|
|
/*++
Copyright (c) 1997 Microsoft Corporation All rights reserved
Module Name:
acpisetd.c
Abstract:
This module detects an ACPI system. It is included into setup so that setup can figure out which HAL to load
Author:
Jake Oshins (jakeo) - Feb. 7, 1997.
Environment:
Textmode setup.
Revision History:
--*/ #include "bootx86.h"
#include "stdlib.h"
#include "string.h"
VOID BlPrint( PCHAR cp, ... );
#ifdef DEBUG
#undef DEBUG_PRINT
#define DEBUG_PRINT BlPrint
#else
#define DEBUG_PRINT
#endif
typedef struct _ACPI_BIOS_INSTALLATION_CHECK { UCHAR Signature[8]; // "RSD PTR" (ascii)
UCHAR Checksum; UCHAR OemId[6]; // An OEM-supplied string
UCHAR reserved; // must be 0
ULONG RsdtAddress; // 32-bit physical address of RSDT
} ACPI_BIOS_INSTALLATION_CHECK, *PACPI_BIOS_INSTALLATION_CHECK;
#include "acpitabl.h"
PRSDP BlRsdp; PRSDT BlRsdt; PXSDT BlXsdt; BOOLEAN BlLegacyFree = FALSE;
PDESCRIPTION_HEADER BlFindACPITable( IN PCHAR TableName, IN ULONG TableLength );
// from boot\detect\i386\acpibios.h
//
// Acpi BIOS Installation check
//
#define ACPI_BIOS_START 0xE0000
#define ACPI_BIOS_END 0xFFFFF
#define ACPI_BIOS_HEADER_INCREMENT 16
VOID BlFindRsdp ( VOID ) #define EBDA_SEGMENT_PTR 0x40e
{ ULONG romAddr, romEnd; PACPI_BIOS_INSTALLATION_CHECK header; UCHAR sum, node = 0; USHORT i, nodeSize; ULONG EbdaSegmentPtr; ULONG EbdaPhysicalAdd = 0; PUCHAR EbdaVirtualAdd = 0; PHYSICAL_ADDRESS paddr; enum PASS { PASS1 = 0, PASS2, MAX_PASSES } pass; USHORT count = 0;
//
// Search on 16 byte boundaries for the signature of the
// Root System Description Table structure.
//
for (pass = PASS1; pass < MAX_PASSES; pass++) {
if (pass == PASS1) {
//
// On the first pass, we search the first 1K of the
// Extended BIOS data area. The EBDA segment address
// is available at physical address 40:0E.
//
paddr.QuadPart = 0; EbdaSegmentPtr = (ULONG) MmMapIoSpace( paddr, PAGE_SIZE, TRUE);
EbdaSegmentPtr += EBDA_SEGMENT_PTR; EbdaPhysicalAdd = *((PUSHORT)EbdaSegmentPtr); EbdaPhysicalAdd = EbdaPhysicalAdd << 4;
if (EbdaPhysicalAdd) { paddr.HighPart = 0; paddr.LowPart = EbdaPhysicalAdd; EbdaVirtualAdd = MmMapIoSpace( paddr, 2 * PAGE_SIZE, TRUE); }
if (!EbdaVirtualAdd) { continue; }
romAddr = (ULONG)EbdaVirtualAdd; romEnd = romAddr + 1024;
} else { //
// On the second pass, we search (physical) memory 0xE0000
// to 0xF0000.
paddr.LowPart = ACPI_BIOS_START; romAddr = (ULONG)MmMapIoSpace(paddr, ACPI_BIOS_END - ACPI_BIOS_START, TRUE);
romEnd = romAddr + (ACPI_BIOS_END - ACPI_BIOS_START); }
while (romAddr < romEnd) {
header = (PACPI_BIOS_INSTALLATION_CHECK)romAddr;
//
// Signature to match is the string "RSD PTR ".
//
if (header->Signature[0] == 'R' && header->Signature[1] == 'S' && header->Signature[2] == 'D' && header->Signature[3] == ' ' && header->Signature[4] == 'P' && header->Signature[5] == 'T' && header->Signature[6] == 'R' && header->Signature[7] == ' ' ) {
sum = 0; for (i = 0; i < sizeof(ACPI_BIOS_INSTALLATION_CHECK); i++) { sum += ((PUCHAR)romAddr)[i]; } if (sum == 0) { pass = MAX_PASSES; // leave 'for' loop
break; // leave 'while' loop
} }
romAddr += ACPI_BIOS_HEADER_INCREMENT; } }
if (romAddr >= romEnd) { BlRsdp = NULL; BlRsdt = NULL; return; }
BlRsdp = (PRSDP)romAddr; paddr.LowPart = BlRsdp->RsdtAddress; BlRsdt = MmMapIoSpace(paddr, sizeof(RSDT), TRUE); BlRsdt = MmMapIoSpace(paddr, BlRsdt->Header.Length, TRUE);
#ifdef ACPI_20_COMPLIANT
if (BlRsdp->Revision > 1) {
//
// ACPI 2.0 BIOS
//
BlXsdt = MmMapIoSpace(paddr, sizeof(XSDT), TRUE); BlXsdt = MmMapIoSpace(paddr, BlXsdt->Header.Length, TRUE); } #endif
return; }
BOOLEAN BlDetectLegacyFreeBios( VOID ) { PFADT fadt;
if (BlLegacyFree) { return TRUE; }
BlFindRsdp();
if (BlRsdt) {
fadt = (PFADT)BlFindACPITable("FACP", sizeof(FADT));
if (fadt == NULL) { return FALSE; }
if ((fadt->Header.Revision < 2) || (fadt->Header.Length <= 116)) {
//
// The BIOS is earlier than the legacy-free
// additions.
//
return FALSE; }
if (!(fadt->boot_arch & I8042)) { BlLegacyFree = TRUE; return TRUE; } }
return FALSE; }
PDESCRIPTION_HEADER BlFindACPITable( IN PCHAR TableName, IN ULONG TableLength ) /*++
Routine Description:
Given a table name, finds that table in the ACPI BIOS
Arguments:
TableName - Supplies the table name
TableLength - Supplies the length of the table to map
Return Value:
Pointer to the table if found
NULL if the table is not found
--*/
{ ULONG Signature; PFADT Fadt; PDESCRIPTION_HEADER Header; ULONG TableCount; ULONG i; PHYSICAL_ADDRESS paddr = {0};
Signature = *((ULONG UNALIGNED *)TableName); if (Signature == RSDT_SIGNATURE) { return(&BlRsdt->Header); } else if (Signature == XSDT_SIGNATURE) { return(&BlXsdt->Header); } else if (Signature == DSDT_SIGNATURE) { Fadt = (PFADT)BlFindACPITable("FACP", sizeof(PFADT)); if (Fadt == NULL) { return(NULL); } if (BlXsdt) { paddr = Fadt->x_dsdt; } else { #if defined(_X86_)
paddr.LowPart = Fadt->dsdt; #else
paddr.QuadPart = Fadt->dsdt; #endif
} Header = MmMapIoSpace(paddr, TableLength, TRUE); return(Header); } else {
//
// Make sure...
//
if( !BlRsdt ) { BlFindRsdp(); }
if( BlRsdt ) {
TableCount = BlXsdt ? NumTableEntriesFromXSDTPointer(BlXsdt) : NumTableEntriesFromRSDTPointer(BlRsdt);
//
// Sanity check.
//
if( TableCount > 0x100 ) { return(NULL); }
for (i=0;i<TableCount;i++) {
if (BlXsdt) {
paddr = BlXsdt->Tables[i];
} else {
#if defined(_X86_)
paddr.HighPart = 0; paddr.LowPart = BlRsdt->Tables[i]; #else
paddr.QuadPart = BlRsdt->Tables[i]; #endif
}
Header = MmMapIoSpace(paddr, sizeof(DESCRIPTION_HEADER), TRUE); if (Header == NULL) { return(NULL); } if (Header->Signature == Signature) { //
// if we need to map more than just the DESCRIPTION_HEADER, do that before
// returning. Check to see if the end of the table lies past the page
// boundary the header lies on. If so, we will have to map it.
//
if ( ((paddr.LowPart + TableLength) & ~(PAGE_SIZE - 1)) > ((paddr.LowPart + sizeof(DESCRIPTION_HEADER)) & ~(PAGE_SIZE - 1)) ) { Header = MmMapIoSpace(paddr, TableLength, TRUE); } return(Header); } } } }
return(NULL); }
|