|
|
/*++
Copyright (c) 1991-1998 Microsoft Corporation
Module Name:
ioctl.c
Abstract:
Author:
Neil Sandlin (neilsa) 26-Apr-99
Environment:
Kernel mode only.
--*/ #include "pch.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE,MemCardDeviceControl)
#endif
NTSTATUS MemCardDeviceControl( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp )
/*++
Routine Description:
This routine is called by the I/O system to perform a device I/O control function.
Arguments:
DeviceObject - a pointer to the object that represents the device that I/O is to be done on.
Irp - a pointer to the I/O Request Packet for this request.
Return Value:
STATUS_SUCCESS or STATUS_PENDING if recognized I/O control code, STATUS_INVALID_DEVICE_REQUEST otherwise.
--*/
{ PIO_STACK_LOCATION irpSp; PMEMCARD_EXTENSION memcardExtension; PDISK_GEOMETRY outputBuffer; NTSTATUS status; ULONG outputBufferLength; UCHAR i; ULONG formatExParametersSize; PFORMAT_EX_PARAMETERS formatExParameters;
MemCardDump( MEMCARDIOCTL, ("MemCard: IOCTL entered\n") );
memcardExtension = DeviceObject->DeviceExtension; irpSp = IoGetCurrentIrpStackLocation( Irp );
//
// If the device has been removed we will just fail this request outright.
//
if ( memcardExtension->IsRemoved ) {
Irp->IoStatus.Information = 0; Irp->IoStatus.Status = STATUS_DELETE_PENDING; IoCompleteRequest( Irp, IO_NO_INCREMENT ); return STATUS_DELETE_PENDING; }
//
// If the device hasn't been started we will let the IOCTL through. This
// is another hack for ACPI.
//
if (!memcardExtension->IsStarted) {
IoSkipCurrentIrpStackLocation( Irp ); return IoCallDriver( memcardExtension->TargetObject, Irp ); }
switch( irpSp->Parameters.DeviceIoControl.IoControlCode ) {
case IOCTL_MOUNTDEV_QUERY_DEVICE_NAME: {
PMOUNTDEV_NAME mountName;
MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_MOUNTDEV_QUERY_DEVICE_NAME\n", DeviceObject, Irp)); ASSERT(memcardExtension->DeviceName.Buffer);
if ( irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof(MOUNTDEV_NAME) ) {
status = STATUS_INVALID_PARAMETER; break; }
mountName = Irp->AssociatedIrp.SystemBuffer; mountName->NameLength = memcardExtension->DeviceName.Length;
if ( irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof(USHORT) + mountName->NameLength) {
status = STATUS_BUFFER_OVERFLOW; Irp->IoStatus.Information = sizeof(MOUNTDEV_NAME); break; }
RtlCopyMemory( mountName->Name, memcardExtension->DeviceName.Buffer, mountName->NameLength);
status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof(USHORT) + mountName->NameLength; break; }
case IOCTL_MOUNTDEV_QUERY_UNIQUE_ID: {
PMOUNTDEV_UNIQUE_ID uniqueId;
MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_MOUNTDEV_QUERY_UNIQUE_ID\n", DeviceObject, Irp));
if ( !memcardExtension->InterfaceString.Buffer || irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof(MOUNTDEV_UNIQUE_ID)) {
status = STATUS_INVALID_PARAMETER; break; }
uniqueId = Irp->AssociatedIrp.SystemBuffer; uniqueId->UniqueIdLength = memcardExtension->InterfaceString.Length;
if (irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof(USHORT) + uniqueId->UniqueIdLength) {
status = STATUS_BUFFER_OVERFLOW; Irp->IoStatus.Information = sizeof(MOUNTDEV_UNIQUE_ID); break; }
RtlCopyMemory( uniqueId->UniqueId, memcardExtension->InterfaceString.Buffer, uniqueId->UniqueIdLength );
status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof(USHORT) + uniqueId->UniqueIdLength; break; }
case IOCTL_MOUNTDEV_QUERY_SUGGESTED_LINK_NAME: { MemCardDump(MEMCARDIOCTL,("MemCard: DO %.8x Irp %.8x IOCTL_MOUNTDEV_QUERY_SUGGESTED_LINK_NAME\n", DeviceObject, Irp));
status = STATUS_INVALID_DEVICE_REQUEST; break; }
case IOCTL_DISK_GET_MEDIA_TYPES: { ULONG ByteCapacity; MemCardDump(MEMCARDIOCTL,("MemCard: DO %.8x Irp %.8x IOCTL_DISK_GET_MEDIA_TYPES\n", DeviceObject, Irp)); outputBufferLength = irpSp->Parameters.DeviceIoControl.OutputBufferLength; outputBuffer = (PDISK_GEOMETRY) Irp->AssociatedIrp.SystemBuffer;
//
// Make sure that the input buffer has enough room to return
// at least one descriptions of a supported media type.
//
if (outputBufferLength < (sizeof(DISK_GEOMETRY))) { status = STATUS_BUFFER_TOO_SMALL; break; }
//
// Assume success, although we might modify it to a buffer
// overflow warning below (if the buffer isn't big enough
// to hold ALL of the media descriptions).
//
status = STATUS_SUCCESS; i = 0; Irp->IoStatus.Information = 0;
//
// Fill in capacities from 512K to 8M
//
for (ByteCapacity = 0x80000; ByteCapacity <= 0x800000; ByteCapacity*=2) { if (outputBufferLength < (sizeof(DISK_GEOMETRY) + Irp->IoStatus.Information)) { status = STATUS_BUFFER_OVERFLOW; break; }
outputBuffer->MediaType = FixedMedia; outputBuffer->Cylinders.LowPart = ByteCapacity / (8 * 2 * 512); outputBuffer->Cylinders.HighPart = 0; outputBuffer->TracksPerCylinder = 2; outputBuffer->SectorsPerTrack = 8; outputBuffer->BytesPerSector = 512; MemCardDump( MEMCARDIOCTL, ("MemCard: Cyls=%x\n", outputBuffer->Cylinders.LowPart)); outputBuffer++; Irp->IoStatus.Information += sizeof( DISK_GEOMETRY ); } break; } case IOCTL_DISK_CHECK_VERIFY: MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_DISK_CHECK_VERIFY\n", DeviceObject, Irp)); status = STATUS_SUCCESS; break;
case IOCTL_DISK_GET_DRIVE_GEOMETRY: { PDISK_GEOMETRY outputBuffer = (PDISK_GEOMETRY) Irp->AssociatedIrp.SystemBuffer; MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_DISK_GET_DRIVE_GEOMETRY\n", DeviceObject, Irp)); if ( irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof( DISK_GEOMETRY ) ) { status = STATUS_INVALID_PARAMETER; break; }
status = STATUS_SUCCESS;
if (!memcardExtension->ByteCapacity) { //
// Just zero out everything. The
// caller shouldn't look at it.
//
outputBuffer->MediaType = Unknown; outputBuffer->Cylinders.LowPart = 0; outputBuffer->Cylinders.HighPart = 0; outputBuffer->TracksPerCylinder = 0; outputBuffer->SectorsPerTrack = 0; outputBuffer->BytesPerSector = 0;
} else { //
// Return the geometry of the current
// media.
//
outputBuffer->MediaType = FixedMedia; outputBuffer->Cylinders.HighPart = 0; outputBuffer->Cylinders.LowPart = memcardExtension->ByteCapacity / (8 * 2 * 512); outputBuffer->TracksPerCylinder = 2; outputBuffer->SectorsPerTrack = 8; outputBuffer->BytesPerSector = 512; }
MemCardDump( MEMCARDIOCTL, ("MemCard: Capacity=%.8x => Cyl=%x\n", memcardExtension->ByteCapacity, outputBuffer->Cylinders.LowPart)); Irp->IoStatus.Information = sizeof( DISK_GEOMETRY ); break; }
case IOCTL_DISK_IS_WRITABLE: { MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_DISK_IS_WRITABLE\n", DeviceObject, Irp)); if ((memcardExtension->PcmciaInterface.IsWriteProtected)(memcardExtension->UnderlyingPDO)) { status = STATUS_INVALID_PARAMETER; } else { status = STATUS_SUCCESS; } break; }
case IOCTL_DISK_VERIFY: { PVERIFY_INFORMATION verifyInformation = Irp->AssociatedIrp.SystemBuffer; if (irpSp->Parameters.DeviceIoControl.InputBufferLength < sizeof(VERIFY_INFORMATION)) { status = STATUS_INVALID_PARAMETER; break; }
//NOTE: not implemented
Irp->IoStatus.Information = verifyInformation->Length; status = STATUS_SUCCESS; break; } case IOCTL_DISK_GET_DRIVE_LAYOUT: { PDRIVE_LAYOUT_INFORMATION outputBuffer = (PDRIVE_LAYOUT_INFORMATION) Irp->AssociatedIrp.SystemBuffer; MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_DISK_GET_DRIVE_LAYOUT\n", DeviceObject, Irp)); if ( irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof(DRIVE_LAYOUT_INFORMATION) ) { status = STATUS_INVALID_PARAMETER; break; } RtlZeroMemory(outputBuffer, sizeof(DRIVE_LAYOUT_INFORMATION));
outputBuffer->PartitionCount = 1; outputBuffer->PartitionEntry[0].StartingOffset.LowPart = 512; outputBuffer->PartitionEntry[0].PartitionLength.LowPart = memcardExtension->ByteCapacity; outputBuffer->PartitionEntry[0].RecognizedPartition = TRUE;
status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof(DRIVE_LAYOUT_INFORMATION); break; } case IOCTL_DISK_GET_PARTITION_INFO: { PPARTITION_INFORMATION outputBuffer = (PPARTITION_INFORMATION)Irp->AssociatedIrp.SystemBuffer; MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_DISK_GET_PARTITION_INFO\n", DeviceObject, Irp)); if ( irpSp->Parameters.DeviceIoControl.OutputBufferLength < sizeof( PARTITION_INFORMATION ) ) { status = STATUS_INVALID_PARAMETER; break; }
RtlZeroMemory(outputBuffer, sizeof(PARTITION_INFORMATION)); outputBuffer->RecognizedPartition = TRUE; outputBuffer->StartingOffset.LowPart = 512; outputBuffer->PartitionLength.LowPart = memcardExtension->ByteCapacity;
status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof( PARTITION_INFORMATION ); break; } case IOCTL_DISK_SET_DRIVE_LAYOUT: MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL_DISK_SET_DRIVE_LAYOUT\n", DeviceObject, Irp)); case IOCTL_MOUNTMGR_CHANGE_NOTIFY: case IOCTL_MOUNTDEV_LINK_CREATED: case IOCTL_MOUNTDEV_LINK_DELETED: default: {
MemCardDump(MEMCARDIOCTL, ("MemCard: IOCTL - unsupported device request %.8x\n", irpSp->Parameters.DeviceIoControl.IoControlCode));
status = STATUS_INVALID_DEVICE_REQUEST; break; //IoSkipCurrentIrpStackLocation( Irp );
//status = IoCallDriver( memcardExtension->TargetObject, Irp );
//return status;
} }
if ( status != STATUS_PENDING ) {
Irp->IoStatus.Status = status; if (!NT_SUCCESS( status ) && IoIsErrorUserInduced( status )) { IoSetHardErrorOrVerifyDevice( Irp, DeviceObject ); } MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL comp %.8x\n", DeviceObject, Irp, status)); IoCompleteRequest( Irp, IO_NO_INCREMENT ); }
MemCardDump( MEMCARDIOCTL, ("MemCard: DO %.8x Irp %.8x IOCTL <-- %.8x \n", DeviceObject, Irp, status)); return status; }
|