEL_TARGET()) { m_TraceMode = Mode; } else { ULONG Efl = GetIntReg(X86_EFL); switch (Mode) { case TRACE_NONE: Efl &= ~X86_BIT_FLAGTF; break; case TRACE_INSTRUCTION: Efl |= X86_BIT_FLAGTF; break; } SetReg32(X86_EFL, Efl); } }
BOOL X86MachineInfo::IsStepStatusSupported(ULONG Status) { switch(Status) { case DEBUG_STATUS_STEP_INTO: case DEBUG_STATUS_STEP_OVER: return TRUE; case DEBUG_STATUS_STEP_BRANCH: return IS_KERNEL_TARGET() && m_SupportsBranchTrace; default: return FALSE; } }
void X86MachineInfo::KdUpdateControlSet (PDBGKD_ANY_CONTROL_SET ControlSet) { TRACEMODE TraceMode = GetTraceMode(); ULONG64 DebugCtlMsr; ControlSet->X86ControlSet.TraceFlag = TraceMode != TRACE_NONE; ControlSet->X86ControlSet.Dr7 = GetIntReg(X86_DR7);
if (TraceMode != TRACE_NONE && m_SupportsBranchTrace && NT_SUCCESS(DbgKdReadMsr(X86_MSR_DEBUG_CTL, &DebugCtlMsr))) { DebugCtlMsr |= X86_DEBUG_CTL_LAST_BRANCH_RECORD; if (TraceMode == TRACE_TAKEN_BRANCH) { DebugCtlMsr |= X86_DEBUG_CTL_BRANCH_TRACE; } DbgKdWriteMsr(X86_MSR_DEBUG_CTL, DebugCtlMsr); } BpOut("UpdateControlSet(%d) trace %d, DR7 %X\n", g_RegContextProcessor, ControlSet->X86ControlSet.TraceFlag, ControlSet->X86ControlSet.Dr7);
if (!g_WatchFunctions.IsStarted() && g_WatchBeginCurFunc != 1) { ControlSet->X86ControlSet.CurrentSymbolStart = 0; ControlSet->X86ControlSet.CurrentSymbolEnd = 0; } else { ControlSet->X86ControlSet.CurrentSymbolStart = (ULONG)g_WatchBeginCurFunc; ControlSet->X86ControlSet.CurrentSymbolEnd = (ULONG)g_WatchEndCurFunc; } }
void X86MachineInfo::KdSaveProcessorState(void) { MachineInfo::KdSaveProcessorState(); m_SavedSpecialRegContext = m_SpecialRegContext; }
void X86MachineInfo::KdRestoreProcessorState(void) { MachineInfo::KdRestoreProcessorState(); m_SpecialRegContext = m_SavedSpecialRegContext; }
ULONG X86MachineInfo::ExecutingMachine(void) { return IMAGE_FILE_MACHINE_I386; }
HRESULT X86MachineInfo::SetPageDirectory(ULONG Idx, ULONG64 PageDir, PULONG NextIdx) { HRESULT Status; *NextIdx = PAGE_DIR_COUNT; if (PageDir == 0) { if (g_ActualSystemVersion > XBOX_SVER_START && g_ActualSystemVersion < XBOX_SVER_END) { // XBox has only one page directory in CR3 for everything.
// The process doesn't have a dirbase entry.
PageDir = GetReg32(X86_CR3); if (PageDir == 0) { // Register retrieval failure.
return E_FAIL; } } else { // Assume NT structures.
if ((Status = g_Target->ReadImplicitProcessInfoPointer (m_OffsetEprocessDirectoryTableBase, &PageDir)) != S_OK) { return Status; } }
if (g_ImplicitProcessDataIsDefault && !IS_LOCAL_KERNEL_TARGET()) { // Verify that the process dirbase matches the CR3 setting
// as a sanity check.
ULONG Cr3 = GetReg32(X86_CR3); if (Cr3 && Cr3 != (ULONG)PageDir) { WarnOut("WARNING: Process directory table base %08X " "doesn't match CR3 %08X\n", (ULONG)PageDir, Cr3); } } }
// Sanitize the value.
if (KdDebuggerData.PaeEnabled) { PageDir &= X86_PDBR_MASK; } else { PageDir &= X86_VALID_PFN_MASK; }
// There is only one page directory so update all the slots.
m_PageDirectories[PAGE_DIR_USER] = PageDir; m_PageDirectories[PAGE_DIR_SESSION] = PageDir; m_PageDirectories[PAGE_DIR_KERNEL] = PageDir; return S_OK; }
#define X86_PAGE_FILE_INDEX(Entry) \
(((ULONG)(Entry) >> 1) & MAX_PAGING_FILE_MASK) #define X86_PAGE_FILE_OFFSET(Entry) \
(((Entry) >> 12) << X86_PAGE_SHIFT)
HRESULT X86MachineInfo::GetVirtualTranslationPhysicalOffsets(ULONG64 Virt, PULONG64 Offsets, ULONG OffsetsSize, PULONG Levels, PULONG PfIndex, PULONG64 LastVal) { ULONG64 Addr; HRESULT Status;
*Levels = 0; if (m_Translating) { return E_UNEXPECTED; } m_Translating = TRUE; //
// throw away top 32 bits on X86.
//
Virt &= 0x00000000FFFFFFFF;
//
// Reset the page directory in case it was 0
//
if (m_PageDirectories[PAGE_DIR_SINGLE] == 0) { if ((Status = SetDefaultPageDirectories(1 << PAGE_DIR_SINGLE)) != S_OK) { m_Translating = FALSE; return Status; } }
KdOut("X86VtoP: Virt %s, pagedir %s\n", FormatAddr64(Virt), FormatDisp64(m_PageDirectories[PAGE_DIR_SINGLE])); (*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = m_PageDirectories[PAGE_DIR_SINGLE]; OffsetsSize--; } // This routine uses the fact that the PFN shift is the same
// as the page shift to simplify some expressions.
C_ASSERT(X86_VALID_PFN_SHIFT == X86_PAGE_SHIFT);
if (KdDebuggerData.PaeEnabled) { ULONG64 Pdpe; ULONG64 Entry;
KdOut(" x86VtoP: PaeEnabled\n");
// Read the Page Directory Pointer entry.
Pdpe = ((Virt >> X86_PDPE_SHIFT) * sizeof(Entry)) + m_PageDirectories[PAGE_DIR_SINGLE];
KdOut("X86VtoP: PAE PDPE %s\n", FormatAddr64(Pdpe)); (*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = Pdpe; OffsetsSize--; } if ((Status = g_Target-> ReadAllPhysical(Pdpe, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PAE PDPE read error 0x%X\n", Status); m_Translating = FALSE; return Status; }
// Read the Page Directory entry.
Addr = (((Virt >> X86_PDE_SHIFT_PAE) & X86_PDE_MASK_PAE) * sizeof(Entry)) + (Entry & X86_VALID_PFN_MASK_PAE);
KdOut("X86VtoP: PAE PDE %s\n", FormatAddr64(Addr)); (*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = Addr; OffsetsSize--; } if ((Status = g_Target-> ReadAllPhysical(Addr, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PAE PDE read error 0x%X\n", Status); m_Translating = FALSE; return Status; } // Check for a large page. Large pages can
// never be paged out so also check for the present bit.
if ((Entry & (X86_LARGE_PAGE_MASK | 1)) == (X86_LARGE_PAGE_MASK | 1)) { //
// If we have a large page and this is a summary dump, then
// the page may span multiple physical pages that may -- because
// of how the summary dump is written -- not be included in the
// dump. Fixup the large page address to its corresponding small
// page address.
//
if (g_DumpType == DTYPE_KERNEL_SUMMARY32) { ULONG SpannedPages;
SpannedPages = (ULONG) ((Virt & (X86_LARGE_PAGE_SIZE_PAE - 1)) >> X86_PAGE_SHIFT); *LastVal = ((Entry & ~(X86_LARGE_PAGE_SIZE_PAE - 1)) | (SpannedPages << X86_PAGE_SHIFT) | (Virt & (X86_PAGE_SIZE - 1))); } else { *LastVal = ((Entry & ~(X86_LARGE_PAGE_SIZE_PAE - 1)) | (Virt & (X86_LARGE_PAGE_SIZE_PAE - 1))); } KdOut("X86VtoP: PAE Large page mapped phys %s\n", FormatAddr64(*LastVal));
(*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = *LastVal; OffsetsSize--; } m_Translating = FALSE; return S_OK; } // Read the Page Table entry.
if (Entry == 0) { KdOut("X86VtoP: PAE zero PDE\n"); m_Translating = FALSE; return HR_PAGE_NOT_AVAILABLE; } else if (!(Entry & 1)) { Addr = (((Virt >> X86_PTE_SHIFT) & X86_PTE_MASK_PAE) * sizeof(Entry)) + X86_PAGE_FILE_OFFSET(Entry);
KdOut("X86VtoP: pagefile PAE PTE %d:%s\n", X86_PAGE_FILE_INDEX(Entry), FormatAddr64(Addr)); if ((Status = g_Target-> ReadPageFile(X86_PAGE_FILE_INDEX(Entry), Addr, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PAE PDE not present, 0x%X\n", Status); m_Translating = FALSE; return Status; } } else { Addr = (((Virt >> X86_PTE_SHIFT) & X86_PTE_MASK_PAE) * sizeof(Entry)) + (Entry & X86_VALID_PFN_MASK_PAE);
KdOut("X86VtoP: PAE PTE %s\n", FormatAddr64(Addr)); (*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = Addr; OffsetsSize--; } if ((Status = g_Target-> ReadAllPhysical(Addr, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PAE PTE read error 0x%X\n", Status); m_Translating = FALSE; return Status; } } if (!(Entry & 0x1) && ((Entry & X86_MM_PTE_PROTOTYPE_MASK) || !(Entry & X86_MM_PTE_TRANSITION_MASK))) { if (Entry == 0) { KdOut("X86VtoP: PAE zero PTE\n"); Status = HR_PAGE_NOT_AVAILABLE; } else if (Entry & X86_MM_PTE_PROTOTYPE_MASK) { KdOut("X86VtoP: PAE prototype PTE\n"); Status = HR_PAGE_NOT_AVAILABLE; } else { *PfIndex = X86_PAGE_FILE_INDEX(Entry); *LastVal = (Virt & (X86_PAGE_SIZE - 1)) + X86_PAGE_FILE_OFFSET(Entry); KdOut("X86VtoP: PAE PTE not present, pagefile %d:%s\n", *PfIndex, FormatAddr64(*LastVal)); Status = HR_PAGE_IN_PAGE_FILE; } m_Translating = FALSE; return Status; }
*LastVal = ((Entry & X86_VALID_PFN_MASK_PAE) | (Virt & (X86_PAGE_SIZE - 1))); KdOut("X86VtoP: PAE Mapped phys %s\n", FormatAddr64(*LastVal));
(*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = *LastVal; OffsetsSize--; } m_Translating = FALSE; return S_OK; } else { ULONG Entry;
// Read the Page Directory entry.
Addr = ((Virt >> X86_PDE_SHIFT) * sizeof(Entry)) + m_PageDirectories[PAGE_DIR_SINGLE];
KdOut("X86VtoP: PDE %s\n", FormatDisp64(Addr)); (*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = Addr; OffsetsSize--; } if ((Status = g_Target-> ReadAllPhysical(Addr, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PDE read error 0x%X\n", Status); m_Translating = FALSE; return Status; }
// Check for a large page. Large pages can
// never be paged out so also check for the present bit.
if ((Entry & (X86_LARGE_PAGE_MASK | 1)) == (X86_LARGE_PAGE_MASK | 1)) { *LastVal = ((Entry & ~(X86_LARGE_PAGE_SIZE - 1)) | (Virt & (X86_LARGE_PAGE_SIZE - 1))); KdOut("X86VtoP: Large page mapped phys %s\n", FormatAddr64(*LastVal));
(*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = *LastVal; OffsetsSize--; } m_Translating = FALSE; return S_OK; } // Read the Page Table entry.
if (Entry == 0) { KdOut("X86VtoP: PAE zero PDE\n"); m_Translating = FALSE; return HR_PAGE_NOT_AVAILABLE; } else if (!(Entry & 1)) { Addr = (((Virt >> X86_PTE_SHIFT) & X86_PTE_MASK) * sizeof(Entry)) + X86_PAGE_FILE_OFFSET(Entry);
KdOut("X86VtoP: pagefile PTE %d:%s\n", X86_PAGE_FILE_INDEX(Entry), FormatAddr64(Addr)); if ((Status = g_Target-> ReadPageFile(X86_PAGE_FILE_INDEX(Entry), Addr, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PDE not present, 0x%X\n", Status); m_Translating = FALSE; return Status; } } else { Addr = (((Virt >> X86_PTE_SHIFT) & X86_PTE_MASK) * sizeof(Entry)) + (Entry & X86_VALID_PFN_MASK);
KdOut("X86VtoP: PTE %s\n", FormatAddr64(Addr)); (*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = Addr; OffsetsSize--; } if ((Status = g_Target-> ReadAllPhysical(Addr, &Entry, sizeof(Entry))) != S_OK) { KdOut("X86VtoP: PTE read error 0x%X\n", Status); m_Translating = FALSE; return Status; } } if (!(Entry & 0x1) && ((Entry & X86_MM_PTE_PROTOTYPE_MASK) || !(Entry & X86_MM_PTE_TRANSITION_MASK))) { if (Entry == 0) { KdOut("X86VtoP: zero PTE\n"); Status = HR_PAGE_NOT_AVAILABLE; } else if (Entry & X86_MM_PTE_PROTOTYPE_MASK) { KdOut("X86VtoP: prototype PTE\n"); Status = HR_PAGE_NOT_AVAILABLE; } else { *PfIndex = X86_PAGE_FILE_INDEX(Entry); *LastVal = (Virt & (X86_PAGE_SIZE - 1)) + X86_PAGE_FILE_OFFSET(Entry); KdOut("X86VtoP: PTE not present, pagefile %d:%s\n", *PfIndex, FormatAddr64(*LastVal)); Status = HR_PAGE_IN_PAGE_FILE; } m_Translating = FALSE; return Status; }
*LastVal = ((Entry & X86_VALID_PFN_MASK) | (Virt & (X86_PAGE_SIZE - 1))); KdOut("X86VtoP: Mapped phys %s\n", FormatAddr64(*LastVal));
(*Levels)++; if (Offsets != NULL && OffsetsSize > 0) { *Offsets++ = *LastVal; OffsetsSize--; } m_Translating = FALSE; return S_OK; } }
HRESULT X86MachineInfo::GetBaseTranslationVirtualOffset(PULONG64 Offset) { if (KdDebuggerData.PaeEnabled) { *Offset = EXTEND64(X86_BASE_VIRT_PAE); } else { *Offset = EXTEND64(X86_BASE_VIRT); } return S_OK; }
BOOL X86MachineInfo::DisplayTrapFrame(ULONG64 FrameAddress, PCROSS_PLATFORM_CONTEXT Context) { X86_KTRAP_FRAME TrapContents; CHAR Buffer[200]; DESCRIPTOR64 Descriptor={0}; ULONG Esp; ULONG64 DisasmAddr; ULONG Temp, SegSs, res; ULONG EFlags;
#define Preg(S,R) dprintf("%s=%08lx ",S, TrapContents.R);
if (g_Target->ReadVirtual(FrameAddress, &TrapContents, sizeof(TrapContents), &res) != S_OK) { dprintf("Unable to read trap frame contents\n"); return FALSE; }
Preg("eax", Eax); Preg("ebx", Ebx); Preg("ecx", Ecx); Preg("edx", Edx); Preg("esi", Esi); Preg("edi", Edi); dprintf("\n");
//
// Figure out ESP
//
if (((TrapContents.SegCs & 1) != 0 /*KernelMode*/) || (TrapContents.EFlags & X86_EFLAGS_V86_MASK) || FrameAddress == 0) { // User-mode frame, real value of Esp is in HardwareEsp
Esp = TrapContents.HardwareEsp; } else { //
// We ignore if Esp has been edited for now, and we will print a
// separate line indicating this later.
//
// Calculate kernel Esp
//
Esp = (ULONG)FrameAddress + FIELD_OFFSET(X86_KTRAP_FRAME, HardwareEsp); }
EFlags = TrapContents.EFlags;
dprintf("eip=%08lx esp=%08lx ebp=%08lx iopl=%1lx " "%s %s %s %s %s %s %s %s\n", TrapContents.Eip, Esp, TrapContents.Ebp, ((EFlags >> 12) & 3), (EFlags & 0x800) ? "ov" : "nv", (EFlags & 0x400) ? "dn" : "up", (EFlags & 0x200) ? "ei" : "di", (EFlags & 0x80) ? "ng" : "pl", (EFlags & 0x40) ? "zr" : "nz", (EFlags & 0x10) ? "ac" : "na", (EFlags & 0x4) ? "po" : "pe", (EFlags & 0x1) ? "cy" : "nc");
// Check whether P5 Virtual Mode Extensions are enabled, for display
// of new EFlags values.
if ( GetIntReg(X86_CR4) != 0) { dprintf("vip=%1lx vif=%1lx\n", (EFlags & 0x00100000L) >> 20, (EFlags & 0x00080000L) >> 19); }
//
// Find correct SS
//
if (EFlags & X86_EFLAGS_V86_MASK) { SegSs = (USHORT)(TrapContents.HardwareSegSs & 0xffff); } else if ((TrapContents.SegCs & X86_MODE_MASK) != 0 /*KernelMode*/) { //
// It's user mode. The HardwareSegSs contains R3 data selector.
//
SegSs = (USHORT)(TrapContents.HardwareSegSs | X86_RPL_MASK) & 0xffff; } else { SegSs = X86_KGDT_R0_DATA; }
dprintf("cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x" " efl=%08lx\n", (USHORT)(TrapContents.SegCs & 0xffff), (USHORT)(SegSs & 0xffff), (USHORT)(TrapContents.SegDs & 0xffff), (USHORT)(TrapContents.SegEs & 0xffff), (USHORT)(TrapContents.SegFs & 0xffff), (USHORT)(TrapContents.SegGs & 0xffff), EFlags);
//
// Check to see if Esp has been edited, and dump new value if it has
//
if ( (!(EFlags & X86_EFLAGS_V86_MASK)) && ((TrapContents.SegCs & X86_MODE_MASK) == 0 /*KernelMode*/)) { if ((TrapContents.SegCs & X86_FRAME_EDITED) == 0) { dprintf("ESP EDITED! New esp=%08lx\n",TrapContents.TempEsp); } }
if (FrameAddress) { dprintf("ErrCode = %08lx\n", TrapContents.ErrCode); }
if (EFlags & X86_EFLAGS_V86_MASK) { DisasmAddr = ((ULONG64)((USHORT)TrapContents.SegCs & 0xffff) << 4) + (TrapContents.Eip & 0xffff); } else { g_Target->GetSelDescriptor(this, g_CurrentProcess->CurrentThread->Handle, (USHORT)TrapContents.SegCs, &Descriptor);
if (Descriptor.Flags & X86_DESC_DEFAULT_BIG) { DisasmAddr = EXTEND64(TrapContents.Eip); } else { DisasmAddr = TrapContents.Eip;// & 0xffff
} }
ADDR tempAddr; Type(tempAddr) = ADDR_FLAT | FLAT_COMPUTED; Off(tempAddr) = Flat(tempAddr) = DisasmAddr;
if (Disassemble(&tempAddr, Buffer, FALSE)) { dprintf("%s", Buffer); } else { dprintf("%08lx ???????????????\n", TrapContents.Eip); }
dprintf("\n");
if (Context) { // Fill up the context struct
#define CPCXT(Fld) Context->X86Context.Fld = TrapContents.Fld
CPCXT(Ebp); CPCXT(Eip); CPCXT(Eax); CPCXT(Ecx); CPCXT(Edx); CPCXT(Edi); CPCXT(Esi); CPCXT(Ebx); CPCXT(SegCs); CPCXT(SegDs); CPCXT(SegEs); CPCXT(SegFs); CPCXT(SegGs); CPCXT(EFlags); #undef CPCXT
Context->X86Context.SegSs = SegSs; Context->X86Context.Esp = Esp; } g_LastRegFrame.InstructionOffset = EXTEND64(TrapContents.Eip); g_LastRegFrame.StackOffset = EXTEND64(Esp); g_LastRegFrame.FrameOffset = EXTEND64(TrapContents.Ebp);
return TRUE; #undef Preg
}
void X86MachineInfo::ValidateCxr(PCROSS_PLATFORM_CONTEXT Context) { if (Context->X86Context.EFlags & X86_EFLAGS_V86_MASK) { Context->X86Context.SegSs &= 0xffff; } else if ((Context->X86Context.SegCs & X86_MODE_MASK)) { //
// It's user mode. The HardwareSegSs contains R3 data selector.
//
Context->X86Context.SegSs = (USHORT)(Context->X86Context.SegSs | X86_RPL_MASK) & 0xffff; } else { Context->X86Context.SegSs = X86_KGDT_R0_DATA; } } void X86MachineInfo::OutputFunctionEntry(PVOID RawEntry) { PFPO_DATA FpoData = (PFPO_DATA)RawEntry;
dprintf("OffStart: %08x\n", FpoData->ulOffStart); dprintf("ProcSize: 0x%x\n", FpoData->cbProcSize); switch(FpoData->cbFrame) { case FRAME_FPO: dprintf("Params: %d\n", FpoData->cdwParams); dprintf("Locals: %d\n", FpoData->cdwLocals); dprintf("Registers: %d\n", FpoData->cbRegs);
if (FpoData->fHasSEH) { dprintf("Has SEH\n"); } if (FpoData->fUseBP) { dprintf("Uses EBP\n"); } break;
case FRAME_NONFPO: dprintf("Non-FPO\n"); break;
case FRAME_TRAP: if (!IS_KERNEL_TARGET()) { goto UnknownFpo; } dprintf("Params: %d\n", FpoData->cdwParams); dprintf("Locals: %d\n", FpoData->cdwLocals); dprintf("Trap frame\n"); break;
case FRAME_TSS: if (!IS_KERNEL_TARGET()) { goto UnknownFpo; }
dprintf("Task gate\n"); break;
default: UnknownFpo: dprintf("Unknown FPO type\n"); break; } }
HRESULT X86MachineInfo::ReadKernelProcessorId (ULONG Processor, PDEBUG_PROCESSOR_IDENTIFICATION_ALL Id) { HRESULT Status; ULONG64 Prcb, PrcbMember; ULONG Data;
if ((Status = g_Target-> GetProcessorSystemDataOffset(Processor, DEBUG_DATA_KPRCB_OFFSET, &Prcb)) != S_OK) { return Status; }
if ((Status = g_Target-> ReadAllVirtual(Prcb + FIELD_OFFSET(X86_PARTIAL_KPRCB, CpuType), &Data, sizeof(Data))) != S_OK) { return Status; }
Id->X86.Family = Data & 0xf; Id->X86.Model = (Data >> 24) & 0xf; Id->X86.Stepping = (Data >> 16) & 0xf;
if (g_TargetBuildNumber >= 2474) { // XP
PrcbMember = X86_2474_KPRCB_VENDOR_STRING; } else if (g_TargetBuildNumber >= 2251) { // XP BETA1 and BETA 2
PrcbMember = X86_2251_KPRCB_VENDOR_STRING; } else if (g_TargetBuildNumber >= 2087) { // NT5
PrcbMember = X86_2087_KPRCB_VENDOR_STRING; } else { // NT4
PrcbMember = X86_1387_KPRCB_VENDOR_STRING; }
if ((Status = g_Target-> ReadAllVirtual(Prcb + PrcbMember, Id->X86.VendorString, X86_VENDOR_STRING_SIZE)) != S_OK) { return Status; }
return S_OK; }
void X86MachineInfo::KdGetSpecialRegistersFromContext(void) { DBG_ASSERT(m_ContextState >= MCTX_FULL); m_SpecialRegContext.KernelDr0 = m_Context.X86Nt5Context.Dr0; m_SpecialRegContext.KernelDr1 = m_Context.X86Nt5Context.Dr1; m_SpecialRegContext.KernelDr2 = m_Context.X86Nt5Context.Dr2; m_SpecialRegContext.KernelDr3 = m_Context.X86Nt5Context.Dr3; m_SpecialRegContext.KernelDr6 = m_Context.X86Nt5Context.Dr6; m_SpecialRegContext.KernelDr7 = m_Context.X86Nt5Context.Dr7; }
void X86MachineInfo::KdSetSpecialRegistersInContext(void) { DBG_ASSERT(m_ContextState >= MCTX_FULL); m_Context.X86Nt5Context.Dr0 = m_SpecialRegContext.KernelDr0; m_Context.X86Nt5Context.Dr1 = m_SpecialRegContext.KernelDr1; m_Context.X86Nt5Context.Dr2 = m_SpecialRegContext.KernelDr2; m_Context.X86Nt5Context.Dr3 = m_SpecialRegContext.KernelDr3; m_Context.X86Nt5Context.Dr6 = m_SpecialRegContext.KernelDr6; m_Context.X86Nt5Context.Dr7 = m_SpecialRegContext.KernelDr7; }
ULONG X86MachineInfo::GetIntReg(ULONG regnum) { switch (m_ContextState) { case MCTX_PC: if (regnum == X86_EIP) { return m_Context.X86Nt5Context.Eip; } goto MctxContext; case MCTX_DR67_REPORT: switch (regnum) { case X86_DR6: return m_Context.X86Nt5Context.Dr6; case X86_DR7: return m_Context.X86Nt5Context.Dr7; } goto MctxContext;
case MCTX_REPORT: switch (regnum) { case X86_CS: return (USHORT)m_Context.X86Nt5Context.SegCs; case X86_DS: return (USHORT)m_Context.X86Nt5Context.SegDs; case X86_ES: return (USHORT)m_Context.X86Nt5Context.SegEs; case X86_FS: return (USHORT)m_Context.X86Nt5Context.SegFs; case X86_EIP: return m_Context.X86Nt5Context.Eip; case X86_EFL: return m_Context.X86Nt5Context.EFlags; case X86_DR6: return m_Context.X86Nt5Context.Dr6; case X86_DR7: return m_Context.X86Nt5Context.Dr7; } // Fallthrough!
case MCTX_NONE: MctxContext: if (GetContextState(MCTX_CONTEXT) != S_OK) { return 0; } // Fallthrough!
case MCTX_CONTEXT: switch (regnum) { case X86_CS: return (USHORT)m_Context.X86Nt5Context.SegCs; case X86_DS: return (USHORT)m_Context.X86Nt5Context.SegDs; case X86_ES: return (USHORT)m_Context.X86Nt5Context.SegEs; case X86_FS: return (USHORT)m_Context.X86Nt5Context.SegFs; case X86_EIP: return m_Context.X86Nt5Context.Eip; case X86_EFL: return m_Context.X86Nt5Context.EFlags;
case X86_GS: return (USHORT)m_Context.X86Nt5Context.SegGs; case X86_SS: return (USHORT)m_Context.X86Nt5Context.SegSs; case X86_EDI: return m_Context.X86Nt5Context.Edi; case X86_ESI: return m_Context.X86Nt5Context.Esi; case X86_EBX: return m_Context.X86Nt5Context.Ebx; case X86_EDX: return m_Context.X86Nt5Context.Edx; case X86_ECX: return m_Context.X86Nt5Context.Ecx; case X86_EAX: return m_Context.X86Nt5Context.Eax; case X86_EBP: return m_Context.X86Nt5Context.Ebp; case X86_ESP: return m_Context.X86Nt5Context.Esp;
case X86_FPCW: return m_Context.X86Nt5Context.FloatSave.ControlWord & 0xffff; case X86_FPSW: return m_Context.X86Nt5Context.FloatSave.StatusWord & 0xffff; case X86_FPTW: return m_Context.X86Nt5Context.FloatSave.TagWord & 0xffff;
case X86_MXCSR: return m_Context.X86Nt5Context.FxSave.MXCsr; }
//
// The requested register is not in our current context, load up
// a complete context
//
if (GetContextState(MCTX_FULL) != S_OK) { return 0; } }
//
// We must have a complete context...
//
switch (regnum) { case X86_GS: return (USHORT)m_Context.X86Nt5Context.SegGs; case X86_FS: return (USHORT)m_Context.X86Nt5Context.SegFs; case X86_ES: return (USHORT)m_Context.X86Nt5Context.SegEs; case X86_DS: return (USHORT)m_Context.X86Nt5Context.SegDs; case X86_EDI: return m_Context.X86Nt5Context.Edi; case X86_ESI: return m_Context.X86Nt5Context.Esi; case X86_SI: return(m_Context.X86Nt5Context.Esi & 0xffff); case X86_DI: return(m_Context.X86Nt5Context.Edi & 0xffff); case X86_EBX: return m_Context.X86Nt5Context.Ebx; case X86_EDX: return m_Context.X86Nt5Context.Edx; case X86_ECX: return m_Context.X86Nt5Context.Ecx; case X86_EAX: return m_Context.X86Nt5Context.Eax; case X86_EBP: return m_Context.X86Nt5Context.Ebp; case X86_EIP: return m_Context.X86Nt5Context.Eip; case X86_CS: return (USHORT)m_Context.X86Nt5Context.SegCs; case X86_EFL: return m_Context.X86Nt5Context.EFlags; case X86_ESP: return m_Context.X86Nt5Context.Esp; case X86_SS: return (USHORT)m_Context.X86Nt5Context.SegSs;
case X86_DR0: return m_Context.X86Nt5Context.Dr0; case X86_DR1: return m_Context.X86Nt5Context.Dr1; case X86_DR2: return m_Context.X86Nt5Context.Dr2; case X86_DR3: return m_Context.X86Nt5Context.Dr3; case X86_DR6: return m_Context.X86Nt5Context.Dr6; case X86_DR7: return m_Context.X86Nt5Context.Dr7;
case X86_FPCW: return m_Context.X86Nt5Context.FloatSave.ControlWord & 0xffff; case X86_FPSW: return m_Context.X86Nt5Context.FloatSave.StatusWord & 0xffff; case X86_FPTW: return m_Context.X86Nt5Context.FloatSave.TagWord & 0xffff;
case X86_MXCSR: return m_Context.X86Nt5Context.FxSave.MXCsr; } if (IS_KERNEL_TARGET()) { switch(regnum) { case X86_CR0: return m_SpecialRegContext.Cr0; case X86_CR2: return m_SpecialRegContext.Cr2; case X86_CR3: return m_SpecialRegContext.Cr3; case X86_CR4: return m_SpecialRegContext.Cr4; case X86_GDTR: return m_SpecialRegContext.Gdtr.Base; case X86_GDTL: return (ULONG)m_SpecialRegContext.Gdtr.Limit; case X86_IDTR: return m_SpecialRegContext.Idtr.Base; case X86_IDTL: return (ULONG)m_SpecialRegContext.Idtr.Limit; case X86_TR: return (ULONG)m_SpecialRegContext.Tr; case X86_LDTR: return (ULONG)m_SpecialRegContext.Ldtr; } }
ErrOut("X86MachineInfo::GetVal: " "unknown register %lx requested\n", regnum); return REG_ERROR; }
PULONG64 X86MachineInfo::GetMmxRegSlot(ULONG regnum) { return (PULONG64)(m_Context.X86Nt5Context.FloatSave.RegisterArea + GetMmxRegOffset(regnum - X86_MM_FIRST, GetIntReg(X86_FPSW)) * 10); }
void X86MachineInfo::GetMmxReg(ULONG regnum, REGVAL *val) { if (GetContextState(MCTX_CONTEXT) == S_OK) { val->i64 = *(ULONG64 UNALIGNED *)GetMmxRegSlot(regnum); } }
void X86MachineInfo::GetFloatReg(ULONG regnum, REGVAL *val) { if (GetContextState(MCTX_CONTEXT) == S_OK) { memcpy(val->f10, m_Context.X86Nt5Context.FloatSave.RegisterArea + 10 * (regnum - X86_ST_FIRST), sizeof(val->f10)); } }
// TSS
ULONG64 X86MachineInfo::Selector2Address( USHORT TaskRegister ) { DESCRIPTOR64 desc;
//
// Lookup task register
//
if (g_Target->GetSelDescriptor (this, g_CurrentProcess->CurrentThread->Handle, TaskRegister, &desc) != S_OK) { //
// Can't do it.
//
return 0; }
if (X86_DESC_TYPE(desc.Flags) != 9 && X86_DESC_TYPE(desc.Flags) != 0xb) { //
// not a 32bit task descriptor
//
return 0; }
//
// Read in Task State Segment
//
return desc.Base; }
HRESULT X86MachineInfo::DumpTSS(void)
/*++
Routine Description:
Arguments:
args -
Return Value:
None
--*/
{
#define MAX_RING 3
ULONG taskRegister; PUCHAR buf; ULONG64 hostAddress; BOOLEAN extendedDump; ULONG i; USHORT SegSs; CHAR Buffer[200]; DESCRIPTOR64 Descriptor; ULONG Esp; ULONG64 DisasmAddr;
struct { // intel's TSS format
ULONG Previous; struct { ULONG Esp; ULONG Ss; } Ring[MAX_RING]; ULONG Cr3; ULONG Eip; ULONG EFlags; ULONG Eax; ULONG Ecx; ULONG Edx; ULONG Ebx; ULONG Esp; ULONG Ebp; ULONG Esi; ULONG Edi; ULONG Es; ULONG Cs; ULONG Ss; ULONG Ds; ULONG Fs; ULONG Gs; ULONG Ldt; USHORT T; USHORT IoMapBase; } TSS;
buf = (PUCHAR)&TSS; *buf = '\0';
taskRegister = (ULONG) GetExpression();
//
// If user specified a 2nd parameter, doesn't matter what it is,
// dump the portions of the TSS not covered by the trap frame dump.
//
if (*g_CurCmd) { extendedDump = TRUE; g_CurCmd += strlen(g_CurCmd); }
hostAddress = Selector2Address((USHORT)taskRegister);
if (!hostAddress) { ErrOut("unable to get Task State Segment address from selector %lX\n", taskRegister); return E_INVALIDARG; }
if (g_Target->ReadVirtual(hostAddress, &TSS, sizeof(TSS), &i) != S_OK) { ErrOut("unable to read Task State Segment from host address %lx\n", hostAddress); return E_INVALIDARG; }
//
// Display it.
//
if (extendedDump) { dprintf("\nTask State Segment (selector 0x%x) at 0x%p\n\n", taskRegister, hostAddress); dprintf("Previous Task Link = %4x\n", TSS.Previous); for (i = 0 ; i < MAX_RING ; i++) { dprintf("Esp%d = %8x SS%d = %4x\n", i, TSS.Ring[i].Esp, i, TSS.Ring[i].Ss); } dprintf("CR3 (PDBR) = %08x\n", TSS.Cr3); dprintf("I/O Map Base Address = %4x, Debug Trap (T) = %s\n", TSS.IoMapBase, TSS.T == 0 ? "False" : "True"); dprintf("\nSaved General Purpose Registers\n\n"); }
dprintf("eax=%08lx ebx=%08lx ecx=%08lx edx=%08lx esi=%08lx edi=%08lx\n", TSS.Eax, TSS.Ebx, TSS.Ecx, TSS.Edx, TSS.Esi, TSS.Edi); Esp = TSS.Esp;
dprintf("eip=%08lx esp=%08lx ebp=%08lx iopl=%1lx " "%s %s %s %s %s %s %s %s\n", TSS.Eip, Esp, TSS.Ebp, ((TSS.EFlags >> 12) & 3), (TSS.EFlags & 0x800) ? "ov" : "nv", (TSS.EFlags & 0x400) ? "dn" : "up", (TSS.EFlags & 0x200) ? "ei" : "di", (TSS.EFlags & 0x80) ? "ng" : "pl", (TSS.EFlags & 0x40) ? "zr" : "nz", (TSS.EFlags & 0x10) ? "ac" : "na", (TSS.EFlags & 0x4) ? "po" : "pe", (TSS.EFlags & 0x1) ? "cy" : "nc");
// Check whether P5 Virtual Mode Extensions are enabled, for display
// of new EFlags values.
if (GetIntReg(X86_CR4) != 0) { dprintf("vip=%1lx vif=%1lx\n", (TSS.EFlags & 0x00100000L) >> 20, (TSS.EFlags & 0x00080000L) >> 19); }
//
// Find correct SS
//
if (TSS.EFlags & X86_EFLAGS_V86_MASK) { SegSs = (USHORT)(TSS.Ss & 0xffff); } else if ((TSS.Cs & X86_MODE_MASK) != 0) { //
// It's user mode. The HardwareSegSs contains R3 data selector.
//
SegSs = (USHORT)(TSS.Ss | X86_RPL_MASK) & 0xffff; } else { SegSs = X86_KGDT_R0_DATA; }
dprintf("cs=%04x ss=%04x ds=%04x es=%04x fs=%04x gs=%04x" " efl=%08lx\n", (USHORT)(TSS.Cs & 0xffff), (USHORT)(SegSs & 0xffff), (USHORT)(TSS.Ds & 0xffff), (USHORT)(TSS.Es & 0xffff), (USHORT)(TSS.Fs & 0xffff), (USHORT)(TSS.Gs & 0xffff), TSS.EFlags);
if (TSS.EFlags & X86_EFLAGS_V86_MASK) { DisasmAddr = ((ULONG)((USHORT)TSS.Cs & 0xffff) << 4) + (TSS.Eip & 0xffff); } else { if (g_Target->GetSelDescriptor(this, g_EventThread->Handle, TSS.Cs, &Descriptor) != S_OK) { ErrOut("Unable to get TSS CS descriptor\n"); return E_INVALIDARG; }
if (Descriptor.Flags & X86_DESC_DEFAULT_BIG) { DisasmAddr = EXTEND64(TSS.Eip); } else { DisasmAddr = TSS.Eip & 0xffff; } }
ADDR tempAddr; Type(tempAddr) = ADDR_FLAT | FLAT_COMPUTED; Off(tempAddr) = Flat(tempAddr) = DisasmAddr; if (Disassemble(&tempAddr, Buffer, FALSE)) { dprintf(Buffer); } else { dprintf("%08lx ???????????????\n", TSS.Eip); }
dprintf("\n");
X86_CONTEXT Context; #define CPCXT(Fld) Context.Fld = TSS.Fld
CPCXT(Ebp); CPCXT(Eip); CPCXT(Eax); CPCXT(Ecx); CPCXT(Edx); CPCXT(Edi); CPCXT(Esi); CPCXT(Ebx); CPCXT(Esp); CPCXT(EFlags); #undef CPCXT
Context.SegCs = TSS.Ss; Context.SegDs = TSS.Ds; Context.SegEs = TSS.Es; Context.SegFs = TSS.Fs; Context.SegGs = TSS.Gs; Context.SegSs = SegSs;
g_LastRegFrame.InstructionOffset = EXTEND64(Context.Eip); g_LastRegFrame.StackOffset = EXTEND64(Context.Esp); g_LastRegFrame.FrameOffset = EXTEND64(Context.Ebp);
SetCurrentScope(&g_LastRegFrame, &Context, sizeof(X86_CONTEXT)); return S_OK; }
|