|
|
#include "stdafx.h"
#pragma hdrstop
/***************************************************************************
* * INTEL Corporation Proprietary Information * * * Copyright (c) 1996 Intel Corporation. * All rights reserved. * *************************************************************************** */ /*
* jidctfst.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a fast, not so accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README). The following code * is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values. The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8. */
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jidctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * The dequantized coefficients are not integers because the AA&N scaling * factors have been incorporated. We represent them scaled up by PASS1_BITS, * so that the first and second IDCT rounds have the same input scaling. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to * avoid a descaling shift; this compromises accuracy rather drastically * for small quantization table entries, but it saves a lot of shifts. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, * so we use a much larger scaling factor to preserve accuracy. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 8
#define PASS1_BITS 2
#else
#define CONST_BITS 8
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */
#if CONST_BITS == 8
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_613125930 FIX(2.613125930)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
//#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result. */
//#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
#define MULTIPLY(var,const) ((DCTELEM) ((var) * (const)))
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16 * multiplication will do. For 12-bit data, the multiplier table is * declared INT32, so a 32-bit multiply will be used. */
#if BITS_IN_JSAMPLE == 8
//#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#define DEQUANTIZE(coef,quantval) (((coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) #endif
/* Like DESCALE, but applies to a DCTELEM and produces an int.
* We assume that int right shift is unsigned if INT32 right shift is. */
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ (ishift_temp >> (shft))) #else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
#ifdef USE_ACCURATE_ROUNDING
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
#else
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
#endif
static const long x5a825a825a825a82 = 0x0000016a ; static const long x539f539f539f539f = 0xfffffd63 ; static const long x4546454645464546 = 0x00000115 ; static const long x61f861f861f861f8 = 0x000001d9 ;
/*
* Perform dequantization and inverse DCT on one block of coefficients. */
GLOBAL(void) pidct8x8aan (JCOEFPTR coef_block, short * wsptr, short * quantptr, JSAMPARRAY output_buf, JDIMENSION output_col, JSAMPLE *range_limit ) {
INT32 locdwinptr, locdwqptr, locdwwsptr, locwctr ; short locwcounter, locwtmp0, locwtmp1 ; short locwtmp3, scratch1, scratch2, scratch3 ;
// do the 2-Dal idct and store the corresponding results
// from the range_limit array
// pidct(coef_block, quantptr, wsptr, output_buf, output_col, range_limit) ;
__asm {
mov esi, coef_block ; source coeff mov edi, quantptr ; quant pointer
mov locdwinptr, esi mov eax, wsptr ; temp storage pointer
mov locdwqptr, edi mov locdwwsptr, eax
mov locwcounter, 8
;; perform the 1D-idct on each of the eight columns
idct_column:
mov esi, locdwinptr mov edi, locdwqptr
mov ax, word ptr [esi+16*0]
mov bx, word ptr [esi+16*4] imul ax, word ptr [edi+16*0]
mov cx, word ptr [esi+16*2]
imul bx, word ptr [edi+16*4]
mov dx, word ptr [esi+16*6] imul cx, word ptr [edi+16*2]
imul dx, word ptr [edi+16*6]
;;;; at this point C0, C2, C4 and C6 have been dequantized
mov scratch1, ax add ax, bx ; tmp10 in ax
sub scratch1, bx ; tmp11 mov bx, cx
add cx, dx ; tmp13 in cx sub bx, dx ; tmp1 - tmp3 in bx
mov dx, ax movsx ebx, bx ; sign extend bx: get ready to do imul
add ax, cx ; tmp0 in ax imul ebx, dword ptr x5a825a825a825a82
sub dx, cx ; tmp3 in dx mov locwtmp0, ax
mov locwtmp3, dx sar ebx, 8 ; bx now has (tmp1-tmp3)*1.414
mov ax, scratch1 ; copy of tmp11 sub bx, cx ; tmp12 in bx
add ax, bx ; tmp1 in ax sub scratch1, bx ; tmp2
mov locwtmp1, ax
;;;;;completed computing/storing the even part;;;;;;;;;;
mov ax, [esi+16*1] ; get C1
imul ax, [edi+16*1] mov bx, [esi+16*7] ; get C7
mov cx, [esi+16*3]
imul bx, [edi+16*7]
mov dx, [esi+16*5]
imul cx, [edi+16*3]
imul dx, [edi+16*5]
mov scratch2, ax add ax, bx ; z11 in ax
sub scratch2, bx ; z12 mov bx, dx ; copy of deQ C5
add dx, cx ; z13 in dx sub bx, cx ; z10 in bx
mov cx, ax ; copy of z11 add ax, dx ; tmp7 in ax
sub cx, dx ; partial tmp11
movsx ecx, cx mov dx, bx ; copy of z10
add bx, scratch2 ; partial z5 imul ecx, dword ptr x5a825a825a825a82
movsx edx, dx ; sign extend z10: get ready for imul movsx ebx, bx ; sign extend partial z5 for imul
imul edx, dword ptr x539f539f539f539f ; partial tmp12 imul ebx, dword ptr x61f861f861f861f8 ; partial z5 product
mov di, scratch2 movsx edi, di ; sign extend z12: get ready for imul sar ecx, 8 ; tmp11 in cx
sar ebx, 8 ; z5 in bx imul edi, dword ptr x4546454645464546
sar edx, 8 sar edi, 8
sub di, bx ; tmp10 add dx, bx ; tmp12 in dx
sub dx, ax ; tmp6 in dx
sub cx, dx ; tmp5 in cx
add di, cx ; tmp4 mov scratch3, di
;;; completed calculating the odd part ;;;;;;;;;;;
mov edi, dword ptr locdwwsptr ; get address of temp. destn
mov si, ax ; copy of tmp7 mov bx, locwtmp0 ; get tmp0
add ax, locwtmp0 ; wsptr[0] sub bx, si ; wsptr[7]
mov word ptr [edi+16*0], ax mov word ptr [edi+16*7], bx
mov ax, dx ; copy of tmp6 mov bx, locwtmp1
add dx, bx ; wsptr[1] sub bx, ax ; wsptr[6]
mov word ptr [edi+16*1], dx mov word ptr [edi+16*6], bx
mov dx, cx ; copy of tmp5 mov bx, scratch1
add cx, bx ; wsptr[2] sub bx, dx ; wsptr[5]
mov word ptr [edi+16*2], cx mov word ptr [edi+16*5], bx
mov cx, scratch3 ; copy of tmp4 mov ax, locwtmp3
add scratch3, ax ; wsptr[4] sub ax, cx ; wsptr[3]
mov bx, scratch3 mov word ptr [edi+16*4], bx mov word ptr [edi+16*3], ax
;;;;; completed storing 1D idct of one column ;;;;;;;;
;; update inptr, qptr and wsptr for next column
add locdwinptr, 2 add locdwqptr, 2
add locdwwsptr, 2 mov ax, locwcounter ; get loop count
dec ax ; another loop done
mov locwcounter, ax jnz idct_column
;;;;;;; end of 1D idct on all columns ;;;;;;; ;;;;;;; temp result is stored in wsptr ;;;;;;;
;;;;;;; perform 1D-idct on each row and store final result
mov esi, wsptr ; initialize source ptr to original wsptr mov locwctr, 0
mov locwcounter, 8 mov locdwwsptr, esi
idct_row:
mov edi, output_buf mov esi, locdwwsptr
add edi, locwctr
mov edi, [edi] ; get output_buf[ctr]
add edi, output_col ; now edi is pointing to the resp. row add locwctr, 4
;; get even coeffs. and do the even part
mov ax, word ptr [esi+2*0]
mov bx, word ptr [esi+2*4]
mov cx, word ptr [esi+2*2]
mov dx, word ptr [esi+2*6]
mov scratch1, ax add ax, bx ; tmp10 in ax
sub scratch1, bx ; tmp11 mov bx, cx
add cx, dx ; tmp13 in cx sub bx, dx ; tmp1 - tmp3 in bx
mov dx, ax movsx ebx, bx ; sign extend bx: get ready to do imul
add ax, cx ; tmp0 in ax imul ebx, dword ptr x5a825a825a825a82
sub dx, cx ; tmp3 in dx mov locwtmp0, ax
mov locwtmp3, dx sar ebx, 8 ; bx now has (tmp1-tmp3)*1.414
mov ax, scratch1 ; copy of tmp11 sub bx, cx ; tmp12 in bx
add ax, bx ; tmp1 in ax sub scratch1, bx ; tmp2
mov locwtmp1, ax
;;;;;completed computing/storing the even part;;;;;;;;;;
mov ax, [esi+2*1] ; get C1 mov bx, [esi+2*7] ; get C7
mov cx, [esi+2*3] mov dx, [esi+2*5]
mov scratch2, ax add ax, bx ; z11 in ax
sub scratch2, bx ; z12 mov bx, dx ; copy of deQ C5
add dx, cx ; z13 in dx sub bx, cx ; z10 in bx
mov cx, ax ; copy of z11 add ax, dx ; tmp7 in ax
sub cx, dx ; partial tmp11
movsx ecx, cx mov dx, bx ; copy of z10
add bx, scratch2 ; partial z5 imul ecx, dword ptr x5a825a825a825a82
movsx edx, dx ; sign extend z10: get ready for imul movsx ebx, bx ; sign extend partial z5 for imul
imul edx, dword ptr x539f539f539f539f ; partial tmp12 imul ebx, dword ptr x61f861f861f861f8 ; partial z5 product
mov si, scratch2 movsx esi, si ; sign extend z12: get ready for imul sar ecx, 8 ; tmp11 in cx
sar ebx, 8 ; z5 in bx imul esi, dword ptr x4546454645464546
sar edx, 8 sar esi, 8
sub si, bx ; tmp10 add dx, bx ; tmp12 in dx
sub dx, ax ; tmp6 in dx
sub cx, dx ; tmp5 in cx
add si, cx ; tmp4 mov scratch3, si
;;; completed calculating the odd part ;;;;;;;;;;;
mov si, ax ; copy of tmp7 mov bx, locwtmp0 ; get tmp0
add ax, locwtmp0 ; wsptr[0] sub bx, si ; wsptr[7]
mov esi, range_limit ; initialize esi to range_limit pointer
sar ax, 5 sar bx, 5
and eax, 3ffh and ebx, 3ffh
mov al, byte ptr [esi][eax] mov bl, byte ptr [esi][ebx]
mov byte ptr [edi+0], al mov byte ptr [edi+7], bl
mov ax, dx ; copy of tmp6 mov bx, locwtmp1
add dx, bx ; wsptr[1] sub bx, ax ; wsptr[6]
sar dx, 5 sar bx, 5
and edx, 3ffh and ebx, 3ffh
mov dl, byte ptr [esi][edx] mov bl, byte ptr [esi][ebx]
mov byte ptr [edi+1], dl mov byte ptr [edi+6], bl
mov dx, cx ; copy of tmp5 mov bx, scratch1
add cx, bx ; wsptr[2] sub bx, dx ; wsptr[5]
sar cx, 5 sar bx, 5
and ecx, 3ffh and ebx, 3ffh
mov cl, byte ptr [esi][ecx] mov bl, byte ptr [esi][ebx]
mov byte ptr [edi+2], cl mov byte ptr [edi+5], bl
mov cx, scratch3 ; copy of tmp4 mov ax, locwtmp3
add scratch3, ax ; wsptr[4] sub ax, cx ; wsptr[3]
sar scratch3, 5 sar ax, 5
mov cx, scratch3
and ecx, 3ffh and eax, 3ffh
mov bl, byte ptr [esi][ecx] mov al, byte ptr [esi][eax]
mov byte ptr [edi+4], bl mov byte ptr [edi+3], al
;;;;; completed storing 1D idct of one row ;;;;;;;;
;; update the source pointer (wsptr) for next row
add locdwwsptr, 16
mov ax, locwcounter ; get loop count
dec ax ; another loop done
mov locwcounter, ax jnz idct_row
;; end of 1D idct on all rows ;; final result is stored in outptr
} /* end of __asm */ }
#endif /* DCT_IFAST_SUPPORTED */
|