|
|
/*++
Copyright (c) 2001 Microsoft Corporation
Module Name:
ramdisk.c
Abstract:
Provides the ARC emulation routines for I/O to a RAM disk device.
Author:
Chuck Lenzmeier (chuckl) 29-Apr-2001
Revision History:
Bassam Tabbara (bassamt) 06-Aug-2001 Added Ramdisk Building Support
--*/
#include "bootlib.h"
#include "arccodes.h"
#include "stdlib.h"
#include "string.h"
#if defined(_X86_)
#include "bootx86.h"
#endif
#if defined(_IA64_)
#include "bootia64.h"
#endif
#include "ramdisk.h"
#include "netfs.h"
#if defined(POST_XPSP)
#include "bmbuild.h"
#endif
#include "ntexapi.h"
#include "haldtect.h"
#include "pci.h"
#include "pbios.h"
#include "bldr.h"
#include <sdistructs.h>
//
// Debug helpers
//
#define ERR 0
#define INFO 1
#define VERBOSE 2
#define PAINFUL 3
#define DBGPRINT(lvl, _fmt_) if (RamdiskDebug && lvl <= RamdiskDebugLevel) DbgPrint _fmt_
#define DBGLVL(x) (RamdiskDebug && RamdiskDebugLevel == x)
BOOLEAN RamdiskDebug = TRUE; BOOLEAN RamdiskDebugLevel = INFO; BOOLEAN RamdiskBreak = FALSE;
//
// Macros
//
#define BL_INVALID_FILE_ID (ULONG)-1
#define TEST_BIT(value, b) (((value) & (b)) == (b))
#define PCI_ITERATOR_IS_VALID(i) (i & 0x8000)
#define PCI_ITERATOR_TO_BUS(i) (UCHAR)(((i) >> 8) & 0x7f)
#define PCI_ITERATOR_TO_DEVICE(i) (UCHAR)(((i) >> 3) & 0x1f)
#define PCI_ITERATOR_TO_FUNCTION(i) (UCHAR)(((i) >> 0) & 0x7)
#define PCI_TO_ITERATOR(b,d,f) ((USHORT)(0x8000 | ((b)<<8) | ((d)<<3) | (f)))
//
// PCI Device struct as persisted in registry by ntdetect.com
//
#include <pshpack1.h>
typedef struct _PCIDEVICE { USHORT BusDevFunc; PCI_COMMON_CONFIG Config; } PCIDEVICE, *PPCIDEVICE; #include <poppack.h>
//
// Externs
//
extern PVOID InfFile; extern BOOLEAN GraphicsMode; extern BOOLEAN BlShowProgressBar; extern BOOLEAN BlOutputDots; extern BOOLEAN DisplayLogoOnBoot;
//
// Global Ramdisk options.
// NOTE: All Ip addresses and ports are in network byte order.
//
BOOLEAN RamdiskBuild = FALSE;
//
// Used if downloading a ramdisk directly. RamdiskBuild = FALSE
//
PCHAR RamdiskPath = NULL; ULONG RamdiskTFTPAddr = 0; // network byte order
ULONG RamdiskMTFTPAddr = 0; // network byte order
USHORT RamdiskMTFTPCPort = 0; // network byte order
USHORT RamdiskMTFTPSPort = 0; // network byte order
USHORT RamdiskMTFTPTimeout = 5; USHORT RamdiskMTFTPDelay = 5; LONGLONG RamdiskMTFTPFileSize = 0; LONGLONG RamdiskMTFTPChunkSize = 0;
//
// Used if Building a ramdisk. RamdiskBuild = TRUE
//
#define RAMDISK_MAX_SERVERS 10
#define RAMDISK_DISCOVERY_MULTICAST 0x00000001
#define RAMDISK_DISCOVERY_BROADCAST 0x00000002
#define RAMDISK_DISCOVERY_UNICAST 0x00000004
#define RAMDISK_DISCOVERY_RESTRICT 0x00000008
GUID RamdiskGuid = {0,0,0,0}; ULONG RamdiskDiscovery = 0; ULONG RamdiskMCastAddr = 0; // network byte order
ULONG RamdiskServerCount = 0; ULONG RamdiskServers[RAMDISK_MAX_SERVERS]; // network byte order
USHORT RamdiskTimeout = 15; USHORT RamdiskRetry = 5;
//
// Globals
//
BOOLEAN RamdiskActive = FALSE; ULONG RamdiskBasePage = 0; LONGLONG RamdiskFileSize = 0; ULONG RamdiskFileSizeInPages = 0; ULONG RamdiskImageOffset = 0; LONGLONG RamdiskImageLength = 0; ULONG_PTR SdiAddress = 0;
ULONG RamdiskMaxPacketSize = 0; ULONG RamdiskXID = 0;
BL_DEVICE_ENTRY_TABLE RamdiskEntryTable = { (PARC_CLOSE_ROUTINE)RamdiskClose, (PARC_MOUNT_ROUTINE)RamdiskMount, (PARC_OPEN_ROUTINE)RamdiskOpen, (PARC_READ_ROUTINE)RamdiskRead, (PARC_READ_STATUS_ROUTINE)RamdiskReadStatus, (PARC_SEEK_ROUTINE)RamdiskSeek, (PARC_WRITE_ROUTINE)RamdiskWrite, (PARC_GET_FILE_INFO_ROUTINE)RamdiskGetFileInfo, (PARC_SET_FILE_INFO_ROUTINE)RamdiskSetFileInfo, (PRENAME_ROUTINE)RamdiskRename, (PARC_GET_DIRECTORY_ENTRY_ROUTINE)RamdiskGetDirectoryEntry, (PBOOTFS_INFO)NULL };
//
// forward decls
//
PVOID MapRamdisk ( IN LONGLONG Offset, OUT PLONGLONG AvailableLength );
ARC_STATUS RamdiskParseOptions ( IN PCHAR LoadOptions );
ARC_STATUS RamdiskInitializeFromPath( );
ARC_STATUS RamdiskBuildAndInitialize( );
VOID RamdiskFatalError( IN ULONG Message1, IN ULONG Message2 );
ARC_STATUS RamdiskInitialize( IN PCHAR LoadOptions, IN BOOLEAN SdiBoot ) /*++
Routine Description:
This function will initiate the boot from a RAMDISK. Depending on the options passed in the the boot will either happen from a static RAMDISK (using the /RDPATH option) or from a dynamic RAMDISK (using the /RDBUILD option).
Arguments:
LoadOptions - boot.ini parameters
SdiBoot - indicates whether this is an SDI boot. If it is, LoadOptions is ignored. The global variable SdiAddress gives the pointer to the SDI image.
Return Value:
none
--*/ { ARC_STATUS status; BOOLEAN OldOutputDots = FALSE; BOOLEAN OldShowProgressBar = FALSE; ULONG oldBase; ULONG oldLimit;
//
// Debug Break on entry
//
if (RamdiskBreak) { DbgBreakPoint(); }
//
// If the ramdisk has already been initialized, just return. We know the
// ramdisk has been initialized if SdiBoot is FALSE (implying that this is
// NOT the call from BlStartup(), but the call from BlOsLoader()) and
// RamdiskBasePage is not NULL (implying that we were previously called
// from BlStartup() to initialize the SDI boot.
//
if ( !SdiBoot && (RamdiskBasePage != 0) ) {
//
// Now that ntdetect has been run, we can free up the pages that
// we allocated earlier (see below).
//
BlFreeDescriptor( 0x10 );
return ESUCCESS; }
//
// If this is an SDI boot, then we must have a pointer to the SDI image.
//
if ( SdiBoot && (SdiAddress == 0) ) {
RamdiskFatalError( RAMDISK_GENERAL_FAILURE, RAMDISK_INVALID_OPTIONS ); return EINVAL; }
//
// If this is not an SDI boot, parse all ramdisk options (if any).
//
if ( !SdiBoot ) { status = RamdiskParseOptions ( LoadOptions ); if (status != ESUCCESS) { RamdiskFatalError( RAMDISK_GENERAL_FAILURE, RAMDISK_INVALID_OPTIONS ); return status; } }
#if defined(_IA64_)
// Ramdisk boot path not supported on IA64 as of yet
if ( RamdiskBuild ) { return ESUCCESS; } #endif
//
// Show the progress bar in text mode
//
if ( RamdiskBuild || RamdiskPath ) {
// If booting from a ramdisk, graphics mode is off permanently
DisplayLogoOnBoot = FALSE; GraphicsMode = FALSE;
OldShowProgressBar = BlShowProgressBar; BlShowProgressBar = TRUE;
OldOutputDots = BlOutputDots; BlOutputDots = TRUE; }
#if defined(POST_XPSP)
#if defined(i386)
if ( RamdiskBuild ) {
//
// We will need to build the ramdisk first
//
ASSERT( RamdiskPath == NULL );
status = RamdiskBuildAndInitialize(); if (status != ESUCCESS) { RamdiskFatalError( RAMDISK_GENERAL_FAILURE, RAMDISK_BUILD_FAILURE ); return status; } }
#endif
#endif
if ( RamdiskPath ) {
//
// Initialize the Ramdisk from the RamdiskPath
//
status = RamdiskInitializeFromPath(); if (status != ESUCCESS) { RamdiskFatalError( RAMDISK_GENERAL_FAILURE, RAMDISK_BOOT_FAILURE ); return status; }
} else if ( SdiBoot ) {
//
// This is an SDI boot. Find the ramdisk image within the SDI image
// and allocate the pages in which the ramdisk image resides.
//
ULONG basePage; ULONG pageCount; PSDI_HEADER sdiHeader; ULONG i; ULONG_PTR ramdiskAddress;
//
// Temporarily allocate the pages that will be occupied by ntdetect
// while it runs. BlDetectHardware() just assumes that these pages
// are free for loading ntdetect. But we're going to allocate and map
// the ramdisk image, which will result in the allocation of many
// page table pages, some of which might end up in the place where
// ntdetect will be loaded. So we allocate the ntdetect range here,
// then free it later (see above).
//
basePage = 0x10; pageCount = 0x10;
status = BlAllocateAlignedDescriptor( LoaderFirmwareTemporary, basePage, pageCount, 0, &basePage );
//
// Allocate the page that contains the SDI header. This will cause
// it to be mapped, which will allow us to read the header to find
// the ramdisk image.
//
oldBase = BlUsableBase; oldLimit = BlUsableLimit; BlUsableBase = BL_XIPROM_RANGE_LOW; BlUsableLimit = BL_XIPROM_RANGE_HIGH; basePage = (ULONG)(SdiAddress >> PAGE_SHIFT); pageCount = ADDRESS_AND_SIZE_TO_SPAN_PAGES( SdiAddress, sizeof(SDI_HEADER) );
status = BlAllocateAlignedDescriptor( LoaderFirmwareTemporary, basePage, pageCount, 0, &basePage );
BlUsableBase = oldBase; BlUsableLimit = oldLimit;
//
// Find the ramdisk image by looking through the TOC in the SDI header.
//
sdiHeader = (PSDI_HEADER)SdiAddress;
for ( i = 0; i < SDI_TOCMAXENTRIES; i++ ) { if ( sdiHeader->ToC[i].dwType == SDI_BLOBTYPE_PART ) { break; } }
if ( i >= SDI_TOCMAXENTRIES ) { RamdiskFatalError( RAMDISK_GENERAL_FAILURE, RAMDISK_BOOT_FAILURE ); return ENOENT; }
//
// Calculate the starting address and page of the ramdisk image, the
// length of the ramdisk image, and the offset within the starting page
// to the image. The offset should be 0, because everything in the SDI
// image should be page-aligned.
//
ramdiskAddress = (ULONG_PTR)(SdiAddress + sdiHeader->ToC[i].llOffset.QuadPart); RamdiskBasePage = (ULONG)(ramdiskAddress >> PAGE_SHIFT);
RamdiskImageOffset = (ULONG)(ramdiskAddress - ((ULONG_PTR)RamdiskBasePage << PAGE_SHIFT)); RamdiskImageLength = sdiHeader->ToC[i].llSize.QuadPart;
RamdiskFileSizeInPages = ADDRESS_AND_SIZE_TO_SPAN_PAGES( ramdiskAddress, RamdiskImageLength ); RamdiskFileSize = (LONGLONG)RamdiskFileSizeInPages << PAGE_SHIFT;
//
// Release the page(s) occupied by the SDI header.
//
BlFreeDescriptor( basePage );
//
// Tell the memory allocator about the pages occupied by the ramdisk
// by allocating those pages.
//
oldBase = BlUsableBase; oldLimit = BlUsableLimit; BlUsableBase = BL_XIPROM_RANGE_LOW; BlUsableLimit = BL_XIPROM_RANGE_HIGH; basePage = RamdiskBasePage; pageCount = RamdiskFileSizeInPages;
status = BlAllocateAlignedDescriptor( LoaderXIPRom, basePage, pageCount, 0, &basePage ); BlUsableBase = oldBase; BlUsableLimit = oldLimit;
ASSERT( status == ESUCCESS ); ASSERT( basePage == RamdiskBasePage );
DBGPRINT(VERBOSE, ("Ramdisk is active\n") ); RamdiskActive = TRUE; }
//
// Restore old progress bar settings
//
if ( RamdiskBuild || RamdiskPath ) { BlShowProgressBar = OldShowProgressBar; BlOutputDots = OldOutputDots; BlClearScreen(); }
return ESUCCESS; }
ARC_STATUS RamdiskReadImage( PCHAR RamdiskPath ) /*++
Routine Description:
This function will load a ramdisk image from the network or another ARC boot device.
Arguments:
RamdiskPath - name of the file to load
Return Value:
status
--*/ { ARC_STATUS status; ULONG RamdiskDeviceId; ULONG RamdiskFileId = BL_INVALID_FILE_ID; PCHAR p; FILE_INFORMATION fileInformation; LARGE_INTEGER offset; LONGLONG remainingLength; ULONG oldBase; ULONG oldLimit; BOOLEAN retry = TRUE; ULONG lastProgressPercent = 0; BOOLEAN ForceDisplayFirstTime = TRUE; // force display initially
ULONG currentProgressPercent; PUCHAR ip; PTCHAR FormatString = NULL; TCHAR Buffer[256]; //
// Show text progress bar
//
BlOutputStartupMsg(RAMDISK_DOWNLOAD); BlUpdateProgressBar(0);
DBGPRINT(VERBOSE, ("RamdiskReadImage(%s)\n", RamdiskPath));
//
// Open the device that the RAM disk image is on.
//
p = strchr(RamdiskPath, '\\'); if (p == NULL) { DBGPRINT(ERR, ("no \\ found in path\n")); return EINVAL; }
*p = 0;
try_again:
status = ArcOpen(RamdiskPath, ArcOpenReadWrite, &RamdiskDeviceId); if (status != ESUCCESS) { DBGPRINT(ERR, ("ArcOpen(%s) failed: %d\n", RamdiskPath, status)); if ( retry ) { retry = FALSE; _strlwr(RamdiskPath); goto try_again; } *p = '\\'; return status; }
*p++ = '\\';
//
// If the RAM disk image is on the network, use TftpGetPut to read it.
// Otherwise, use normal I/O.
//
oldBase = BlUsableBase; oldLimit = BlUsableLimit; BlUsableBase = BL_XIPROM_RANGE_LOW; BlUsableLimit = BL_XIPROM_RANGE_HIGH;
#ifdef EFI // multicast ramdisk download only supported on non-EFI machines for now
if ( RamdiskDeviceId == NET_DEVICE_ID && RamdiskMTFTPAddr != 0 ) { return EBADF; }
#endif
if ( RamdiskDeviceId == NET_DEVICE_ID && RamdiskMTFTPAddr == 0) {
//
// Network device using UNICAST download. We will use the TFTP
// client implementation in TFTPLIB for the download.
//
TFTP_REQUEST request; NTSTATUS ntStatus;
request.RemoteFileName = (PUCHAR)p; request.ServerIpAddress = RamdiskTFTPAddr; request.MemoryAddress = NULL; request.MaximumLength = 0; request.BytesTransferred = 0xbadf00d; request.Operation = TFTP_RRQ; request.MemoryType = LoaderXIPRom; #if defined(REMOTE_BOOT_SECURITY)
request.SecurityHandle = TftpSecurityHandle; #endif // defined(REMOTE_BOOT_SECURITY)
request.ShowProgress = TRUE; //
// Print progress message
//
ip = (PUCHAR) &RamdiskTFTPAddr; FormatString = BlFindMessage( RAMDISK_DOWNLOAD_NETWORK ); if ( FormatString != NULL ) { _stprintf(Buffer, FormatString, ip[0], ip[1], ip[2], ip[3] ); BlOutputTrailerMsgStr( Buffer ); }
//
// Download the image using TFTP
//
DBGPRINT(VERBOSE, ("calling TftpGetPut(%s,0x%x)\n", p, NetServerIpAddress)); ntStatus = TftpGetPut( &request ); DBGPRINT(VERBOSE, ("status from TftpGetPut 0x%x\n", ntStatus));
BlUsableBase = oldBase; BlUsableLimit = oldLimit;
if ( !NT_SUCCESS(ntStatus) ) {
if ( request.MemoryAddress != NULL ) { BlFreeDescriptor( (ULONG)((ULONG_PTR)request.MemoryAddress >> PAGE_SHIFT )); }
ArcClose( RamdiskDeviceId );
if ( ntStatus == STATUS_INSUFFICIENT_RESOURCES ) { return ENOMEM; } return EROFS; }
RamdiskBasePage = (ULONG)((ULONG_PTR)request.MemoryAddress >> PAGE_SHIFT);
RamdiskFileSize = request.MaximumLength; RamdiskFileSizeInPages = (ULONG)BYTES_TO_PAGES(RamdiskFileSize); if ( (RamdiskImageLength == 0) || (RamdiskImageLength > (RamdiskFileSize - RamdiskImageOffset)) ) { RamdiskImageLength = RamdiskFileSize - RamdiskImageOffset; }
#ifndef EFI // multicast ramdisk download only supported on non-EFI machines for now
} else if ( RamdiskDeviceId == NET_DEVICE_ID && RamdiskMTFTPAddr != 0) {
LONGLONG FileOffset = 0; LONGLONG physicalAddressOfOffset; ULONG DownloadSize; USHORT ClientPort; USHORT ServerPort; ULONG iSession = 0; //
// Network device and using multicast download. For multicast
// downloads we will use the MTFTP implementation in the ROM.
// A single MTFTP transfer is limited to 16-bit block counts.
// This translates to ~32MB for 512 block sizes and ~90MB for
// 1468 block sizes. In order to support larger files, we will
// use multiple MTFTP sessions to bring the file down in chunks.
// The MTFTP server will need to understand the chunking semantics.
//
//
// Print progress message
//
ip = (PUCHAR) &RamdiskMTFTPAddr; FormatString = BlFindMessage( RAMDISK_DOWNLOAD_NETWORK_MCAST ); if ( FormatString != NULL ) { _stprintf(Buffer, FormatString, ip[0], ip[1], ip[2], ip[3], SWAP_WORD( RamdiskMTFTPSPort ) ); BlOutputTrailerMsgStr( Buffer ); }
//
// Allocate the memory for the entire RAMDisk
//
RamdiskFileSize = RamdiskMTFTPFileSize; RamdiskFileSizeInPages = (ULONG)BYTES_TO_PAGES(RamdiskFileSize); if ( (RamdiskImageLength == 0) || (RamdiskImageLength > (RamdiskFileSize - RamdiskImageOffset)) ) { RamdiskImageLength = RamdiskFileSize - RamdiskImageOffset; }
DBGPRINT(INFO, ("Downloading Ramdisk using MTFTP. File Size=0x%I64x Chunk Size=0x%I64x\n", RamdiskFileSize, RamdiskMTFTPChunkSize ));
status = BlAllocateAlignedDescriptor( LoaderXIPRom, 0, RamdiskFileSizeInPages, 0, &RamdiskBasePage );
BlUsableBase = oldBase; BlUsableLimit = oldLimit;
if (status != ESUCCESS) { DBGPRINT(ERR, ("BlAllocateAlignedDescriptor(%d pages) failed: %d\n", RamdiskFileSizeInPages, status)); return status; } DBGPRINT(VERBOSE, ("Allocated %d pages at page %x for RAM disk\n", RamdiskFileSizeInPages, RamdiskBasePage ));
//
// Download the ramdisk file using MTFTP
//
if ( RamdiskMTFTPChunkSize == 0 ) { RamdiskMTFTPChunkSize = RamdiskMTFTPFileSize; }
// starting client and server port (in Intel byte order to
// allow increment operators to work )
ClientPort = SWAP_WORD( RamdiskMTFTPCPort ); ServerPort = SWAP_WORD( RamdiskMTFTPSPort );
while ( FileOffset < RamdiskFileSize ) {
//
// Call the ROM implementation to download a single chunk
//
physicalAddressOfOffset = ((LONGLONG)RamdiskBasePage << PAGE_SHIFT) + FileOffset;
ip = (PUCHAR)&RamdiskMTFTPAddr; DBGPRINT(INFO, ("MTFTP Session %d: %s from %u.%u.%u.%u sport=%d cport=%d offset=0x%I64x\n", iSession, p, ip[0], ip[1], ip[2], ip[3], ClientPort, ServerPort, physicalAddressOfOffset ));
//
// the high 32 bits are going to be lost when calling RomMtftpReadFile.
// find out now, if this is happening
//
ASSERT( (physicalAddressOfOffset >> 32) == 0 ); status = RomMtftpReadFile ( (PUCHAR)p, (PVOID)(ULONG)physicalAddressOfOffset, (ULONG)RamdiskMTFTPChunkSize, RamdiskTFTPAddr, RamdiskMTFTPAddr, SWAP_WORD( ClientPort ), SWAP_WORD( ServerPort ), RamdiskMTFTPTimeout, RamdiskMTFTPDelay, &DownloadSize ); if ( status != ESUCCESS ) { DBGPRINT(ERR, ("RomMtftpReadFile failed %d\n", status )); BlFreeDescriptor( RamdiskBasePage ); return status; }
#if 1 || INTEL_MTFTP_SERVER_TEST
p[strlen(p) - 1]++; RamdiskMTFTPAddr += 0x01000000; #else
ClientPort++; ServerPort++; #endif
FileOffset += DownloadSize; iSession++;
// update progress bar
currentProgressPercent = (ULONG)(((LONGLONG)FileOffset * 100) / RamdiskFileSize); if ( ForceDisplayFirstTime || (currentProgressPercent != lastProgressPercent) ) { BlUpdateProgressBar( currentProgressPercent ); ForceDisplayFirstTime = FALSE; } lastProgressPercent = currentProgressPercent;
}
DBGPRINT(INFO, ("MTFTP Download complete. 0x%I64x bytes transferred using %d sessions\n", RamdiskFileSize, iSession));
#endif
} else { //
// Open the RAM disk image.
//
status = BlOpen( RamdiskDeviceId, p, ArcOpenReadOnly, &RamdiskFileId ); if (status != ESUCCESS) { DBGPRINT(ERR, ("BlOpen(%s) failed: %d\n", p, status)); ArcClose( RamdiskDeviceId ); return status; } //
// Get the size of the RAM disk image.
//
status = BlGetFileInformation( RamdiskFileId, &fileInformation ); if (status != ESUCCESS) { DBGPRINT(ERR, ("BlGetFileInformation(%s) failed: %d\n", p, status)); BlClose( RamdiskFileId ); ArcClose( RamdiskDeviceId ); return status; } RamdiskFileSize = fileInformation.EndingAddress.QuadPart; RamdiskFileSizeInPages = (ULONG)BYTES_TO_PAGES(RamdiskFileSize); if ( (RamdiskImageLength == 0) || (RamdiskImageLength > (RamdiskFileSize - RamdiskImageOffset)) ) { RamdiskImageLength = RamdiskFileSize - RamdiskImageOffset; } //
// Allocate pages to hold the RAM disk image.
//
status = BlAllocateAlignedDescriptor( LoaderXIPRom, 0, RamdiskFileSizeInPages, 0, &RamdiskBasePage );
BlUsableBase = oldBase; BlUsableLimit = oldLimit;
if (status != ESUCCESS) { DBGPRINT(ERR, ("BlAllocateAlignedDescriptor(%d pages) failed: %d\n", RamdiskFileSizeInPages, status)); BlClose( RamdiskFileId ); ArcClose( RamdiskDeviceId ); return status; } DBGPRINT(VERBOSE, ("Allocated %d pages at page %x for RAM disk\n", RamdiskFileSizeInPages, RamdiskBasePage )); //
// Read the RAM disk image into memory.
//
#define MAX_DISK_READ (1024 * 1024)
offset.QuadPart = 0; remainingLength = RamdiskFileSize;
while ( offset.QuadPart < RamdiskFileSize ) { LONGLONG availableLength; ULONG readLength; PVOID va; ULONG count; va = MapRamdisk( offset.QuadPart, &availableLength ); if ( remainingLength > availableLength ) { readLength = (ULONG)availableLength; } else { readLength = (ULONG)remainingLength; } if ( readLength > MAX_DISK_READ ) { readLength = MAX_DISK_READ; } status = BlSeek( RamdiskFileId, &offset, SeekAbsolute ); if ( status != ESUCCESS ) { DBGPRINT(ERR, ("Unable to seek RAM disk image: %d\n", status)); BlClose( RamdiskFileId ); ArcClose( RamdiskDeviceId ); return status; } status = BlRead( RamdiskFileId, va, readLength, &count ); if ( (status != ESUCCESS) || (count != readLength) ) { DBGPRINT(ERR, ( "Unable to read RAM disk image: status %d count %x (wanted %x)\n", status, count, readLength) ); BlClose( RamdiskFileId ); ArcClose( RamdiskDeviceId ); return status; }
offset.QuadPart += readLength; remainingLength -= readLength;
// update progress bar
currentProgressPercent = (ULONG)(((LONGLONG)offset.QuadPart * 100) / RamdiskFileSize); if ( ForceDisplayFirstTime || (currentProgressPercent != lastProgressPercent) ) { BlUpdateProgressBar( currentProgressPercent ); ForceDisplayFirstTime = FALSE; } lastProgressPercent = currentProgressPercent; } DBGPRINT(VERBOSE, ( "Done reading ramdisk\n" ) ); BlClose( RamdiskFileId ); RamdiskFileId = BL_INVALID_FILE_ID; }
ArcClose( RamdiskDeviceId );
return status;
} // RamdiskReadImage
ARC_STATUS RamdiskInitializeFromPath( ) /*++
Routine Description:
This function will load a ramdisk image from the network or another ARC boot device.
Arguments:
none
Return Value:
status
--*/ { ARC_STATUS status;
ASSERT( RamdiskPath );
DBGPRINT(VERBOSE, ("RamdiskInitializeFromPath(%s)\n", RamdiskPath));
status = RamdiskReadImage( RamdiskPath );
if ( status == ESUCCESS ) { DBGPRINT(VERBOSE, ("Ramdisk is active\n") ); RamdiskActive = TRUE; }
return status;
} // RamdiskInitializeFromPath
ARC_STATUS RamdiskClose( IN ULONG FileId )
/*++
Routine Description:
Closes the specified device
Arguments:
FileId - Supplies file id of the device to be closed
Return Value:
ESUCCESS - Device closed successfully
!ESUCCESS - Device was not closed.
--*/
{ if (BlFileTable[FileId].Flags.Open == 0) { #if DBG
BlPrint(TEXT("ERROR - Unopened fileid %lx closed\r\n"),FileId); #endif
} BlFileTable[FileId].Flags.Open = 0;
return(ESUCCESS); }
ARC_STATUS RamdiskOpen( IN PCHAR OpenPath, IN OPEN_MODE OpenMode, OUT PULONG FileId )
/*++
Routine Description:
Opens a RAM disk for raw sector access.
Arguments:
OpenPath - Supplies a pointer to the name of the RAM disk.
OpenMode - Supplies the mode of the open
FileId - Supplies a pointer to a variable that specifies the file table entry that is filled in if the open is successful.
Return Value:
ESUCCESS is returned if the open operation is successful. Otherwise, an unsuccessful status is returned that describes the reason for failure.
--*/
{ ULONG Key; PDRIVE_CONTEXT Context;
UNREFERENCED_PARAMETER( OpenMode );
//BlPrint(TEXT("RamdiskOpen entered\r\n"));
if ( !RamdiskActive ) { //BlPrint(TEXT("RamdiskOpen: not active\r\n"));
return EBADF; }
if(FwGetPathMnemonicKey(OpenPath,"ramdisk",&Key)) { DBGPRINT(VERBOSE, ("RamdiskOpen: not a ramdisk path\n")); return EBADF; }
if ( Key != 0 ) { DBGPRINT(ERR, ("RamdiskOpen: not ramdisk 0\n")); return EBADF; }
//
// Find an available FileId descriptor to open the device with
//
*FileId=2;
while (BlFileTable[*FileId].Flags.Open != 0) { *FileId += 1; if(*FileId == BL_FILE_TABLE_SIZE) { DBGPRINT(ERR, ("RamdiskOpen: no file table entry available\n")); return(ENOENT); } }
//
// We found an entry we can use, so mark it as open.
//
BlFileTable[*FileId].Flags.Open = 1; BlFileTable[*FileId].DeviceEntryTable = &RamdiskEntryTable;
Context = &(BlFileTable[*FileId].u.DriveContext); Context->Drive = (UCHAR)Key; Context->xInt13 = TRUE;
DBGPRINT(VERBOSE, ("RamdiskOpen: exit success\n"));
return(ESUCCESS); }
ARC_STATUS RamdiskSeek ( IN ULONG FileId, IN PLARGE_INTEGER Offset, IN SEEK_MODE SeekMode )
/*++
Routine Description:
Changes the current offset of the file specified by FileId
Arguments:
FileId - specifies the file on which the current offset is to be changed.
Offset - New offset into file.
SeekMode - Either SeekAbsolute or SeekRelative SeekEndRelative is not supported
Return Value:
ESUCCESS - Operation completed succesfully
EBADF - Operation did not complete successfully.
--*/
{ switch (SeekMode) { case SeekAbsolute: BlFileTable[FileId].Position = *Offset; break; case SeekRelative: BlFileTable[FileId].Position.QuadPart += Offset->QuadPart; break; default: #if DBG
BlPrint(TEXT("SeekMode %lx not supported\r\n"),SeekMode); #endif
return(EACCES);
} return(ESUCCESS);
}
ARC_STATUS RamdiskWrite( IN ULONG FileId, OUT PVOID Buffer, IN ULONG Length, OUT PULONG Count )
/*++
Routine Description:
Writes sectors directly to an open RAM disk.
Arguments:
FileId - Supplies the file to write to
Buffer - Supplies buffer with data to write
Length - Supplies number of bytes to write
Count - Returns actual bytes written
Return Value:
ESUCCESS - write completed successfully
!ESUCCESS - write failed
--*/
{ PUCHAR buffer; LONGLONG offset; ULONG remainingLength; LONGLONG availableLength; ULONG bytesWritten; ULONG bytesThisPage; PVOID va;
DBGPRINT(ERR, ("RamdiskWrite entered\n")); //DbgBreakPoint();
buffer = Buffer; offset = BlFileTable[FileId].Position.QuadPart;
remainingLength = Length; if ( offset >= RamdiskImageLength ) { return EINVAL; } if ( remainingLength > (RamdiskImageLength - offset) ) { remainingLength = (ULONG)(RamdiskImageLength - offset); }
bytesWritten = 0;
while ( remainingLength != 0 ) {
va = MapRamdisk( RamdiskImageOffset + offset, &availableLength );
bytesThisPage = remainingLength; if ( remainingLength > availableLength ) { bytesThisPage = (ULONG)availableLength; }
memcpy( va, buffer, bytesThisPage );
offset += bytesThisPage; buffer += bytesThisPage; remainingLength -= bytesThisPage; bytesWritten += bytesThisPage; }
BlFileTable[FileId].Position.QuadPart += bytesWritten; *Count = bytesWritten;
return ESUCCESS; }
ARC_STATUS RamdiskRead( IN ULONG FileId, OUT PVOID Buffer, IN ULONG Length, OUT PULONG Count )
/*++
Routine Description:
Reads sectors directly from an open RAM disk.
Arguments:
FileId - Supplies the file to read from
Buffer - Supplies buffer to read into
Length - Supplies number of bytes to read
Count - Returns actual bytes read
Return Value:
ESUCCESS - read completed successfully
!ESUCCESS - read failed
--*/
{ PUCHAR buffer; LONGLONG offset; ULONG remainingLength; LONGLONG availableLength; ULONG bytesRead; ULONG bytesThisPage; PVOID va;
buffer = Buffer; offset = BlFileTable[FileId].Position.QuadPart; DBGPRINT(VERBOSE, ( "RamdiskRead: offset %x, length %x, buffer %p\n", (ULONG)offset, Length, buffer ));
remainingLength = Length; if ( offset >= RamdiskImageLength ) { DBGPRINT(ERR, ( "RamdiskRead: read beyond EOF\n" ) ); return EINVAL; } if ( remainingLength > (RamdiskImageLength - offset) ) { remainingLength = (ULONG)(RamdiskImageLength - offset); }
bytesRead = 0;
while ( remainingLength != 0 ) {
va = MapRamdisk( RamdiskImageOffset + offset, &availableLength ); DBGPRINT(VERBOSE, ( "Mapped offset %x, va %p, availableLength %x\n", (ULONG)offset, va, availableLength ) );
bytesThisPage = remainingLength; if ( remainingLength > availableLength ) { bytesThisPage = (ULONG)availableLength; }
memcpy( buffer, va, bytesThisPage );
offset += bytesThisPage; buffer += bytesThisPage; remainingLength -= bytesThisPage; bytesRead += bytesThisPage; }
BlFileTable[FileId].Position.QuadPart += bytesRead; *Count = bytesRead;
return ESUCCESS; }
ARC_STATUS RamdiskGetFileInfo( IN ULONG FileId, OUT PFILE_INFORMATION Finfo ) /*++
Routine Description:
Returns file information about a RAMDISK file.
Arguments:
FileId - id of the file
Finfo - file information structure to be filled in
Return Value:
ESUCCESS - write completed successfully
!ESUCCESS - write failed
--*/ { RtlZeroMemory(Finfo, sizeof(FILE_INFORMATION));
Finfo->EndingAddress.QuadPart = RamdiskImageLength; Finfo->CurrentPosition.QuadPart = BlFileTable[FileId].Position.QuadPart; Finfo->Type = DiskPeripheral;
return ESUCCESS; }
ARC_STATUS RamdiskMount( IN CHAR * FIRMWARE_PTR MountPath, IN MOUNT_OPERATION Operation ) { UNREFERENCED_PARAMETER( MountPath ); UNREFERENCED_PARAMETER( Operation );
DBGPRINT(VERBOSE, ( "RamdiskMount called\n" )); return EINVAL; }
ARC_STATUS RamdiskReadStatus( IN ULONG FileId ) { UNREFERENCED_PARAMETER( FileId );
DBGPRINT(VERBOSE, ( "RamdiskReadStatus called\n" ) ); return EINVAL; }
ARC_STATUS RamdiskSetFileInfo ( IN ULONG FileId, IN ULONG AttributeFlags, IN ULONG AttributeMask ) { UNREFERENCED_PARAMETER( FileId ); UNREFERENCED_PARAMETER( AttributeFlags ); UNREFERENCED_PARAMETER( AttributeMask );
DBGPRINT(VERBOSE, ( "RamdiskSetFileInfo called\n" )); return EINVAL; }
ARC_STATUS RamdiskRename ( IN ULONG FileId, IN CHAR * FIRMWARE_PTR NewName ) { UNREFERENCED_PARAMETER( FileId ); UNREFERENCED_PARAMETER( NewName );
DBGPRINT(VERBOSE, ( "RamdiskRename called\n" )); return EINVAL; }
ARC_STATUS RamdiskGetDirectoryEntry ( IN ULONG FileId, OUT PDIRECTORY_ENTRY Buffer, IN ULONG Length, OUT ULONG * FIRMWARE_PTR Count ) { UNREFERENCED_PARAMETER( FileId ); UNREFERENCED_PARAMETER( Buffer ); UNREFERENCED_PARAMETER( Length ); UNREFERENCED_PARAMETER( Count );
DBGPRINT(VERBOSE, ( "RamdiskGetDirectoryEntry called\n" )); return EINVAL; }
PVOID MapRamdisk ( LONGLONG Offset, PLONGLONG AvailableLength ) { LONGLONG physicalAddressOfOffset;
physicalAddressOfOffset = ((LONGLONG)RamdiskBasePage << PAGE_SHIFT) + Offset; *AvailableLength = RamdiskFileSize - Offset;
#if defined(_X86_)
//
// the high 32 bits of physicalAddressOfOffset are
// going to be lost when returning the address as a pvoid.
// find out if this is happening now.
//
ASSERT( (physicalAddressOfOffset >> 32) == 0 ); return (PVOID)(ULONG)physicalAddressOfOffset; #else
return (PVOID)physicalAddressOfOffset; #endif
}
PCHAR RamdiskGetOptionValue( IN PCHAR LoadOptions, IN PCHAR OptionName ) /*++
Routine Description:
Parse the load options string returning a value of one of the options.
Format supported: /OPTIONNAME=VALUE
Note there is no space before or after the '='. Value is terminated with a '\r','\n',' ','/', or '\t'
Arguments:
LoadOptions - Loader options from boot.ini. Must be all caps.
OptionName - Name of the option to find.
Return Value:
Pointer to a value string that has been allocated with BlAllocateHeap or NULL if the option has not found.
--*/ { PCHAR retValue = NULL; PCHAR value; PCHAR p; ULONG n;
ASSERT( LoadOptions ); ASSERT( OptionName );
if ( (p = strstr( LoadOptions, OptionName )) != 0 ) {
value = strchr( p , '=' ); if (value) {
value++;
for (p = value; *p; p++) { if (*p == ' ') break; if (*p == '/') break; if (*p == '\n') break; if (*p == '\r') break; if (*p == '\t') break; }
n = (ULONG)(p - value); retValue = (PCHAR)BlAllocateHeap( n+1 ); if ( retValue ) { strncpy( retValue, value, n ); } } }
return retValue; }
ULONG RamdiskParseIPAddr( IN PCHAR psz ) /*++
Routine Description:
parses an ip address from a string Arguments: [psz] - Ip address string
Returns: ipaddress (in network byte order) or 0.
--*/ { ULONG nAddr = 0; ULONG nDigit = 0; ULONG cDigits = 0;
for (; (psz!= NULL && *psz != 0); psz++) { if (*psz >= '0' && *psz <= '9') { nDigit = nDigit * 10 + *psz - '0'; if ( nDigit > 255 ) { return 0; } } else if (*psz == '.') { nAddr = (nAddr << 8) | nDigit; nDigit = 0; cDigits++; } else { break; } }
if (cDigits != 3) { return 0; }
nAddr = (nAddr << 8) | nDigit; return SWAP_DWORD( nAddr ); }
BOOLEAN RamdiskHexStringToDword( IN PCHAR psz, OUT PULONG RetValue, IN USHORT cDigits, IN CHAR chDelim ) /*++
Routine Description:
scan psz for a number of hex digits (at most 8); update psz return value in Value; check for chDelim;
Arguments: [psz] - the hex string to convert [Value] - the returned value [cDigits] - count of digits
Returns: TRUE for success
--*/ { USHORT Count; ULONG Value;
Value = 0; for (Count = 0; Count < cDigits; Count++, psz++) { if (*psz >= '0' && *psz <= '9') { Value = (Value << 4) + *psz - '0'; } else if (*psz >= 'A' && *psz <= 'F') { Value = (Value << 4) + *psz - 'A' + 10; } else if (*psz >= 'a' && *psz <= 'f') { Value = (Value << 4) + *psz - 'a' + 10; } else { return(FALSE); } }
*RetValue = Value;
if (chDelim != 0) { return *psz++ == chDelim; } else { return TRUE; } }
BOOLEAN RamdiskUUIDFromString( IN PCHAR psz, OUT LPGUID pguid ) /**
Routine Description:
Parse UUID such as 00000000-0000-0000-0000-000000000000
Arguments: [psz] - Supplies the UUID string to convert [pguid] - Returns the GUID.
Returns: TRUE if successful
**/ { ULONG dw;
if (!RamdiskHexStringToDword(psz, &pguid->Data1, sizeof(ULONG)*2, '-')) { return FALSE; } psz += sizeof(ULONG)*2 + 1;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(USHORT)*2, '-')) { return FALSE; } psz += sizeof(USHORT)*2 + 1;
pguid->Data2 = (USHORT)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(USHORT)*2, '-')) { return FALSE; } psz += sizeof(USHORT)*2 + 1;
pguid->Data3 = (USHORT)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[0] = (UCHAR)dw; if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, '-')) { return FALSE; } psz += sizeof(UCHAR)*2+1;
pguid->Data4[1] = (UCHAR)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[2] = (UCHAR)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[3] = (UCHAR)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[4] = (UCHAR)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[5] = (UCHAR)dw;
if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[6] = (UCHAR)dw; if (!RamdiskHexStringToDword(psz, &dw, sizeof(UCHAR)*2, 0)) { return FALSE; } psz += sizeof(UCHAR)*2;
pguid->Data4[7] = (UCHAR)dw;
return TRUE; }
BOOLEAN RamdiskGUIDFromString( IN PCHAR psz, OUT LPGUID pguid ) /**
Routine Description:
Parse GUID such as {00000000-0000-0000-0000-000000000000}
Arguments: [psz] - Supplies the UUID string to convert [pguid] - Returns the GUID.
Returns: TRUE if successful
**/ {
if (*psz == '{' ) { psz++; } if (RamdiskUUIDFromString(psz, pguid) != TRUE) { return FALSE; } psz += 36;
if (*psz == '}' ) { psz++; } if (*psz != '\0') { return FALSE; }
return TRUE; }
ARC_STATUS RamdiskParseOptions ( IN PCHAR LoadOptions ) /*++
Routine Description:
Parses all the Ramdisk params from the boot.ini option string.
Arguments:
LoadOptions - Loader options from boot.ini. Must be all caps.
/RDPATH - Indicates that the boot ramdisk should be downloaded from the specified path. This option takes precedence over RDBUILD.
Example: /RDPATH=net(0)\boot\ramdisk.dat
/RDMTFTPADDR - Specifies the Multicast Address where the ramdisk image should be downloaded from. If not specified a unicast download from the PXE boot server will be performed.
/RDMTFTPCPORT - Specifies the Multicast Client port to use.
/RDMTFTPSPORT - Specifies the Multicast Server port to use.
/RDMTFTPDELAY - Specifies the delay before starting a new MTFTP session.
/RDMTFTPTIMEOUT - Specifies the timeout before restarting a MTFTP session.
/RDIMAGEOFFSET - Specifies the offset into the downloaded file at which the actual disk image begins. If not specified, 0 is used.
/RDIMAGELENGTH - Specifies the length of the actual disk image. If not specified, the size of the downloaded file minus the offset to the image (RDIMAGEOFFSET) is used.
/RDFILESIZE - Specifies the size of the file to be downloaded.
/RDCHUNKSIZE - Specifies the size of each file chunck when more than one MTFTP session is required to download a large file. If the file is to be downloaded with one chunk this option is omitted or is set to zero.
This is used to workaround a size limitation in the MTFTP protcol. MTFTP currently has 16-bit block counts, therefore when using 512 byte blocks we are limited to ~32MB files.
Example 1: assume we want to download a 85MB file using 512 byte TFTP block sizes.
/RDMTFTPADDR=224.1.1.1 /RDMTFTPCPORT=100 /RDMTFTPSPORT=200 /RDCHUNKSIZE=31457280 /RDFILESIZE=89128960
1st MTFTP session on CPort=100, SPort=200 Size=31457280 (30MB) 2nd MTFTP session on CPort=101, SPort=201 Size=31457280 (30MB) 3rd MTFTP session on CPort=102, SPort=202 Size=26214400 (25MB)
Example 2: assume we want to download a 300MB file using 1468 byte TFTP block sizes.
/RDMTFTPADDR=224.1.1.2 /RDMTFTPCPORT=100 /RDMTFTPSPORT=200 /RDCHUNKSIZE=94371840 /RDFILESIZE=314572800
1st MTFTP session on CPort=100, SPort=200 Size=94371840 (90MB) 2nd MTFTP session on CPort=101, SPort=201 Size=94371840 (90MB) 3rd MTFTP session on CPort=102, SPort=202 Size=94371840 (90MB) 4th MTFTP session on CPort=103, SPort=203 Size=31457280 (30MB)
/RDBUILD - Indicates that the boot ramdisk should be built from the build server. This is ignored if the RDBUILD option is set.
Example: /RDBUILD
/RDGUID - Specifies the GUID of the configuration to be built by the build server.
Example: /RDGUID={54C7D140-09EF-11D1-B25A-F5FE627ED95E}
/RDDISCOVERY - Describes how we should discover the build server. Possible values include:
M - A packet will be sent on the multicast address specified by /RDMCASTADDR. The first server to respond will be used. If /RDMCASTADDR is not specified multicast discovery is ignored. B - A packet will be broadcasted. First server to respond will be used. This is the default.
U - A packet will be unicast to all the servers specified in the /RMSERVERS. Or if /RMSERVERS is not specified to the PXE Boot server.
R - Will only use servers that are included in the /RMSERVERS. This option is used to filter servers when specified in conjunction with broadcast and Multicast discovery. It can also be used with unicast discovery to specify a list of servers to use.
If more than one discovery option is specified then exactly one method will be selected according in the following order:
1) Multicast - M 2) Broadcast - B (Default) 3) Unicast U
Examples:
/RDDISCOVERY=U This will send a unicast packet to the same server as the PXE Boot server.
/RDDISCOVERY=M /RDMCASTADDR=204.1.1.1 This will send a multicast packet to the address sepcified.
/RDDISCOVERY=MBU /RDMCASTADDR=204.1.1.1 This will use multicast discovery to the address specified. If no boot server responds within the timeout period. Note that Broadcast and Unicast discovery are ignored.
/RDDISCOVERY=BR /RDSERVERS={10.0.0.3, 10.0.0.4} This will send a broadcast packet but will only accept responses from 10.0.0.3 or 10.0.0.4 .
/RDDISCOVERY=UR /RDSERVERS={10.0.0.3, 10.0.0.4} A discovery packet will be sent to the two servers specified and one of them will be selected.
/RDMCASTADDR Specifies the Multicast address to use for Build Server multicast discovery.
/RDSERVERS Specifies a list of Build Servers to accpet responses from. A maximum of 10 servers are supported.
Example: /RDSERVERS={10.0.0.3, 10.0.0.4}
/RDTIMEOUT Specifies the timeout period to wait for a response in seconds. Default is 10 secs.
Example: /RDTIMEOUT=10
/RDRETRY Specifies the number of times to retry finding a build server. Default is 5 times.
Example: /RDRETRY=5
Return Value:
ESUCCESS - read completed successfully
!ESUCCESS - read failed
--*/ { PCHAR value; PCHAR p; USHORT i;
if ( LoadOptions == NULL ) { return ESUCCESS; }
//
// Get RDPATH and its associated options
//
RamdiskPath = RamdiskGetOptionValue( LoadOptions, "RDPATH" );
if (RamdiskPath) { value = RamdiskGetOptionValue( LoadOptions, "RDIMAGEOFFSET" ); if (value) RamdiskImageOffset = atoi( value ); value = RamdiskGetOptionValue( LoadOptions, "RDIMAGELENGTH" ); if (value) RamdiskImageLength = _atoi64( value );
//
// By Default the PXE Boot Server is the TFTP address
//
RamdiskTFTPAddr = NetServerIpAddress;
//
// Get the MTFTP Address used to download the image.
// if not specified, the image will be downloaded
// from the same place as ntldr (i.e. the PXE
// boot server).
//
value = RamdiskGetOptionValue( LoadOptions, "RDMTFTPADDR" ); if ( value ) { RamdiskMTFTPAddr = RamdiskParseIPAddr( value ); value = RamdiskGetOptionValue( LoadOptions, "RDMTFTPCPORT" ); if ( value ) RamdiskMTFTPCPort = SWAP_WORD( (USHORT)atoi( value ) ); value = RamdiskGetOptionValue( LoadOptions, "RDMTFTPSPORT" ); if (value) RamdiskMTFTPSPort = SWAP_WORD( (USHORT)atoi( value ) ); value = RamdiskGetOptionValue( LoadOptions, "RDMTFTPDELAY" ); if (value) RamdiskMTFTPDelay = (USHORT)atoi( value ); value = RamdiskGetOptionValue( LoadOptions, "RDMTFTPTIMEOUT" ); if (value) RamdiskMTFTPTimeout = (USHORT)atoi( value ); value = RamdiskGetOptionValue( LoadOptions, "RDFILESIZE" ); if (value) RamdiskMTFTPFileSize = _atoi64( value ); value = RamdiskGetOptionValue( LoadOptions, "RDCHUNKSIZE" ); if (value) RamdiskMTFTPChunkSize = _atoi64( value );
// Validate options
if ( RamdiskMTFTPAddr == 0 || RamdiskMTFTPCPort == 0 || RamdiskMTFTPSPort == 0 || RamdiskMTFTPDelay == 0 || RamdiskMTFTPTimeout == 0 || RamdiskMTFTPFileSize == 0 || RamdiskMTFTPChunkSize > RamdiskMTFTPFileSize ) { return EINVAL; } }
if (DBGLVL(INFO)) { DbgPrint( "RAMDISK options:\n"); DbgPrint( "RDPATH = %s\n", RamdiskPath); p = (PCHAR) &RamdiskMTFTPAddr; DbgPrint( "RDMTFTPADDR = %u.%u.%u.%u\n", p[0], p[1], p[2], p[3]); DbgPrint( "RDMTFTPCPORT = %d\n", SWAP_WORD( RamdiskMTFTPCPort )); DbgPrint( "RDMTFTPSPORT = %d\n", SWAP_WORD( RamdiskMTFTPSPort )); DbgPrint( "RDMTFTPDELAY = %d\n", RamdiskMTFTPDelay); DbgPrint( "RDMTFTPTIMEOUT = %d\n", RamdiskMTFTPTimeout); DbgPrint( "RDFILESIZE = 0x%0I64x bytes\n", RamdiskMTFTPFileSize ); DbgPrint( "RDCHUNKSIZE = 0x%0I64x bytes\n", RamdiskMTFTPChunkSize ); DbgPrint( "RDIMAGEOFFSET = 0x%x bytes\n", RamdiskImageOffset ); DbgPrint( "RDIMAGELENGTH = 0x%0I64x bytes\n", RamdiskImageLength ); } // we are done if RDPATH was specified.
return ESUCCESS; }
#if defined(POST_XPSP)
//
// Check if RDBUILD exists
//
if ( strstr( LoadOptions, "RDBUILD" ) ) {
RamdiskBuild = TRUE;
value = RamdiskGetOptionValue( LoadOptions, "RDGUID" ); if ( value == NULL || RamdiskGUIDFromString( value, &RamdiskGuid ) == FALSE ) { return EINVAL; }
value = RamdiskGetOptionValue( LoadOptions, "RDMCASTADDR" ); if ( value ) RamdiskMCastAddr = RamdiskParseIPAddr( value );
value = RamdiskGetOptionValue( LoadOptions, "RDSERVERS" ); if ( value && *value == '{' ) { PCHAR e = strchr( value, '}' );
p = value;
if ( e && (ULONG)(e - p) > 7 ) { // at least seven characters for X.X.X.X
while ( p && p < e && RamdiskServerCount < RAMDISK_MAX_SERVERS) { RamdiskServers[RamdiskServerCount] = RamdiskParseIPAddr( p + 1 ); RamdiskServerCount++; p = strchr( p + 1, ',' ); } } }
value = RamdiskGetOptionValue( LoadOptions, "RDDISCOVERY" ); if ( value ) { // NOTE : order of these checks is important since
// they override each other.
if ( strchr( value, 'U' ) ) { RamdiskDiscovery = RAMDISK_DISCOVERY_UNICAST; } if ( strchr( value, 'B' ) ) { RamdiskDiscovery = RAMDISK_DISCOVERY_BROADCAST; } if ( strchr( value, 'M' ) && RamdiskMCastAddr != 0 ) { RamdiskDiscovery = RAMDISK_DISCOVERY_MULTICAST; } if ( strchr( value, 'R' ) && RamdiskServerCount > 0 ) { RamdiskDiscovery |= RAMDISK_DISCOVERY_RESTRICT; } } else { // default is broadcast discovery
RamdiskDiscovery = RAMDISK_DISCOVERY_BROADCAST; }
value = RamdiskGetOptionValue( LoadOptions, "RDTIMEOUT" ); if (value) RamdiskTimeout = (USHORT)atoi( value ); value = RamdiskGetOptionValue( LoadOptions, "RDRETRY" ); if (value) RamdiskRetry = (USHORT)atoi( value );
//
// Normalize options
//
if ( !TEST_BIT( RamdiskDiscovery, RAMDISK_DISCOVERY_RESTRICT) && RamdiskServerCount > 0 ) { RamdiskServerCount = 0; }
if ( RamdiskDiscovery == RAMDISK_DISCOVERY_UNICAST ) { RamdiskServerCount = 1; RamdiskServers[0] = NetServerIpAddress; }
//
// Print out debug information
//
if (DBGLVL(INFO)) { DbgPrint("RDBUILD options:\n"); DbgPrint("RDGUID = {%x-%x-%x-%x%x%x%x%x%x%x%x}\n", RamdiskGuid.Data1, RamdiskGuid.Data2, RamdiskGuid.Data3, RamdiskGuid.Data4[0], RamdiskGuid.Data4[1], RamdiskGuid.Data4[2], RamdiskGuid.Data4[3], RamdiskGuid.Data4[4], RamdiskGuid.Data4[5], RamdiskGuid.Data4[6], RamdiskGuid.Data4[7]); DbgPrint("RDDISCOVERY = %d\n", RamdiskDiscovery); p = (PCHAR) &RamdiskMCastAddr; DbgPrint("RDMCASTADDR = %u.%u.%u.%u\n", p[0], p[1], p[2], p[3]); DbgPrint("RDSERVERS = %d\n", RamdiskServerCount); for (i = 0; i < RamdiskServerCount; i++) { p = (PCHAR) &RamdiskServers[i]; DbgPrint("RDSERVER[%d] = %u.%u.%u.%u\n", i, p[0], p[1], p[2], p[3]); } DbgPrint("RDTIMEOUT = %d\n", RamdiskTimeout); DbgPrint("RDRETRY = %d\n", RamdiskRetry); } } #endif
return ESUCCESS; }
#if defined(POST_XPSP)
#if defined(i386) // RDBUILD is only supported on x86 machines for now
VOID RamdiskDeviceInfoToString( PDEVICE_INFO pDevice, PCHAR DeviceString ) /*++
Routine Description:
This routine generates a string representation of the Device info for debugging purposes.
Arguments:
pDefive - Pointer to the device info structure
DeviceString - a pointer to a buffer that will hold the final string. The buffer must be at least 128 * sizeof(CHAR) bytes.
Return Value:
NONE.
--*/ { const CHAR HexToCharTable[17] = "0123456789ABCDEF";
if (pDevice->DeviceType == BMBUILD_DEVICE_TYPE_PCI) { sprintf ( DeviceString, "%d.%d.%d PCI\\VEN_%04X&DEV_%04X&SUBSYS_%04X%04X&REV_%02X&CC_%02X%02X%02X", PCI_ITERATOR_TO_BUS( pDevice->info.pci.BusDevFunc ), PCI_ITERATOR_TO_DEVICE( pDevice->info.pci.BusDevFunc ), PCI_ITERATOR_TO_FUNCTION( pDevice->info.pci.BusDevFunc ), pDevice->info.pci.VendorID, pDevice->info.pci.DeviceID, pDevice->info.pci.SubDeviceID, pDevice->info.pci.SubVendorID, pDevice->info.pci.RevisionID, pDevice->info.pci.BaseClass, pDevice->info.pci.SubClass, pDevice->info.pci.ProgIntf ); } else if (pDevice->DeviceType == BMBUILD_DEVICE_TYPE_PCI_BRIDGE ) { sprintf ( DeviceString, "%d.%d.%d PCI\\VEN_%04X&DEV_%04X&REV_%02X&CC_%02X%02X%02X Bridge %d->%d Sub = %d", PCI_ITERATOR_TO_BUS( pDevice->info.pci_bridge.BusDevFunc ), PCI_ITERATOR_TO_DEVICE( pDevice->info.pci_bridge.BusDevFunc ), PCI_ITERATOR_TO_FUNCTION( pDevice->info.pci_bridge.BusDevFunc ), pDevice->info.pci_bridge.VendorID, pDevice->info.pci_bridge.DeviceID, pDevice->info.pci_bridge.RevisionID, pDevice->info.pci_bridge.BaseClass, pDevice->info.pci_bridge.SubClass, pDevice->info.pci_bridge.ProgIntf, pDevice->info.pci_bridge.PrimaryBus, pDevice->info.pci_bridge.SecondaryBus, pDevice->info.pci_bridge.SubordinateBus ); } else if (pDevice->DeviceType == BMBUILD_DEVICE_TYPE_PNP) { CHAR ProductIDStr[8]; PUCHAR id = (PUCHAR)&pDevice->info.pnp.EISADevID;
ProductIDStr[0] = (id[0] >> 2) + 0x40; ProductIDStr[1] = (((id[0] & 0x03) << 3) | (id[1] >> 5)) + 0x40; ProductIDStr[2] = (id[1] & 0x1f) + 0x40; ProductIDStr[3] = HexToCharTable[id[2] >> 4]; ProductIDStr[4] = HexToCharTable[id[2] & 0x0F]; ProductIDStr[5] = HexToCharTable[id[3] >> 4]; ProductIDStr[6] = HexToCharTable[id[3] & 0x0F]; ProductIDStr[7] = 0x00;
sprintf( DeviceString, "%s CC_%02X%02X%02X", ProductIDStr, pDevice->info.pnp.BaseClass, pDevice->info.pnp.SubClass, pDevice->info.pnp.ProgIntf ); } }
ARC_STATUS RamdiskBuildRequest( IN PBMBUILD_REQUEST_PACKET pRequest ) /*++
Routine Description:
This routine will form the build request packet.
Arguments:
pRequest - a pointer to a buffer that will hold the request
Return Value:
ESUCCESS - read completed successfully
!ESUCCESS - read failed
--*/ { ARC_STATUS status; PDEVICE_INFO pDevice; t_PXENV_UNDI_GET_NIC_TYPE PxeNicType; PCONFIGURATION_COMPONENT_DATA Node = NULL; PCONFIGURATION_COMPONENT_DATA CurrentNode = NULL; PCONFIGURATION_COMPONENT_DATA ResumeNode = NULL; PPCIDEVICE pPCIDevice; PPNP_BIOS_INSTALLATION_CHECK pPNPBios; PPNP_BIOS_DEVICE_NODE pDevNode; PCM_PARTIAL_RESOURCE_LIST pPartialList; PUCHAR pCurr; USHORT cDevices; USHORT i; ULONG lengthRemaining; ULONG x; PCHAR HalName = NULL; BOOLEAN fNICFound = FALSE;
pRequest->Version = BMBUILD_PACKET_VERSION; pRequest->OpCode = BMBUILD_OPCODE_REQUEST; pRequest->Length = BMBUILD_REQUEST_FIXED_PACKET_LENGTH; //
// Get the SMBIOS UUID (or PXE MAC address)
//
GetGuid( (PUCHAR*)&pRequest->MachineGuid, &x ); ASSERT( x == sizeof( pRequest->MachineGuid ) );
memcpy( &pRequest->ProductGuid, &RamdiskGuid, sizeof( GUID ) ); #ifdef _IA64_
pRequest->Architecture = PROCESSOR_ARCHITECTURE_IA64; #else
pRequest->Architecture = PROCESSOR_ARCHITECTURE_INTEL; #endif
//
// Detect the appropriate HAL using TextMode Setup methods.
//
#ifdef DOWNLOAD_TXTSETUP_SIF
status = SlInitIniFile( "net(0)", 0, "boot\\txtsetup.sif", &InfFile, NULL, NULL, &x); #endif
HalName = SlDetectHal(); ASSERT( HalName != NULL );
strcpy( (PCHAR) pRequest->Data, HalName ); pRequest->HalDataOffset = BMBUILD_FIELD_OFFSET(BMBUILD_REQUEST_PACKET, Data);
pRequest->Flags = 0; pRequest->DeviceCount = 0; pRequest->DeviceOffset = RESET_SIZE_AT_USHORT_MAX((ULONG)pRequest->HalDataOffset + strlen( HalName ) + 1); pDevice = (PDEVICE_INFO)( (PUCHAR)pRequest + pRequest->DeviceOffset );
//
// Get the PXE NIC information
//
RtlZeroMemory( &PxeNicType, sizeof( PxeNicType ) ); status = RomGetNicType( &PxeNicType ); if ( ( status != PXENV_EXIT_SUCCESS ) || ( PxeNicType.Status != PXENV_EXIT_SUCCESS ) ) { DBGPRINT( ERR, ( "RAMDISK ERROR: Couldn't get the NIC type from PXE. Failed with %x, status = %x\n", status, PxeNicType.Status ) ); return ENODEV; }
//
// Fill in PCI Device information
//
Node = KeFindConfigurationEntry(FwConfigurationTree, PeripheralClass, RealModePCIEnumeration, NULL); ASSERT( Node != NULL ); ASSERT( Node->ComponentEntry.ConfigurationDataLength > 0 ); ASSERT( Node->ConfigurationData != NULL );
pPCIDevice = (PPCIDEVICE)( (PUCHAR)Node->ConfigurationData + sizeof( CM_PARTIAL_RESOURCE_LIST ) ); cDevices = (USHORT)( Node->ComponentEntry.ConfigurationDataLength - sizeof ( CM_PARTIAL_RESOURCE_LIST ) ) / sizeof ( PCIDEVICE );
if (cDevices > BMBUILD_MAX_DEVICES( RamdiskMaxPacketSize ) ) { DBGPRINT(ERR, ("RAMDISK ERROR: Too many PCI devices to fit in a request\n")); return EINVAL; }
for (i = 0; i < cDevices; i++ ) {
//
// check if this is a bridge or a normal device
//
if ( (pPCIDevice->Config.HeaderType & (~PCI_MULTIFUNCTION) ) == PCI_BRIDGE_TYPE) { //
// Bridge.
//
pDevice[i].DeviceType = BMBUILD_DEVICE_TYPE_PCI_BRIDGE;
pDevice[i].info.pci_bridge.BusDevFunc = pPCIDevice->BusDevFunc; pDevice[i].info.pci_bridge.VendorID = pPCIDevice->Config.VendorID; pDevice[i].info.pci_bridge.DeviceID = pPCIDevice->Config.DeviceID; pDevice[i].info.pci_bridge.BaseClass = pPCIDevice->Config.BaseClass; pDevice[i].info.pci_bridge.SubClass = pPCIDevice->Config.SubClass; pDevice[i].info.pci_bridge.ProgIntf = 0; pDevice[i].info.pci_bridge.RevisionID = pPCIDevice->Config.RevisionID; pDevice[i].info.pci_bridge.PrimaryBus = pPCIDevice->Config.u.type1.PrimaryBus; pDevice[i].info.pci_bridge.SecondaryBus = pPCIDevice->Config.u.type1.SecondaryBus; pDevice[i].info.pci_bridge.SubordinateBus = pPCIDevice->Config.u.type1.SubordinateBus;
} else { //
// Non-bridge PCI device
//
pDevice[i].DeviceType = BMBUILD_DEVICE_TYPE_PCI;
pDevice[i].info.pci.BusDevFunc = pPCIDevice->BusDevFunc; pDevice[i].info.pci.VendorID = pPCIDevice->Config.VendorID; pDevice[i].info.pci.DeviceID = pPCIDevice->Config.DeviceID; pDevice[i].info.pci.BaseClass = pPCIDevice->Config.BaseClass; pDevice[i].info.pci.SubClass = pPCIDevice->Config.SubClass; pDevice[i].info.pci.ProgIntf = 0; pDevice[i].info.pci.RevisionID = pPCIDevice->Config.RevisionID; pDevice[i].info.pci.SubVendorID = pPCIDevice->Config.u.type0.SubVendorID; pDevice[i].info.pci.SubDeviceID = pPCIDevice->Config.u.type0.SubSystemID;
//
// Check if this device is the PXE boot device
//
if ( PxeNicType.NicType == 2 && PxeNicType.pci_pnp_info.pci.BusDevFunc == ( pPCIDevice->BusDevFunc & 0x7FFF ) ) {
pRequest->PrimaryNicIndex = i; fNICFound = TRUE; } } pPCIDevice++; }
pRequest->DeviceCount = pRequest->DeviceCount + cDevices; pDevice += cDevices;
//
// Fill in PNP Device information (if there)
//
Node = NULL; while ((CurrentNode = KeFindConfigurationNextEntry( FwConfigurationTree, AdapterClass, MultiFunctionAdapter, NULL, &ResumeNode)) != 0) { if (!(strcmp(CurrentNode->ComponentEntry.Identifier,"PNP BIOS"))) { Node = CurrentNode; break; } ResumeNode = CurrentNode; }
if ( Node != NULL ) { //
// Set the PnP BIOS devices if found
//
ASSERT( Node->ComponentEntry.ConfigurationDataLength > 0 ); ASSERT( Node->ConfigurationData != NULL );
pPartialList = (PCM_PARTIAL_RESOURCE_LIST)Node->ConfigurationData; pPNPBios = (PPNP_BIOS_INSTALLATION_CHECK)( (PUCHAR)Node->ConfigurationData + sizeof( CM_PARTIAL_RESOURCE_LIST ) );
pCurr = (PUCHAR)pPNPBios + pPNPBios->Length; lengthRemaining = pPartialList->PartialDescriptors[0].u.DeviceSpecificData.DataSize - pPNPBios->Length;
for (cDevices = 0; lengthRemaining > sizeof(PNP_BIOS_DEVICE_NODE); cDevices++) {
if ((pRequest->DeviceCount + cDevices + 1) > BMBUILD_MAX_DEVICES( RamdiskMaxPacketSize ) ) { DBGPRINT(ERR, ("RAMDISK ERROR: Too many PNP devices to fit in a request\n")); return EINVAL; }
pDevNode = (PPNP_BIOS_DEVICE_NODE)pCurr;
if (pDevNode->Size > lengthRemaining) {
DBGPRINT( ERR, ( "PNP Node # %d, invalid size (%d), length remaining (%d)\n", pDevNode->Node, pDevNode->Size, lengthRemaining ) ); ASSERT( FALSE ); // REVIEW: [bassamt] Should I fail here?
break; }
pDevice->DeviceType = BMBUILD_DEVICE_TYPE_PNP; pDevice->info.pnp.EISADevID = pDevNode->ProductId; pDevice->info.pnp.BaseClass = pDevNode->DeviceType[0]; pDevice->info.pnp.SubClass = pDevNode->DeviceType[1]; pDevice->info.pnp.ProgIntf = pDevNode->DeviceType[2]; pDevice->info.pnp.CardSelNum = pDevNode->Node;
if ( PxeNicType.NicType == 3 && PxeNicType.pci_pnp_info.pnp.EISA_Dev_ID == pDevNode->ProductId && PxeNicType.pci_pnp_info.pnp.CardSelNum == pDevNode->Node) {
pRequest->PrimaryNicIndex = pRequest->DeviceCount + cDevices; fNICFound = TRUE; }
pCurr += pDevNode->Size; lengthRemaining -= pDevNode->Size; pDevice++; }
pRequest->DeviceCount = pRequest->DeviceCount + cDevices; }
//
// We better have found the primary NIC or the packet is invalid
//
if (!fNICFound) { DBGPRINT(ERR, ("RAMDISK ERROR: Could not find the primary NIC\n")); return ENODEV; } //
// Set the packet length
//
pRequest->Length += pRequest->DeviceCount * sizeof( DEVICE_INFO );
ASSERT ( pRequest->Length <= RamdiskMaxPacketSize );
//
// Debug prints
//
if (DBGLVL(INFO)) { DbgPrint("RAMDISK Build Request\n"); DbgPrint("Architecture = %d\n", pRequest->Architecture); DbgPrint("MachineGuid = {%x-%x-%x-%x%x%x%x%x%x%x%x}\n", pRequest->MachineGuid.Data1, pRequest->MachineGuid.Data2, pRequest->MachineGuid.Data3, pRequest->MachineGuid.Data4[0], pRequest->MachineGuid.Data4[1], pRequest->MachineGuid.Data4[2], pRequest->MachineGuid.Data4[3], pRequest->MachineGuid.Data4[4], pRequest->MachineGuid.Data4[5], pRequest->MachineGuid.Data4[6], pRequest->MachineGuid.Data4[7]); DbgPrint("ProductGuid = {%x-%x-%x-%x%x%x%x%x%x%x%x}\n", pRequest->ProductGuid.Data1, pRequest->ProductGuid.Data2, pRequest->ProductGuid.Data3, pRequest->ProductGuid.Data4[0], pRequest->ProductGuid.Data4[1], pRequest->ProductGuid.Data4[2], pRequest->ProductGuid.Data4[3], pRequest->ProductGuid.Data4[4], pRequest->ProductGuid.Data4[5], pRequest->ProductGuid.Data4[6], pRequest->ProductGuid.Data4[7]); DbgPrint("HALName = %s\n", HalName); DbgPrint("Flags = 0x%x\n", pRequest->Flags); DbgPrint("DeviceCount = %d\n", pRequest->DeviceCount); pDevice = (PDEVICE_INFO)( (PUCHAR)pRequest + pRequest->DeviceOffset );
for (i = 0; i < pRequest->DeviceCount; i++ ) { CHAR DeviceString[128]; RamdiskDeviceInfoToString( pDevice, DeviceString ); DbgPrint( "[%d] %s %s\n", i, DeviceString, (i == pRequest->PrimaryNicIndex? "PRIMARY NIC" : "") ); pDevice++; } } return ESUCCESS; }
ARC_STATUS RamdiskSendDiscoverPacketAndWait( IN PBMBUILD_DISCOVER_PACKET pDiscover, IN ULONG DestinationAddress, IN ULONG Timeout, IN BOOLEAN fExcludeServers, IN ULONG DiscoveryStartTime, IN ULONG TotalExpectedWaitTime, OUT PULONG pBuildServerChosen ) /*++
Routine Description:
This routine will send a discovery packet on the network in accordance with the RamdiskDiscovery paramters. It will then select wait for a timeout period for replies and select the best response.
Arguments:
pDiscover - Discover packet to send out
DestinationAddress - destination address of the discovery packet
Timeout - timeout interval
fExcludeServers - if TRUE the response are filtered through the server list
DiscoveryStartTime - time when discovery was started TotalExpectedWaitTime - total time we expect to be in discovery. for updating the progress bar
pBuildServerChosen - pointer to storage that will hold the chosen server
Return Value:
ESUCCESS - successfully selected a boot server
!ESUCCESS - no build server chosen
--*/ { ULONG WaitStartTime; BMBUILD_ACCEPT_PACKET Accept; PUCHAR p = (PUCHAR) &DestinationAddress; ULONG lastProgressPercent = 0; BOOLEAN ForceDisplayFirstTime = TRUE; ULONG currentProgressPercent; USHORT BestBuildTime = 0xFFFF; USHORT iServer; ULONG Length; ULONG RemoteHost = 0; USHORT RemotePort = 0;
//
// No server chosen initially
//
*pBuildServerChosen = 0;
//
// Send the discovery packet to the destination address
//
if ( RomSendUdpPacket( (PVOID)pDiscover, sizeof( BMBUILD_DISCOVER_PACKET ), DestinationAddress, BMBUILD_SERVER_PORT ) != sizeof( BMBUILD_DISCOVER_PACKET ) ) { DBGPRINT(ERR, ("FAILED to send discovery packet to %u.%u.%u.%u:%u\n", p[0], p[1], p[2], p[3], SWAP_WORD( BMBUILD_SERVER_PORT )));
//
// update progress bar. this happens here since a timed out packet
// might take some time.
//
currentProgressPercent = ((SysGetRelativeTime() - DiscoveryStartTime ) * 100) / TotalExpectedWaitTime; if ( ForceDisplayFirstTime || (currentProgressPercent != lastProgressPercent) ) { BlUpdateProgressBar( currentProgressPercent ); ForceDisplayFirstTime = FALSE; } lastProgressPercent = currentProgressPercent;
return EINVAL; }
DBGPRINT(INFO, ("Sent discovery packet to %u.%u.%u.%u:%u\n", p[0], p[1], p[2], p[3], SWAP_WORD( BMBUILD_SERVER_PORT )));
//
// Wait for the responses. We will wait for the timeout period and
// select the best ACCEPT we get within this timeout. The best accept
// is the one with the lowest build time.
//
WaitStartTime = SysGetRelativeTime();
while ( (SysGetRelativeTime() - WaitStartTime) < Timeout ) {
Length = RomReceiveUdpPacket( (PVOID)&Accept, sizeof(Accept), 0, &RemoteHost, &RemotePort); if ( Length == sizeof( BMBUILD_ACCEPT_PACKET ) && RemotePort == BMBUILD_SERVER_PORT && Accept.Version == BMBUILD_PACKET_VERSION && Accept.OpCode == BMBUILD_OPCODE_ACCEPT && Accept.Length == sizeof( BMBUILD_ACCEPT_PACKET ) - BMBUILD_COMMON_PACKET_LENGTH && Accept.XID == pDiscover->XID ) {
ULONG AcceptedBuildServer = RemoteHost;
ASSERT( RemoteHost != 0 ); ASSERT( RemoteHost != 0xFFFFFFFF );
p = (PUCHAR) &RemoteHost; DBGPRINT(INFO, ("Received ACCEPT packet XID = %d from %u.%u.%u.%u:%u\n", Accept.XID, p[0], p[1], p[2], p[3], SWAP_WORD( BMBUILD_SERVER_PORT )));
//
// Exclude servers if we were asked to
//
if ( fExcludeServers ) { for (iServer = 0; iServer < RamdiskServerCount; iServer++) { if (RemoteHost == RamdiskServers[iServer]) { p = (PUCHAR) &RemoteHost; DBGPRINT(INFO, ("Ignoring ACCEPT packet from %u.%u.%u.%u:%u\n", p[0], p[1], p[2], p[3], SWAP_WORD( BMBUILD_SERVER_PORT ))); AcceptedBuildServer = 0; break; } } } //
// We have a valid packet from a build server. Check
// if it is the best one. "Best" is determined by
// the first server to respond with the lowest
// builtime.
//
if ( AcceptedBuildServer != 0 && Accept.BuildTime < BestBuildTime) {
p = (PUCHAR) &AcceptedBuildServer; DBGPRINT(INFO, ("We picked server at %u.%u.%u.%u:%u for this build\n", p[0], p[1], p[2], p[3], SWAP_WORD( BMBUILD_SERVER_PORT )));
*pBuildServerChosen = AcceptedBuildServer;
return ESUCCESS; } }
//
// update progress bar
//
currentProgressPercent = ((SysGetRelativeTime() - DiscoveryStartTime ) * 100) / TotalExpectedWaitTime; if ( ForceDisplayFirstTime || (currentProgressPercent != lastProgressPercent) ) { BlUpdateProgressBar( currentProgressPercent ); ForceDisplayFirstTime = FALSE; } lastProgressPercent = currentProgressPercent; }
return ENOENT; }
ARC_STATUS RamdiskDiscoverBuildServer( OUT PULONG BuildServerIpAddress ) /*++
Routine Description:
This routine will send a discovery packet on the network in accordance with the RamdiskDiscovery paramters. It will then select a acceptance from one of the build servers that respond and return its IP Address.
Arguments:
BuildServerIpAddress - returned Build server IP address
Return Value:
ESUCCESS - successfully selected a boot server
!ESUCCESS - no build server responded
--*/ { #define DISCOVER_RETRIES 4 // 4 retries
#define DISCOVER_TIMEOUT 4 // starting at 4 then 8, 16, and 32
#define DISCOVER_TOTAL_TIMEOUT_TIME (4+8+16+32) // total time that we could be waiting for responses
#define DISCOVER_SEND_TIMEOUT 3 // Time it takes to send a packet to an invalid address
BMBUILD_DISCOVER_PACKET Discover; BOOLEAN fExcludeServers = FALSE; ULONG iRetry; ULONG cRetries = DISCOVER_RETRIES; ULONG Timeout = DISCOVER_TIMEOUT; ULONG x; ULONG DestinationAddress = 0xFFFFFFFF; ULONG DiscoveryStartTime = SysGetRelativeTime(); ULONG TotalExpectedWaitTime; USHORT iServer;
ASSERT( BuildServerIpAddress ); *BuildServerIpAddress = 0;
//
// Short-circuit discovery if we are unicasting to one server
//
if ( RamdiskDiscovery == RAMDISK_DISCOVERY_UNICAST && RamdiskServerCount == 1 ) { ASSERT( RamdiskServers[0] != 0 ); ASSERT( RamdiskServers[0] != 0xFFFFFFFF ); *BuildServerIpAddress = RamdiskServers[0]; return ESUCCESS; }
//
// Fill in Discover packet
//
Discover.Version = BMBUILD_PACKET_VERSION; Discover.OpCode = BMBUILD_OPCODE_DISCOVER; Discover.Length = sizeof( BMBUILD_DISCOVER_PACKET ) - BMBUILD_COMMON_PACKET_LENGTH; GetGuid( (PUCHAR*)&Discover.MachineGuid, &x ); ASSERT( x == sizeof( Discover.MachineGuid ) ); memcpy( &Discover.ProductGuid, &RamdiskGuid, sizeof( GUID ) );
//
// Start the discovery. Note that this will be repeated a number
// of times to account for network congestion and load on the servers.
//
BlOutputStartupMsg(RAMDISK_BUILD_DISCOVER); BlUpdateProgressBar(0);
//
// If we are doing multicast or broadcast discovery
//
if ( TEST_BIT( RamdiskDiscovery, RAMDISK_DISCOVERY_BROADCAST ) || TEST_BIT( RamdiskDiscovery, RAMDISK_DISCOVERY_MULTICAST ) ) {
TotalExpectedWaitTime = DISCOVER_TOTAL_TIMEOUT_TIME;
for (iRetry = 0; iRetry < cRetries; iRetry++) {
// Each Discover / Accpet gets its own transaction ID.
Discover.XID = ++RamdiskXID;
DBGPRINT(INFO, ("Sending Discovery packet XID = %d. Retry %d out of %d. Timeout = %d\n", Discover.XID, iRetry, cRetries, Timeout));
if ( TEST_BIT( RamdiskDiscovery, RAMDISK_DISCOVERY_MULTICAST) ) { DestinationAddress = RamdiskMCastAddr; } else if ( TEST_BIT( RamdiskDiscovery, RAMDISK_DISCOVERY_BROADCAST ) ) { DestinationAddress = 0xFFFFFFFF; }
if ( TEST_BIT( RamdiskDiscovery, RAMDISK_DISCOVERY_RESTRICT ) ) { ASSERT( RamdiskServerCount > 0 ); fExcludeServers = TRUE; } if ( RamdiskSendDiscoverPacketAndWait( &Discover, DestinationAddress, Timeout, fExcludeServers, DiscoveryStartTime, TotalExpectedWaitTime, BuildServerIpAddress ) == ESUCCESS ) { // we found a server. we are done.
BlUpdateProgressBar( 100 ); return ESUCCESS; }
// double the timeout
Timeout = Timeout * 2; }
} else { //
// We are doing Unicast discovery to a fixed list of server addresses
// in the order that they appear in the list. first to respond within
// the timeout period wins
//
TotalExpectedWaitTime = RamdiskServerCount * ( RamdiskTimeout + DISCOVER_SEND_TIMEOUT );
for (iServer = 0; iServer < RamdiskServerCount; iServer++) {
// Each Discover / Accpet gets its own transaction ID.
Discover.XID = ++RamdiskXID;
if (RamdiskSendDiscoverPacketAndWait( &Discover, RamdiskServers[iServer], RamdiskTimeout, FALSE, DiscoveryStartTime, TotalExpectedWaitTime, BuildServerIpAddress ) == ESUCCESS ) { // we found a server. we are done.
BlUpdateProgressBar( 100 ); return ESUCCESS; } } }
BlUpdateProgressBar( 100 ); return EINVAL; }
VOID RamdiskWait( ULONG WaitTime ) { ULONG startTime = SysGetRelativeTime(); while ( (SysGetRelativeTime() - startTime) < WaitTime ) { } }
VOID RamdiskPrintBuildProgress( ULONG uMsgId, ULONG BuildServerIpAddress ) { PUCHAR p; PTCHAR FormatString = NULL; TCHAR Buffer[256];
//
// print progress message
//
p = (PUCHAR) &BuildServerIpAddress; FormatString = BlFindMessage( uMsgId ); if ( FormatString != NULL ) { _stprintf(Buffer, FormatString, p[0], p[1], p[2], p[3] ); BlOutputTrailerMsgStr( Buffer ); } }
ARC_STATUS RamdiskBuildAndInitialize( ) /*++
Routine Description:
This routine will communicate with a build server to build a ramdisk and obtain a RDPATH.
Arguments:
Return Value:
ESUCCESS - read completed successfully
!ESUCCESS - read failed
--*/ { ARC_STATUS status; PBMBUILD_REQUEST_PACKET pRequest = NULL; PBMBUILD_RESPONSE_PACKET pResponse = NULL; USHORT iRetry = 0; ULONG Length; ULONG RemoteHost = 0; USHORT RemotePort = 0; PUCHAR p; BOOLEAN fSuccess = FALSE; ULONG BuildServerIpAddress = 0;
//
// Set the max packet size. This is calculate from the
// MTU size of the network (1500 for Ethernet) minus
// the IP and UDP headers ( which account to 28 bytes ).
//
RamdiskMaxPacketSize = NetMaxTranUnit - 28;
ASSERT( RamdiskMaxPacketSize > 0 );
pRequest = BlAllocateHeap( RamdiskMaxPacketSize ); if ( pRequest == NULL ) { DBGPRINT(ERR, ("Failed to allocate request packet of size %d.\n", RamdiskMaxPacketSize)); return ENOMEM; }
pResponse = BlAllocateHeap( RamdiskMaxPacketSize ); if ( pRequest == NULL ) { DBGPRINT(ERR, ("Failed to allocate request packet of size %d.\n", RamdiskMaxPacketSize)); return ENOMEM; }
memset(pRequest, 0, RamdiskMaxPacketSize); memset(pResponse, 0, RamdiskMaxPacketSize);
//
// All packets sent from client will go from the client port
//
RomSetReceiveStatus( BMBUILD_CLIENT_PORT );
//
// Discover build server
//
status = RamdiskDiscoverBuildServer( &BuildServerIpAddress ); if (status != ESUCCESS ) { goto Error; }
//
// Build request packet
//
status = RamdiskBuildRequest( pRequest ); if ( status != ESUCCESS ) { goto Error; }
//
// Start communication with boot server. Display the text progress
// bar when booting of a ramdisk
//
BlOutputStartupMsg(RAMDISK_BUILD_REQUEST); BlUpdateProgressBar(0); RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS, BuildServerIpAddress ); DBGPRINT(INFO, ("Requesting appropriate image for this computer...\n")); while ( iRetry < RamdiskRetry ) {
BlUpdateProgressBar( (iRetry * 100) / RamdiskRetry );
Length = pRequest->Length + BMBUILD_COMMON_PACKET_LENGTH;
// allocate a new transaction ID for this session
pRequest->XID = ++RamdiskXID;
p = (PUCHAR) &NetServerIpAddress; DBGPRINT(INFO, ( "Sending request packet (%d bytes) XID = %d to %u.%u.%u.%u:%u.\n", Length, pRequest->XID, p[0], p[1], p[2], p[3], SWAP_WORD( BMBUILD_SERVER_PORT ) ) );
if ( RomSendUdpPacket( (PVOID)pRequest, Length, BuildServerIpAddress, BMBUILD_SERVER_PORT ) != Length ) { RamdiskWait( RamdiskTimeout ); iRetry++; RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS_ERROR, BuildServerIpAddress ); continue; }
DBGPRINT(INFO, ( "Waiting for response (Timeout = %d secs).\n", RamdiskTimeout ) );
Length = RomReceiveUdpPacket( (PVOID)pResponse, RamdiskMaxPacketSize, RamdiskTimeout, &RemoteHost, &RemotePort); if ( Length == 0 ) { DBGPRINT(INFO, ( "Receive timed out.\n") ); iRetry++; RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS_TIMEOUT, BuildServerIpAddress ); continue; }
if ( Length < BMBUILD_RESPONSE_FIXED_PACKET_LENGTH - BMBUILD_COMMON_PACKET_LENGTH || RemoteHost != BuildServerIpAddress || RemotePort != BMBUILD_SERVER_PORT || pResponse->OpCode != BMBUILD_OPCODE_RESPONSE || pResponse->Version != BMBUILD_PACKET_VERSION || pResponse->XID != pRequest->XID ) {
p = (PUCHAR) &RemoteHost; DBGPRINT(INFO, ("Received invalid packet OpCode = %d Length = %d Version = %d XID = %d from %u.%u.%u.%u:%u\n", pResponse->OpCode, pResponse->Length, pResponse->Version, pResponse->XID, p[0], p[1], p[2], p[3], SWAP_WORD( RemotePort ) ) );
RamdiskWait( RamdiskTimeout ); iRetry++; RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS_ERROR, BuildServerIpAddress ); continue; }
p = (PUCHAR) &RemoteHost; DBGPRINT(INFO, ("Received VALID packet OpCode = %d Length = %d Version = %d XID = %d from %u.%u.%u.%u:%u\n", pResponse->OpCode, pResponse->Length, pResponse->Version, pResponse->XID, p[0], p[1], p[2], p[3], SWAP_WORD( RemotePort )) );
if ( BMBUILD_IS_E( pResponse->Error ) ) { DBGPRINT(INFO, ("Request Failed. Error = %x\n", pResponse->Error) ); RamdiskWait( RamdiskTimeout ); iRetry++; RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS_PENDING, BuildServerIpAddress ); continue; }
if ( pResponse->Error == BMBUILD_S_REQUEST_PENDING ) { DBGPRINT(INFO, ("Request is pending. Instructed to wait for %d secs.\n", pResponse->WaitTime ) ); RamdiskWait( pResponse->WaitTime ); RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS_ERROR, BuildServerIpAddress ); continue; }
ASSERT( BMBUILD_S ( pResponse->Error ) );
fSuccess = TRUE; break; }
if (fSuccess) {
ASSERT ( RamdiskPath == NULL );
RamdiskPrintBuildProgress( RAMDISK_BUILD_PROGRESS, BuildServerIpAddress ); BlUpdateProgressBar( 100 );
//
// Set the MTFTP options
//
RamdiskTFTPAddr = pResponse->TFTPAddr.Address; RamdiskMTFTPAddr = pResponse->MTFTPAddr.Address; RamdiskMTFTPCPort = pResponse->MTFTPCPort; RamdiskMTFTPSPort = pResponse->MTFTPSPort; RamdiskMTFTPTimeout = pResponse->MTFTPTimeout; RamdiskMTFTPDelay = pResponse->MTFTPDelay; RamdiskMTFTPFileSize = pResponse->MTFTPFileSize; RamdiskMTFTPChunkSize = pResponse->MTFTPChunkSize;
//
// Set the image offset and length
//
RamdiskImageOffset = pResponse->ImageFileOffset; RamdiskImageLength = pResponse->ImageFileLength;
p = (PUCHAR)((ULONG_PTR)pResponse + pResponse->ImagePathOffset);
RamdiskPath = BlAllocateHeap( strlen((PCHAR)p ) + sizeof ( "net(0)\\" ) ); if ( RamdiskPath == NULL ) { DBGPRINT(ERR, ("Failed to allocate memory for RamdiskPath size %d.\n", strlen((PCHAR)p ) + sizeof ( "net(0)\\" ))); return ENOMEM; }
strcpy( RamdiskPath, "net(0)\\" ); strcat( RamdiskPath, (PCHAR)p );
if (DBGLVL(INFO)) { DbgPrint( "RDPATH = %s\n", RamdiskPath); p = (PUCHAR) &RamdiskTFTPAddr; DbgPrint( "RDTFTPADDR = %u.%u.%u.%u\n", p[0], p[1], p[2], p[3]); p = (PUCHAR) &RamdiskMTFTPAddr; DbgPrint( "RDMTFTPADDR = %u.%u.%u.%u\n", p[0], p[1], p[2], p[3]); DbgPrint( "RDMTFTPCPORT = %d\n", SWAP_WORD( RamdiskMTFTPCPort )); DbgPrint( "RDMTFTPSPORT = %d\n", SWAP_WORD( RamdiskMTFTPSPort )); DbgPrint( "RDMTFTPDELAY = %d\n", RamdiskMTFTPDelay); DbgPrint( "RDMTFTPTIMEOUT = %d\n", RamdiskMTFTPTimeout); DbgPrint( "RDFILESIZE = 0x%0I64x bytes\n", RamdiskMTFTPFileSize ); DbgPrint( "RDCHUNKSIZE = 0x%0I64x bytes\n", RamdiskMTFTPChunkSize ); DbgPrint( "RDIMAGEOFFSET = 0x%x bytes\n", RamdiskImageOffset ); DbgPrint( "RDIMAGELENGTH = 0x%0I64x bytes\n", RamdiskImageLength ); } } else {
DBGPRINT(ERR, ("RamdiskBuildAndInitialize: Failed.\n")); return EINVAL; }
return ESUCCESS;
Error: return status; }
#endif
#endif // defined(POST_XPSP)
VOID RamdiskFatalError( IN ULONG Message1, IN ULONG Message2 ) /*++
Routine Description:
This function looks up a message to display at a error condition.
Arguments:
Message - message that describes the class of problem.
Return Value:
none
--*/ {
PTCHAR Text; TCHAR Buffer[40]; ULONG Count;
BlClearScreen();
Text = BlFindMessage(Message1); if (Text == NULL) { _stprintf(Buffer,TEXT("%08lx\r\n"),Message1); Text = Buffer; }
ArcWrite(BlConsoleOutDeviceId, Text, (ULONG)_tcslen(Text)*sizeof(TCHAR), &Count);
Text = BlFindMessage(Message2); if (Text == NULL) { _stprintf(Buffer,TEXT("%08lx\r\n"),Message2); Text = Buffer; }
ArcWrite(BlConsoleOutDeviceId, Text, (ULONG)_tcslen(Text)*sizeof(TCHAR), &Count);
#if defined(ENABLE_LOADER_DEBUG) || DBG
#if (defined(_X86_) || defined(_ALPHA_) || defined(_IA64_)) && !defined(ARCI386) // everything but ARCI386
if(BdDebuggerEnabled) { DbgBreakPoint(); } #endif
#endif
return; }
#if defined(_X86_)
VOID RamdiskSdiBoot( IN PCHAR SdiFile ) { ARC_STATUS status; PSDI_HEADER sdiHeader; PUCHAR startromAddress; ULONG startromLength; BOOLEAN OldShowProgressBar; LONGLONG availableLength;
//
// Read the SDI image into memory.
//
RamdiskTFTPAddr = NetServerIpAddress; RamdiskImageOffset = 0; RamdiskImageLength = 0;
OldShowProgressBar = BlShowProgressBar; BlShowProgressBar = TRUE;
status = RamdiskReadImage( SdiFile ); if ( status != ESUCCESS ) { RamdiskFatalError( RAMDISK_GENERAL_FAILURE, RAMDISK_BOOT_FAILURE ); return; }
BlShowProgressBar = OldShowProgressBar;
//
// Copy startrom.com from the SDI image to 0x7c00.
//
sdiHeader = MapRamdisk( 0, &availableLength );
ASSERT( availableLength >= sizeof(SDI_HEADER) ); ASSERT( availableLength >= (sdiHeader->liBootCodeOffset.QuadPart + sdiHeader->liBootCodeSize.QuadPart) );
ASSERT( sdiHeader->liBootCodeOffset.HighPart == 0 ); ASSERT( sdiHeader->liBootCodeSize.HighPart == 0 );
startromAddress = (PUCHAR)sdiHeader + sdiHeader->liBootCodeOffset.LowPart; startromLength = sdiHeader->liBootCodeSize.LowPart;
RtlMoveMemory( (PVOID)0x7c00, startromAddress, startromLength );
//
// Shut down PXE.
//
if ( BlBootingFromNet ) { NetTerminate(); }
//
// Inform boot debugger that the boot phase is complete.
//
#if defined(ENABLE_LOADER_DEBUG) || DBG
#if (defined(_X86_) || defined(_ALPHA_)) && !defined(ARCI386)
{ if (BdDebuggerEnabled == TRUE) { DbgUnLoadImageSymbols(NULL, (PVOID)-1, 0); } }
#endif
#endif
REBOOT( (ULONG)sdiHeader | 3 );
return; }
#endif
|