Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

515 lines
20 KiB

  1. #include "stdafx.h"
  2. #pragma hdrstop
  3. /*
  4. * jdmainct.c
  5. *
  6. * Copyright (C) 1994-1996, Thomas G. Lane.
  7. * This file is part of the Independent JPEG Group's software.
  8. * For conditions of distribution and use, see the accompanying README file.
  9. *
  10. * This file contains the main buffer controller for decompression.
  11. * The main buffer lies between the JPEG decompressor proper and the
  12. * post-processor; it holds downsampled data in the JPEG colorspace.
  13. *
  14. * Note that this code is bypassed in raw-data mode, since the application
  15. * supplies the equivalent of the main buffer in that case.
  16. */
  17. #define JPEG_INTERNALS
  18. #include "jinclude.h"
  19. #include "jpeglib.h"
  20. /*
  21. * In the current system design, the main buffer need never be a full-image
  22. * buffer; any full-height buffers will be found inside the coefficient or
  23. * postprocessing controllers. Nonetheless, the main controller is not
  24. * trivial. Its responsibility is to provide context rows for upsampling/
  25. * rescaling, and doing this in an efficient fashion is a bit tricky.
  26. *
  27. * Postprocessor input data is counted in "row groups". A row group
  28. * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
  29. * sample rows of each component. (We require DCT_scaled_size values to be
  30. * chosen such that these numbers are integers. In practice DCT_scaled_size
  31. * values will likely be powers of two, so we actually have the stronger
  32. * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
  33. * Upsampling will typically produce max_v_samp_factor pixel rows from each
  34. * row group (times any additional scale factor that the upsampler is
  35. * applying).
  36. *
  37. * The coefficient controller will deliver data to us one iMCU row at a time;
  38. * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
  39. * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
  40. * to one row of MCUs when the image is fully interleaved.) Note that the
  41. * number of sample rows varies across components, but the number of row
  42. * groups does not. Some garbage sample rows may be included in the last iMCU
  43. * row at the bottom of the image.
  44. *
  45. * Depending on the vertical scaling algorithm used, the upsampler may need
  46. * access to the sample row(s) above and below its current input row group.
  47. * The upsampler is required to set need_context_rows TRUE at global selection
  48. * time if so. When need_context_rows is FALSE, this controller can simply
  49. * obtain one iMCU row at a time from the coefficient controller and dole it
  50. * out as row groups to the postprocessor.
  51. *
  52. * When need_context_rows is TRUE, this controller guarantees that the buffer
  53. * passed to postprocessing contains at least one row group's worth of samples
  54. * above and below the row group(s) being processed. Note that the context
  55. * rows "above" the first passed row group appear at negative row offsets in
  56. * the passed buffer. At the top and bottom of the image, the required
  57. * context rows are manufactured by duplicating the first or last real sample
  58. * row; this avoids having special cases in the upsampling inner loops.
  59. *
  60. * The amount of context is fixed at one row group just because that's a
  61. * convenient number for this controller to work with. The existing
  62. * upsamplers really only need one sample row of context. An upsampler
  63. * supporting arbitrary output rescaling might wish for more than one row
  64. * group of context when shrinking the image; tough, we don't handle that.
  65. * (This is justified by the assumption that downsizing will be handled mostly
  66. * by adjusting the DCT_scaled_size values, so that the actual scale factor at
  67. * the upsample step needn't be much less than one.)
  68. *
  69. * To provide the desired context, we have to retain the last two row groups
  70. * of one iMCU row while reading in the next iMCU row. (The last row group
  71. * can't be processed until we have another row group for its below-context,
  72. * and so we have to save the next-to-last group too for its above-context.)
  73. * We could do this most simply by copying data around in our buffer, but
  74. * that'd be very slow. We can avoid copying any data by creating a rather
  75. * strange pointer structure. Here's how it works. We allocate a workspace
  76. * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
  77. * of row groups per iMCU row). We create two sets of redundant pointers to
  78. * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
  79. * pointer lists look like this:
  80. * M+1 M-1
  81. * master pointer --> 0 master pointer --> 0
  82. * 1 1
  83. * ... ...
  84. * M-3 M-3
  85. * M-2 M
  86. * M-1 M+1
  87. * M M-2
  88. * M+1 M-1
  89. * 0 0
  90. * We read alternate iMCU rows using each master pointer; thus the last two
  91. * row groups of the previous iMCU row remain un-overwritten in the workspace.
  92. * The pointer lists are set up so that the required context rows appear to
  93. * be adjacent to the proper places when we pass the pointer lists to the
  94. * upsampler.
  95. *
  96. * The above pictures describe the normal state of the pointer lists.
  97. * At top and bottom of the image, we diddle the pointer lists to duplicate
  98. * the first or last sample row as necessary (this is cheaper than copying
  99. * sample rows around).
  100. *
  101. * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
  102. * situation each iMCU row provides only one row group so the buffering logic
  103. * must be different (eg, we must read two iMCU rows before we can emit the
  104. * first row group). For now, we simply do not support providing context
  105. * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
  106. * be worth providing --- if someone wants a 1/8th-size preview, they probably
  107. * want it quick and dirty, so a context-free upsampler is sufficient.
  108. */
  109. /* Private buffer controller object */
  110. typedef struct {
  111. struct jpeg_d_main_controller pub; /* public fields */
  112. /* Pointer to allocated workspace (M or M+2 row groups). */
  113. JSAMPARRAY buffer[MAX_COMPONENTS];
  114. boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
  115. JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
  116. /* Remaining fields are only used in the context case. */
  117. /* These are the master pointers to the funny-order pointer lists. */
  118. JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
  119. int whichptr; /* indicates which pointer set is now in use */
  120. int context_state; /* process_data state machine status */
  121. JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
  122. JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
  123. } my_main_controller;
  124. typedef my_main_controller * my_main_ptr;
  125. /* context_state values: */
  126. #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
  127. #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
  128. #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
  129. /* Forward declarations */
  130. METHODDEF(void) process_data_simple_main
  131. JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  132. JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  133. METHODDEF(void) process_data_context_main
  134. JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  135. JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  136. #ifdef QUANT_2PASS_SUPPORTED
  137. METHODDEF(void) process_data_crank_post
  138. JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
  139. JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
  140. #endif
  141. LOCAL(void)
  142. alloc_funny_pointers (j_decompress_ptr cinfo)
  143. /* Allocate space for the funny pointer lists.
  144. * This is done only once, not once per pass.
  145. */
  146. {
  147. my_main_ptr main = (my_main_ptr) cinfo->main;
  148. int ci, rgroup;
  149. int M = cinfo->min_DCT_scaled_size;
  150. jpeg_component_info *compptr;
  151. JSAMPARRAY xbuf;
  152. /* Get top-level space for component array pointers.
  153. * We alloc both arrays with one call to save a few cycles.
  154. */
  155. main->xbuffer[0] = (JSAMPIMAGE)
  156. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  157. cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
  158. main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
  159. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  160. ci++, compptr++) {
  161. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  162. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  163. /* Get space for pointer lists --- M+4 row groups in each list.
  164. * We alloc both pointer lists with one call to save a few cycles.
  165. */
  166. xbuf = (JSAMPARRAY)
  167. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  168. 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
  169. xbuf += rgroup; /* want one row group at negative offsets */
  170. main->xbuffer[0][ci] = xbuf;
  171. xbuf += rgroup * (M + 4);
  172. main->xbuffer[1][ci] = xbuf;
  173. }
  174. }
  175. LOCAL(void)
  176. make_funny_pointers (j_decompress_ptr cinfo)
  177. /* Create the funny pointer lists discussed in the comments above.
  178. * The actual workspace is already allocated (in main->buffer),
  179. * and the space for the pointer lists is allocated too.
  180. * This routine just fills in the curiously ordered lists.
  181. * This will be repeated at the beginning of each pass.
  182. */
  183. {
  184. my_main_ptr main = (my_main_ptr) cinfo->main;
  185. int ci, i, rgroup;
  186. int M = cinfo->min_DCT_scaled_size;
  187. jpeg_component_info *compptr;
  188. JSAMPARRAY buf, xbuf0, xbuf1;
  189. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  190. ci++, compptr++) {
  191. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  192. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  193. xbuf0 = main->xbuffer[0][ci];
  194. xbuf1 = main->xbuffer[1][ci];
  195. /* First copy the workspace pointers as-is */
  196. buf = main->buffer[ci];
  197. for (i = 0; i < rgroup * (M + 2); i++) {
  198. xbuf0[i] = xbuf1[i] = buf[i];
  199. }
  200. /* In the second list, put the last four row groups in swapped order */
  201. for (i = 0; i < rgroup * 2; i++) {
  202. xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
  203. xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
  204. }
  205. /* The wraparound pointers at top and bottom will be filled later
  206. * (see set_wraparound_pointers, below). Initially we want the "above"
  207. * pointers to duplicate the first actual data line. This only needs
  208. * to happen in xbuffer[0].
  209. */
  210. for (i = 0; i < rgroup; i++) {
  211. xbuf0[i - rgroup] = xbuf0[0];
  212. }
  213. }
  214. }
  215. LOCAL(void)
  216. set_wraparound_pointers (j_decompress_ptr cinfo)
  217. /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
  218. * This changes the pointer list state from top-of-image to the normal state.
  219. */
  220. {
  221. my_main_ptr main = (my_main_ptr) cinfo->main;
  222. int ci, i, rgroup;
  223. int M = cinfo->min_DCT_scaled_size;
  224. jpeg_component_info *compptr;
  225. JSAMPARRAY xbuf0, xbuf1;
  226. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  227. ci++, compptr++) {
  228. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  229. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  230. xbuf0 = main->xbuffer[0][ci];
  231. xbuf1 = main->xbuffer[1][ci];
  232. for (i = 0; i < rgroup; i++) {
  233. xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
  234. xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
  235. xbuf0[rgroup*(M+2) + i] = xbuf0[i];
  236. xbuf1[rgroup*(M+2) + i] = xbuf1[i];
  237. }
  238. }
  239. }
  240. LOCAL(void)
  241. set_bottom_pointers (j_decompress_ptr cinfo)
  242. /* Change the pointer lists to duplicate the last sample row at the bottom
  243. * of the image. whichptr indicates which xbuffer holds the final iMCU row.
  244. * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
  245. */
  246. {
  247. my_main_ptr main = (my_main_ptr) cinfo->main;
  248. int ci, i, rgroup, iMCUheight, rows_left;
  249. jpeg_component_info *compptr;
  250. JSAMPARRAY xbuf;
  251. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  252. ci++, compptr++) {
  253. /* Count sample rows in one iMCU row and in one row group */
  254. iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
  255. rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
  256. /* Count nondummy sample rows remaining for this component */
  257. rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
  258. if (rows_left == 0) rows_left = iMCUheight;
  259. /* Count nondummy row groups. Should get same answer for each component,
  260. * so we need only do it once.
  261. */
  262. if (ci == 0) {
  263. main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
  264. }
  265. /* Duplicate the last real sample row rgroup*2 times; this pads out the
  266. * last partial rowgroup and ensures at least one full rowgroup of context.
  267. */
  268. xbuf = main->xbuffer[main->whichptr][ci];
  269. for (i = 0; i < rgroup * 2; i++) {
  270. xbuf[rows_left + i] = xbuf[rows_left-1];
  271. }
  272. }
  273. }
  274. /*
  275. * Initialize for a processing pass.
  276. */
  277. METHODDEF(void)
  278. start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
  279. {
  280. my_main_ptr main = (my_main_ptr) cinfo->main;
  281. switch (pass_mode) {
  282. case JBUF_PASS_THRU:
  283. if (cinfo->upsample->need_context_rows) {
  284. main->pub.process_data = process_data_context_main;
  285. make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
  286. main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
  287. main->context_state = CTX_PREPARE_FOR_IMCU;
  288. main->iMCU_row_ctr = 0;
  289. } else {
  290. /* Simple case with no context needed */
  291. main->pub.process_data = process_data_simple_main;
  292. }
  293. main->buffer_full = FALSE; /* Mark buffer empty */
  294. main->rowgroup_ctr = 0;
  295. break;
  296. #ifdef QUANT_2PASS_SUPPORTED
  297. case JBUF_CRANK_DEST:
  298. /* For last pass of 2-pass quantization, just crank the postprocessor */
  299. main->pub.process_data = process_data_crank_post;
  300. break;
  301. #endif
  302. default:
  303. ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  304. break;
  305. }
  306. }
  307. /*
  308. * Process some data.
  309. * This handles the simple case where no context is required.
  310. */
  311. METHODDEF(void)
  312. process_data_simple_main (j_decompress_ptr cinfo,
  313. JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  314. JDIMENSION out_rows_avail)
  315. {
  316. my_main_ptr main = (my_main_ptr) cinfo->main;
  317. JDIMENSION rowgroups_avail;
  318. /* Read input data if we haven't filled the main buffer yet */
  319. if (! main->buffer_full) {
  320. if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
  321. return; /* suspension forced, can do nothing more */
  322. main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
  323. }
  324. /* There are always min_DCT_scaled_size row groups in an iMCU row. */
  325. rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
  326. /* Note: at the bottom of the image, we may pass extra garbage row groups
  327. * to the postprocessor. The postprocessor has to check for bottom
  328. * of image anyway (at row resolution), so no point in us doing it too.
  329. */
  330. /* Feed the postprocessor */
  331. (*cinfo->post->post_process_data) (cinfo, main->buffer,
  332. &main->rowgroup_ctr, rowgroups_avail,
  333. output_buf, out_row_ctr, out_rows_avail);
  334. /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
  335. if (main->rowgroup_ctr >= rowgroups_avail) {
  336. main->buffer_full = FALSE;
  337. main->rowgroup_ctr = 0;
  338. }
  339. }
  340. /*
  341. * Process some data.
  342. * This handles the case where context rows must be provided.
  343. */
  344. METHODDEF(void)
  345. process_data_context_main (j_decompress_ptr cinfo,
  346. JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  347. JDIMENSION out_rows_avail)
  348. {
  349. my_main_ptr main = (my_main_ptr) cinfo->main;
  350. /* Read input data if we haven't filled the main buffer yet */
  351. if (! main->buffer_full) {
  352. if (! (*cinfo->coef->decompress_data) (cinfo,
  353. main->xbuffer[main->whichptr]))
  354. return; /* suspension forced, can do nothing more */
  355. main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
  356. main->iMCU_row_ctr++; /* count rows received */
  357. }
  358. /* Postprocessor typically will not swallow all the input data it is handed
  359. * in one call (due to filling the output buffer first). Must be prepared
  360. * to exit and restart. This switch lets us keep track of how far we got.
  361. * Note that each case falls through to the next on successful completion.
  362. */
  363. switch (main->context_state) {
  364. case CTX_POSTPONED_ROW:
  365. /* Call postprocessor using previously set pointers for postponed row */
  366. (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
  367. &main->rowgroup_ctr, main->rowgroups_avail,
  368. output_buf, out_row_ctr, out_rows_avail);
  369. if (main->rowgroup_ctr < main->rowgroups_avail)
  370. return; /* Need to suspend */
  371. main->context_state = CTX_PREPARE_FOR_IMCU;
  372. if (*out_row_ctr >= out_rows_avail)
  373. return; /* Postprocessor exactly filled output buf */
  374. /*FALLTHROUGH*/
  375. case CTX_PREPARE_FOR_IMCU:
  376. /* Prepare to process first M-1 row groups of this iMCU row */
  377. main->rowgroup_ctr = 0;
  378. main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
  379. /* Check for bottom of image: if so, tweak pointers to "duplicate"
  380. * the last sample row, and adjust rowgroups_avail to ignore padding rows.
  381. */
  382. if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
  383. set_bottom_pointers(cinfo);
  384. main->context_state = CTX_PROCESS_IMCU;
  385. /*FALLTHROUGH*/
  386. case CTX_PROCESS_IMCU:
  387. /* Call postprocessor using previously set pointers */
  388. (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
  389. &main->rowgroup_ctr, main->rowgroups_avail,
  390. output_buf, out_row_ctr, out_rows_avail);
  391. if (main->rowgroup_ctr < main->rowgroups_avail)
  392. return; /* Need to suspend */
  393. /* After the first iMCU, change wraparound pointers to normal state */
  394. if (main->iMCU_row_ctr == 1)
  395. set_wraparound_pointers(cinfo);
  396. /* Prepare to load new iMCU row using other xbuffer list */
  397. main->whichptr ^= 1; /* 0=>1 or 1=>0 */
  398. main->buffer_full = FALSE;
  399. /* Still need to process last row group of this iMCU row, */
  400. /* which is saved at index M+1 of the other xbuffer */
  401. main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
  402. main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
  403. main->context_state = CTX_POSTPONED_ROW;
  404. }
  405. }
  406. /*
  407. * Process some data.
  408. * Final pass of two-pass quantization: just call the postprocessor.
  409. * Source data will be the postprocessor controller's internal buffer.
  410. */
  411. #ifdef QUANT_2PASS_SUPPORTED
  412. METHODDEF(void)
  413. process_data_crank_post (j_decompress_ptr cinfo,
  414. JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
  415. JDIMENSION out_rows_avail)
  416. {
  417. (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
  418. (JDIMENSION *) NULL, (JDIMENSION) 0,
  419. output_buf, out_row_ctr, out_rows_avail);
  420. }
  421. #endif /* QUANT_2PASS_SUPPORTED */
  422. /*
  423. * Initialize main buffer controller.
  424. */
  425. GLOBAL(void)
  426. jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
  427. {
  428. my_main_ptr main;
  429. int ci, rgroup, ngroups;
  430. jpeg_component_info *compptr;
  431. main = (my_main_ptr)
  432. (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  433. SIZEOF(my_main_controller));
  434. cinfo->main = (struct jpeg_d_main_controller *) main;
  435. main->pub.start_pass = start_pass_main;
  436. if (need_full_buffer) /* shouldn't happen */
  437. ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
  438. /* Allocate the workspace.
  439. * ngroups is the number of row groups we need.
  440. */
  441. if (cinfo->upsample->need_context_rows) {
  442. if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
  443. ERREXIT(cinfo, JERR_NOTIMPL);
  444. alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
  445. ngroups = cinfo->min_DCT_scaled_size + 2;
  446. } else {
  447. ngroups = cinfo->min_DCT_scaled_size;
  448. }
  449. for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
  450. ci++, compptr++) {
  451. rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
  452. cinfo->min_DCT_scaled_size; /* height of a row group of component */
  453. main->buffer[ci] = (*cinfo->mem->alloc_sarray)
  454. ((j_common_ptr) cinfo, JPOOL_IMAGE,
  455. compptr->width_in_blocks * compptr->DCT_scaled_size,
  456. (JDIMENSION) (rgroup * ngroups));
  457. }
  458. }