|
|
/******************************************************************************
Copyright(c) Microsoft Corporation
Module Name:
guid.cpp
Abstract:
This file is written for the implementation of functionality of the mirror plex List operation. Author:
J.S.Vasu 9/5/2001 .
Revision History:
J.S.Vasu 9/5/2001 Created it.
NOTE : This File is no longer being used . All the required properties for the Mirror Plex List operation are available from the DeviceIoControl API . ******************************************************************************/
#pragma once
#include <pch.h>
#include <diskguid.h>
#include <rpc.h>
#include <TCHAR.H>
#include "BootCfg.h"
#include "BootCfg64.h"
#include "resource.h"
UINT32 Crc32Table[] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d };
//
// Global Variables
//
HANDLE g_hDisk; DWORD g_nBytesPerSector; DISK_GEOMETRY_EX g_sDiskGeometry; BOOLEAN g_bProtectiveMBRFound ;
GPT_HEADER g_sGPTHeader ; GPT_HEADER g_sBackupGPTHeader; PGPT_ENTRY g_pGPTEntryHead; PGPT_ENTRY g_pBackupGPTEntryHead;
DWORD g_nTotalGPTEntries; DWORD g_nTotalBackupGPTEntries; UINT32 g_nComputedCRCGPTHeader; UINT32 g_nComputedCRCBackupGPTHeader; UINT32 g_nComputedCRCGPTEntries; UINT32 g_nComputedCRCBackupGPTEntries;
//
// Global UI Variables
//
PCHAR pReportBuffer;
GUID g_GuidArr[256] ; DWORD g_dwCnt = 0 ;
HANDLE OpenDisk(DWORD nPhysicalDrive); void CloseDisk(HANDLE hDisk); UINT32 ReadBlock(HANDLE hDisk, UINT64 nStart, UINT32 nSize, PVOID lpBuffer); UINT32 WriteBlock(HANDLE hDisk, UINT64 nStart, UINT32 nSize, PVOID lpBuffer);
UINT32 GetGPTHeaderAndEntries(HANDLE hDisk, GPT_HEADER *pGPTHeader, UINT64 nHeaderSector); UINT32 DumpGPTHeader(PGPT_HEADER pGPTHeader); UINT32 DumpPartitionEntries(PGPT_ENTRY pGPTEntryHead); UINT32 ComputeCRC32(UCHAR *pBuffer, UINT32 nLength); void AddReportSection(PTCHAR pString); void FreeGPTEntries(PGPT_ENTRY pGPTEntryHead); UINT32 GetDriveGeometry(HANDLE hDisk, PDISK_GEOMETRY_EX pDiskGeometry); UINT32 CheckProtectiveMBR(HANDLE hDisk); void AddReport1(PTCHAR pString); void GetSystemDrivePath();
// ***************************************************************************
//
// Name : OpenDisk
//
// Synopsis : This routine is used to open a disk and get a handle to it.
//
// Parameters : DWORD nPhysicalDrive (in) - Drive to be opened.
//
//
// Return Type : HANDLE -- handle of the opened drive.
//
//
// Global Variables : None
//
// ***************************************************************************
HANDLE OpenDisk(DWORD nPhysicalDrive) { TCHAR szDriveName[50]; _stprintf(szDriveName, _T("\\\\.\\physicaldrive%d"), nPhysicalDrive); return CreateFile(szDriveName, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); }
// ***************************************************************************
//
// Routine description : This routine is used to close a disk .
//
// Arguments:
// [in] HANDLE : Handle to the Specified Disk.
//
// Return Value : VOID
//
//
// ***************************************************************************
void CloseDisk(HANDLE hDisk) { CloseHandle(hDisk); }
// ***************************************************************************
//
// Routine description : This routine is used to read a specified block
//
// Arguments:
// [in] HANDLE :
// [in] nStart : starting position of the block.,
// [in] nSize :ending position of the block.
// [out] lpBuffer : output buffer. Handle to the Specified Disk.
//
// Return Value : VOID
//
// ***************************************************************************
UINT32 ReadBlock(HANDLE hDisk, UINT64 nStart, UINT32 nSize, PVOID lpBuffer) { UINT64 nPosition; DWORD nBytesRead; UINT32 pLoHi[2];
nPosition = nStart * 512; //assign the lsb of 64 bit no to the zero array and MSB to the first array element.
*((PUINT64)pLoHi) = nPosition;
nBytesRead = 0; SetFilePointer(hDisk, (LONG) pLoHi[0], (long *) &pLoHi[1], FILE_BEGIN); if(!ReadFile(hDisk, lpBuffer, nSize * 512, &nBytesRead, NULL) ) { return 0 ; } return nBytesRead; }
// ***************************************************************************
//
// Routine description : This routine is used to write a specified block
//
// Arguments:
// [in] HANDLE : handle of the opened disk.
// [in] nStart : starting position of the block.,
// [in] nSize :ending position of the block.
// [out] lpBuffer : output buffer. Handle to the Specified Disk.
//
// Return Value : VOID
//
// ***************************************************************************
UINT32 WriteBlock(HANDLE hDisk, UINT64 nStart, UINT32 nSize, PVOID lpBuffer) { UINT64 nPosition; DWORD nBytesRead; UINT32 pLoHi[2];
nPosition = nStart * 512; //assign the lsb of 64 bit no to the zero array and MSB to the first array element.
*((PUINT64)pLoHi) = nPosition;
nBytesRead = 0; SetFilePointer(hDisk, (LONG) pLoHi[0], (long *) &pLoHi[1], FILE_BEGIN); if(!WriteFile(hDisk, lpBuffer, nSize * 512, &nBytesRead, NULL)) { return 0 ; } return nBytesRead; }
// ***************************************************************************
//
// Routine description : This routine is used to write a specified block
//
// Arguments:
// [in] Drive : Drive to be scanned
//
// Return Value : UINT32
//
// ***************************************************************************
UINT32 ScanGPT(DWORD nPhysicalDrive) { UINT64 nAlternateLBA; UINT32 Result = 0; TCHAR szMessage[MAX_RES_STRING] = NULL_STRING ;
//
// Get a handle to the physical drive
//
g_hDisk = OpenDisk(nPhysicalDrive); if (g_hDisk == INVALID_HANDLE_VALUE) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_DRIVE) ); return EXIT_FAILURE; } if (GetDriveGeometry(g_hDisk, &g_sDiskGeometry)== EXIT_FAILURE ) { return EXIT_FAILURE; }
//
// Get primary GPT Header and its partition entries
//
if (GetGPTHeaderAndEntries(g_hDisk, &g_sGPTHeader, 1)) { g_sGPTHeader.Healthy = TRUE; } else { //
// This can happen if we have junk value in GPT header.
// In this case we dont perform certain tests
//
g_sGPTHeader.Healthy = FALSE; }
//
// Get backup GPT Header and its partition entries
//
nAlternateLBA = (g_sDiskGeometry.DiskSize.QuadPart / g_sDiskGeometry.Geometry.BytesPerSector) - 1;
if (GetGPTHeaderAndEntries(g_hDisk, &g_sBackupGPTHeader, nAlternateLBA)) { g_sBackupGPTHeader.Healthy = TRUE; } else { //
// This can happen if we have junk value in Backup GPT Header
// In this case we dont perform certain tests
//
g_sBackupGPTHeader.Healthy = FALSE; }
// display the header
DISPLAY_MESSAGE(stdout,GetResString(IDS_HEADER1)); DISPLAY_MESSAGE(stdout,GetResString(IDS_HEADER_DASH1));
Result = DumpGPTHeader(&g_sGPTHeader);
if (Result == EXIT_FAILURE) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_DISPLAY)); return EXIT_FAILURE; }
DISPLAY_MESSAGE(stdout,GetResString(IDS_HEADER2)); DISPLAY_MESSAGE(stdout,GetResString(IDS_HEADER2_DASH));
Result = DumpPartitionEntries(g_sGPTHeader.FirstGPTEntry); if (Result == EXIT_FAILURE) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_DISPLAY)); return EXIT_FAILURE; }
//
// Clean up
//
FreeGPTEntries(g_sGPTHeader.FirstGPTEntry); FreeGPTEntries(g_sBackupGPTHeader.FirstGPTEntry); CloseDisk(g_hDisk); return EXIT_SUCCESS; }
// ***************************************************************************
//
// Routine description : This routine is used to read GPT Header and entries
//
// Arguments:
// [in] hDisk : Drive to be scanned
// [in] pGPTHeader : GPT Header to be scanned.
// [in] nHeaderSector : Sector to be read.
//
// Return Value : UINT32
//
// ***************************************************************************
UINT32 GetGPTHeaderAndEntries(HANDLE hDisk, GPT_HEADER *pGPTHeader, UINT64 nHeaderSector) { UCHAR *lpSectorBuffer; DWORD nBytesReturned; DWORD ti, tj; PGPT_ENTRY pGPTEntry, pPrevGPTEntry; UINT32 nTempCRC, nTempCount; char sStr[200]; TCHAR szString[256];
if (!hDisk || INVALID_HANDLE_VALUE == hDisk || !pGPTHeader) { return EXIT_FAILURE; }
//
// Allocate memory for sector
//
lpSectorBuffer = (UCHAR *) GlobalAlloc(GPTR, g_nBytesPerSector); if (!lpSectorBuffer) { return EXIT_FAILURE; }
nBytesReturned = ReadBlock(g_hDisk, nHeaderSector, 1, lpSectorBuffer); if (nBytesReturned != g_nBytesPerSector) { _stprintf(szString,GetResString(IDS_ERROR_READ), nHeaderSector); DISPLAY_MESSAGE(stderr,szString);
if(lpSectorBuffer) { GlobalFree(lpSectorBuffer); } return EXIT_FAILURE; } //
// Unpack the values
//
ti = 0;
// dest,source , sizeof destination datatype.
memcpy((void *)&pGPTHeader->Signature, (void *) lpSectorBuffer, sizeof(pGPTHeader->Signature) );
ti += sizeof(pGPTHeader->Signature); memcpy((void *)&pGPTHeader->Revision, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->Revision)); ti += sizeof(pGPTHeader->Revision); memcpy((void *)&pGPTHeader->HeaderSize, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->HeaderSize)); ti += sizeof(pGPTHeader->HeaderSize); memcpy((void *)&pGPTHeader->HeaderCRC32, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->HeaderCRC32)); ti += sizeof(pGPTHeader->HeaderCRC32); memcpy((void *)&pGPTHeader->Reserved0, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->Reserved0)); ti += sizeof(pGPTHeader->Reserved0); memcpy((void *)&pGPTHeader->MyLBA, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->MyLBA)); ti += sizeof(pGPTHeader->MyLBA); memcpy((void *)&pGPTHeader->AlternateLBA, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->AlternateLBA)); ti += sizeof(pGPTHeader->AlternateLBA); memcpy((void *)&pGPTHeader->FirstUsableLBA, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->FirstUsableLBA)); ti += sizeof(pGPTHeader->FirstUsableLBA); memcpy((void *)&pGPTHeader->LastUsableLBA, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->LastUsableLBA)); ti += sizeof(pGPTHeader->LastUsableLBA); memcpy((void *)&pGPTHeader->DiskGUID, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->DiskGUID)); ti += sizeof(pGPTHeader->DiskGUID); memcpy((void *)&pGPTHeader->PartitionEntryLBA, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->PartitionEntryLBA)); ti += sizeof(pGPTHeader->PartitionEntryLBA); memcpy((void *)&pGPTHeader->NumberOfPartitionEntries, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->NumberOfPartitionEntries)); ti += sizeof(pGPTHeader->NumberOfPartitionEntries); memcpy((void *)&pGPTHeader->SizeOfPartitionEntry, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->SizeOfPartitionEntry)); ti += sizeof(pGPTHeader->SizeOfPartitionEntry); memcpy((void *)&pGPTHeader->PartitionEntryArrayCRC32, (void *) (lpSectorBuffer+ti), sizeof(pGPTHeader->PartitionEntryArrayCRC32)); ti += sizeof(pGPTHeader->PartitionEntryArrayCRC32);
//
// Compute HeaderCRC32
//
nTempCRC = pGPTHeader->HeaderCRC32; pGPTHeader->HeaderCRC32 = 0; if (pGPTHeader->HeaderSize > sizeof(GPT_HEADER)) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_GPT)); if(lpSectorBuffer) { GlobalFree(lpSectorBuffer); } return EXIT_FAILURE; } pGPTHeader->ComputedHeaderCRC32 = ComputeCRC32((PUCHAR) pGPTHeader, pGPTHeader->HeaderSize); pGPTHeader->HeaderCRC32 = nTempCRC;
//
// Free this memory
//
GlobalFree(lpSectorBuffer);
//
// Preliminary checks
//
if (!pGPTHeader->SizeOfPartitionEntry || !pGPTHeader->NumberOfPartitionEntries) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_GPT_HEADER)); return EXIT_FAILURE; }
//
// Allocate memory for GPT Entries
//
nTempCount = (pGPTHeader->SizeOfPartitionEntry * pGPTHeader->NumberOfPartitionEntries) / g_nBytesPerSector; if ((pGPTHeader->SizeOfPartitionEntry * pGPTHeader->NumberOfPartitionEntries) % g_nBytesPerSector) { nTempCount++; }
if (!nTempCount) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_GPT_HEADER)); return EXIT_FAILURE; }
lpSectorBuffer = (UCHAR *) GlobalAlloc(GPTR, nTempCount * g_nBytesPerSector); if (!lpSectorBuffer) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_MEM_GPT)); return EXIT_FAILURE; }
//
// Build partition entries info based on g_sGPTHeader
//
nBytesReturned = ReadBlock(g_hDisk, pGPTHeader->PartitionEntryLBA, nTempCount, lpSectorBuffer);
if (nBytesReturned != nTempCount * g_nBytesPerSector) { if(lpSectorBuffer) { GlobalFree(lpSectorBuffer); } DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_READ_GPT_ENTRIES)); return EXIT_FAILURE; }
ti = 0; while (lpSectorBuffer[ti]) { //
// Create a linked list of GPT_ENTRY
//
pGPTEntry = (PGPT_ENTRY) GlobalAlloc(GPTR, sizeof(GPT_ENTRY)); if (ti == 0) { pGPTHeader->FirstGPTEntry = pGPTEntry; } else { pPrevGPTEntry->NextGPTEntry = pGPTEntry; } pPrevGPTEntry = pGPTEntry; pGPTEntry->NextGPTEntry = NULL; //
// Get the values
//
tj = 0; memcpy((void *) &pGPTEntry->PartitionTypeGUID, (void *) (lpSectorBuffer + ti) , sizeof(pGPTEntry->PartitionTypeGUID)); tj = tj + sizeof(pGPTEntry->PartitionTypeGUID); memcpy((void *) &pGPTEntry->UniquePartitionGUID, (void *) (lpSectorBuffer + ti + tj) , sizeof(pGPTEntry->UniquePartitionGUID)); tj = tj + sizeof(pGPTEntry->UniquePartitionGUID); memcpy((void *) &pGPTEntry->StartingLBA, (void *) (lpSectorBuffer + ti + tj) , sizeof(pGPTEntry->StartingLBA)); tj = tj + sizeof(pGPTEntry->StartingLBA); memcpy((void *) &pGPTEntry->EndingLBA, (void *) (lpSectorBuffer + ti + tj) , sizeof(pGPTEntry->EndingLBA)); tj = tj + sizeof(pGPTEntry->EndingLBA); memcpy((void *) &pGPTEntry->Attributes, (void *) (lpSectorBuffer + ti + tj) , sizeof(pGPTEntry->Attributes)); tj = tj + sizeof(pGPTEntry->Attributes); memcpy((void *) &pGPTEntry->PartitionName, (void *) (lpSectorBuffer + ti + tj) , sizeof(pGPTEntry->PartitionName)); tj = tj + sizeof(pGPTEntry->PartitionName);
ti += pGPTHeader->SizeOfPartitionEntry; if (ti >= pGPTHeader->NumberOfPartitionEntries * pGPTHeader->SizeOfPartitionEntry) { //
// Just be safe
//
break; } } //
// Compute CRC32 for backup GPT Entries
//
pGPTHeader->ComputedPartitionEntryArrayCRC32 = ComputeCRC32(lpSectorBuffer, pGPTHeader->SizeOfPartitionEntry * pGPTHeader->NumberOfPartitionEntries);
//
// Used partition entries
//
pGPTHeader->UsedPartitionEntries = ti / pGPTHeader->SizeOfPartitionEntry;
if(lpSectorBuffer) { GlobalFree(lpSectorBuffer); } return EXIT_SUCCESS; }
// ***************************************************************************
//
// Routine description : This routine is used to dump GPT Header
//
// Arguments:
// [in] pGPTHeader : GPT Header to be dumped.
//
//
// Return Value : UINT32
//
// ***************************************************************************
UINT32 DumpGPTHeader(PGPT_HEADER pGPTHeader) { TCHAR *pGUIDStr; TCHAR szString[256] = NULL_STRING ;
if ( !pGPTHeader ) { return EXIT_FAILURE; }
//
// Disk GUID
//
_tcscpy(szString,GetResString(IDS_PARTITION1)); if (( UuidToString((UUID *)&pGPTHeader->DiskGUID, &pGUIDStr) != RPC_S_OK) || ( !pGUIDStr ) ) { return EXIT_FAILURE; } _tcscat(szString,(PTCHAR)pGUIDStr); _tcscat(szString,GetResString(IDS_PARTITION2)); DISPLAY_MESSAGE(stdout,szString);
if(pGUIDStr) { RpcStringFree(&pGUIDStr); }
return EXIT_SUCCESS; }
// ***************************************************************************
//
// Routine description : This routine is used to dump GPT Partition entries.
//
// Arguments:
// [in] pGPTEntryHead : GPT Header to be dumped.
//
//
// Return Value : UINT32
//
// ***************************************************************************
UINT32 DumpPartitionEntries(PGPT_ENTRY pGPTEntryHead) { PTCHAR pGUIDStr; PGPT_ENTRY pEntryStep; char sStr[100]; char *sStr2;
TCHAR szString[256] ; //= NULL_STRING ;
if (!pGPTEntryHead) { return EXIT_FAILURE; }
sStr2 = (char *) GlobalAlloc(GPTR, 1024); if (!sStr2) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_DUMP_GPT_ENTRIES)); return EXIT_FAILURE; }
pEntryStep = pGPTEntryHead; if (!pEntryStep) { DISPLAY_MESSAGE(stdout,GetResString(IDS_INFO_DUMP_GPT_ENTRIES)); if(sStr2) { GlobalFree(sStr2); } return EXIT_FAILURE; } while (pEntryStep) {
_tcscpy(szString,GetResString(IDS_PARTITION1)); if( UuidToString((UUID *)&pEntryStep->UniquePartitionGUID, &pGUIDStr) != RPC_S_OK ) { if(sStr2) { GlobalFree(sStr2); } return EXIT_FAILURE;
} _tcscat(szString,(PTCHAR)pGUIDStr); _tcscat(szString,GetResString(IDS_PARTITION2));
RpcStringFree(&pGUIDStr); DISPLAY_MESSAGE(stdout,szString);
_tcscpy(szString,GetResString(IDS_PARTITION3)); if( UuidToString((UUID *)&pEntryStep->PartitionTypeGUID, &pGUIDStr)!= RPC_S_OK ) { if(sStr2) { GlobalFree(sStr2); } return EXIT_FAILURE;
} _tcscat(szString,(PTCHAR)pGUIDStr); _tcscat(szString,GetResString(IDS_PARTITION2)); RpcStringFree(&pGUIDStr); DISPLAY_MESSAGE(stdout,szString); _stprintf(szString ,GetResString(IDS_START_LBA), pEntryStep->StartingLBA); _tcscpy(szString,GetResString(IDS_PARTITION4)); _tcscat(szString, pEntryStep->PartitionName); _tcscat(szString,_T("\r\n")); DISPLAY_MESSAGE(stdout,szString);
pEntryStep = pEntryStep->NextGPTEntry; } if(sStr2) { GlobalFree(sStr2); } return EXIT_SUCCESS; }
// ***************************************************************************
//
// Routine description : This routine is used to compute CRC32
//
// Arguments:
// [in] pBuffer : buffer.
// [in] nLength : Length .
//
// Return Value : UINT32
//
// ***************************************************************************
UINT32 ComputeCRC32(UCHAR *pBuffer, UINT32 nLength) { //
// Code taken from RtlComputeCRC32, but the parameters have been modified to force PartitionCrc to 0
//
UINT32 Crc; UINT32 ti; UINT32 PartialCrc;
//
// Compute the CRC32 checksum.
//
PartialCrc = 0;
Crc = PartialCrc ^ 0xffffffffL; for (ti = 0; ti < nLength; ti++) { Crc = Crc32Table [(Crc ^ pBuffer[ti]) & 0xff] ^ (Crc >> 8); }
return (Crc ^ 0xffffffffL); }
// ***************************************************************************
//
// Routine description : This routine is free GPT entries
//
// Arguments:
// [in] pGPTEntryHead : GPT Header to be freed..
// [in] nLength : Length .
//
// Return Value : UINT32
//
// ***************************************************************************
void FreeGPTEntries(PGPT_ENTRY pGPTEntryHead) { PGPT_ENTRY pFreeGPTEntry;
while (pGPTEntryHead) { pFreeGPTEntry = pGPTEntryHead; pGPTEntryHead = pGPTEntryHead->NextGPTEntry; GlobalFree(pFreeGPTEntry); } }
// ***************************************************************************
//
// Routine description : This routine is determine Drive Geometry
//
// Arguments:
// [in] hDisk : disk whose geometry has to be found.
// [in] pDiskGeometry : structure containing the drive details. .
//
// Return Value : UINT32
//
// ***************************************************************************
UINT32 GetDriveGeometry(HANDLE hDisk, PDISK_GEOMETRY_EX pDiskGeometry) { UINT32 nBytesReturned; //
// Get drive goemetry
//
if (!DeviceIoControl(hDisk, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, pDiskGeometry, sizeof(DISK_GEOMETRY_EX), (PULONG) &nBytesReturned, NULL)) { DISPLAY_MESSAGE(stderr,GetResString(IDS_ERROR_READ_GEOMETRY)); return EXIT_FAILURE; } g_nBytesPerSector = pDiskGeometry->Geometry.BytesPerSector; return EXIT_SUCCESS; }
// ***************************************************************************
//
// Routine description : This routine is display the results.
//
// Arguments:
// [in] pString : pointer to the string to be displayed.
//
//
// Return Value : VOID
//
// ***************************************************************************
void AddReportSection(PTCHAR pString) { TCHAR StringLine[100];
int ti, tj;
AddReport1(pString); tj = _tcslen(pString); //
// Make a line like "========" about the size of the string to be displayed as title
//
for (ti = 0; (ti < tj) && (ti < 97); ti++) { StringLine[ti] = _T('-'); } StringLine[ti] = '\r'; StringLine[ti+1] = '\n'; StringLine[ti+2] = 0; AddReport1(StringLine); }
// ***************************************************************************
//
// Routine description : This routine is display the results.
//
// Arguments:
// [in] pString : string to be displayed.
//
//
// Return Value : UINT32
//
// ***************************************************************************
void AddReport1(PTCHAR pString) { DISPLAY_MESSAGE(stdout,pString); }
// ***************************************************************************
//
// Routine Description : Frames the Boot File path.
// Arguments :
// [ in ] szComputerName : System name
//
// Return Type : DWORD
// ***************************************************************************
DWORD GetBootFilePath(LPTSTR szComputerName,LPTSTR szBootPath) { HKEY hKey1 = 0;
HKEY hRemoteKey = 0; TCHAR szCurrentPath[MAX_STRING_LENGTH + 1] = NULL_STRING; TCHAR szPath[MAX_STRING_LENGTH + 1] = SUBKEY1 ;
DWORD dwValueSize = MAX_STRING_LENGTH + 1; DWORD dwRetCode = ERROR_SUCCESS; DWORD dwError = 0; TCHAR szTmpCompName[MAX_STRING_LENGTH+1] = NULL_STRING; TCHAR szTemp[MAX_RES_STRING+1] = NULL_STRING ; DWORD len = lstrlen(szTemp); TCHAR szVal[MAX_RES_STRING+1] = NULL_STRING ; DWORD dwLength = MAX_STRING_LENGTH ; LPTSTR szReturnValue = NULL ; DWORD dwCode = 0 ; LPTSTR szOsLoaderPath = NULL;
szReturnValue = ( LPTSTR ) malloc( dwLength*sizeof( TCHAR ) ); szOsLoaderPath = ( LPTSTR ) malloc( dwLength*sizeof( TCHAR ) ); if((szReturnValue == NULL) || (szOsLoaderPath == NULL ) ) { SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ; }
if(lstrlen(szComputerName)!= 0 ) { lstrcpy(szTmpCompName,TOKEN_BACKSLASH4); lstrcat(szTmpCompName,szComputerName); } else { lstrcpy(szTmpCompName,szComputerName); } // Get Remote computer local machine key
dwError = RegConnectRegistry(szTmpCompName,HKEY_LOCAL_MACHINE,&hRemoteKey); if (dwError == ERROR_SUCCESS) { dwError = RegOpenKeyEx(hRemoteKey,szPath,0,KEY_READ,&hKey1); if (dwError == ERROR_SUCCESS) { dwRetCode = RegQueryValueEx(hKey1, IDENTIFIER_VALUE2, NULL, NULL,(LPBYTE) szReturnValue, &dwValueSize); if (dwRetCode == ERROR_MORE_DATA) { dwValueSize += 1024 ; szReturnValue = ( LPTSTR ) realloc( szReturnValue , dwValueSize * sizeof( TCHAR ) ); if(szReturnValue == NULL) { SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ; } dwRetCode = RegQueryValueEx(hKey1, IDENTIFIER_VALUE2, NULL, NULL,(LPBYTE) szReturnValue, &dwValueSize);
} if(dwRetCode != ERROR_SUCCESS) { RegCloseKey(hKey1); RegCloseKey(hRemoteKey); SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ; }
dwRetCode = RegQueryValueEx(hKey1, IDENTIFIER_VALUE3, NULL, NULL,(LPBYTE) szOsLoaderPath, &dwValueSize); if (dwRetCode == ERROR_MORE_DATA) { dwValueSize += 1024 ; szOsLoaderPath = ( LPTSTR ) realloc( szOsLoaderPath, dwValueSize * sizeof( TCHAR ) ); if(szOsLoaderPath == NULL) { SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ; } dwRetCode = RegQueryValueEx(hKey1, IDENTIFIER_VALUE3, NULL, NULL,(LPBYTE) szOsLoaderPath, &dwValueSize);
} if(dwRetCode != ERROR_SUCCESS) { RegCloseKey(hKey1); RegCloseKey(hRemoteKey); SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ; }
} else { RegCloseKey(hRemoteKey); SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ;
} _tcscat(szReturnValue,szOsLoaderPath); lstrcpy(szBootPath,szReturnValue); RegCloseKey(hKey1); } else { RegCloseKey(hRemoteKey); SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return ERROR_RETREIVE_REGISTRY ; } RegCloseKey(hRemoteKey); SAFEFREE(szOsLoaderPath); SAFEFREE(szReturnValue); return dwCode ;
}//GetBootFilePath
// ***************************************************************************
//
// Routine Description : Retreives the ARC signature path.
// Arguments :
// [ in ] szComputerName : System name
// [ out ] szFinalPath : Final OutPut string.
//
// Return Type : DWORD
// ***************************************************************************
BOOL GetARCSignaturePath(LPTSTR szString,LPTSTR szFinalPath) { TCHAR szSystemPath[256] = NULL_STRING ; UINT RetVal = 0; DWORD dwSize = 256; PTCHAR pszTok = NULL ;
RetVal = GetWindowsDirectory(szSystemPath,256);
//concatenate some charater which we are sure will not occur
//in the string.
_tcscat(szSystemPath,_T("*")); pszTok = _tcstok(szSystemPath,TOKEN_BACKSLASH2); if(pszTok == NULL) { return FALSE ; }
pszTok = _tcstok(NULL,_T("*")); if(pszTok == NULL) { return FALSE ; }
lstrcpy(szFinalPath,szString);//szString
lstrcat(szFinalPath,_T("\\")); lstrcat(szFinalPath,pszTok); return TRUE ; }
|